
Parallel and Distributed
Algorithms

ABDELHAK BENTALEB (A0135562H), LEI YIFAN (A0138344E),

JI XIN (A0138230R), DILEEPA FERNANDO (A0134674B),

ABDELRAHMAN KAMEL (A0138294X)

NUS – School of Computing
CS6234 Advanced Topic in Algorithms

Outline

• Background (Abdelrahman)
• Background (1) Parallel and Distributed Algorithms

• Background (2) Perfect Matchings

• Perfect Matchings (Abdelhak & Yifan)

• Byzantine Agreement (Dileepa & Xin)

Background (1) Parallel and Distributed
Algorithms
The use and organization of multiple processors to solve a problem

Background (1) Parallel and Distributed
Algorithms

• Parallel
• Processor share clock and memory

• Same OS

• Frequent communication

The use and organization of multiple processors to solve a problem

Background (1) Parallel and Distributed
Algorithms

• Parallel
• Processor share clock and memory

• Same OS

• Frequent communication

The use and organization of multiple processors to solve a problem

Background (1) Parallel and Distributed
Algorithms

• Parallel
• Processor share clock and memory

• Same OS

• Frequent communication

• Distributed
• Memory not shared

• Different clocks

• Different OS

• Infrequent communication

The use and organization of multiple processors to solve a problem

Background (1) Parallel and Distributed
Algorithms

• Parallel
• Processor share clock and memory

• Same OS

• Frequent communication

• Distributed
• Memory not shared

• Different clocks

• Different OS

• Infrequent communication

The use and organization of multiple processors to solve a problem

Background (2) Perfect Matchings

• The Seven Bridges of Königsberg
• How to cross all 7 bridges exactly

once?

Background (2) Perfect Matchings

• The Seven Bridges of Königsberg
• Represent regions by points

• Represent bridges by lines

Background (2) Perfect Matchings

• The Seven Bridges of Königsberg
• Points: Vertices

• Lines: Edges

• This is a GRAPH

Background (2) Perfect Matchings

• Example Graph
• 6 Vertices:

{1, 2, 3, 4, 5, 6}

• 7 Edges:

{1, 2}, {1, 5}, {2, 3}, {2, 5}, {3, 4}, {4, 5}, {4, 6}

Background (2) Perfect Matchings

• Bipartite graph (bigraph)
• a graph whose vertices can be

divided into two disjoint sets U
and V

• such that every edge connects a
vertex in U to one in V.

Background (2) Perfect Matchings

• Matching (independent edge set)

• a set of edges M without common vertices

Background (2) Perfect Matchings

• Maximal matching

• M is maximal if it is not a proper subset of any other matching in graph G

• every edge in G has a non-empty intersection with at least one edge in M

Background (2) Perfect Matchings

• Maximum matching
• a matching that contains the largest possible number of edges

Background (2) Perfect Matchings

• Perfect matching
• a matching that contains all vertices of the graph

• Which of a, b, or c is a prefect matching?

Background (2) Perfect Matchings

• Perfect matching
• a matching that contains all vertices of the graph

• Which of a, b, or c is a prefect matching?

Independent Set Matchings

Perfect Matching

Abdelhak Bentaleb1

1School of Computing

2016

Independent Set Matchings

Outline

Independent Set
Independent Set

Matchings
Matchings

Independent Set Matchings

Outline

Independent Set
Independent Set

Matchings
Matchings

Independent Set Matchings

Independent Set

• Given a graph G = (V, E), find a subset I ⊆ V such that for
all (u, v) ∈ E: u /∈ I or v /∈ I.

• An independent set I is maximal if I can not be augmented to
a larger independent set.

• An independent set I is maximum if for all independent sets
I’, we have that |I| ≥ |I’|

Independent Set Matchings

How do we find a MIS ?

• Finding a maximum Independent Set is NP-hard.

• Finding a maximal Independent Set is simple.

• Graph with vertices V = { 1,2,,n }
• A set S of vertices is independent if no two vertices in S are

neighbors.

• An independent set S is maximal if it is impossible to add
another vertex and stay independent

• An independent set S is maximum if no other independent set
has more vertices.

The set of red vertices S = { 4, 5} is
independent and maximal but not
maximum

Independent Set Matchings

Sequential Algorithm MIS

1. S = empty set

2. for vertex v = 1 to N

3. if (v has no neighbor in S)

4. add v to S

Independent Set Matchings

Parallel, Randomized MIS Algorithm
Luby

• S ← ∅, G the graph

• While G not empty do IN PARALLEL

• Mark each vertex v independently with probability
1

2d(v)
(always mark isolated nodes)

• For every edge with both nodes marked, unmark the node with
the lowest degree (break ties arbitrarily)

• Let C be the set of all marked nodes, S ← S ∪ C
• Remove from G the vertices C ∪ N(C) and all incident edges

Independent Set Matchings

Parallel, Randomized MIS Algorithm
Luby

1. S = empty set, C = V

2. while C is not empty

3. label each v in C with a probability r(v) =
1

2d(v)
4. for all v in C in parallel

5. if r(v) < min(r(Γ(v)))

6. move v from C to S

7. remove neighbors of v from C

Independent Set Matchings

Outline

Independent Set
Independent Set

Matchings
Matchings

Independent Set Matchings

Matchings

• Let G = (V, E) be a graph

• A matching in G is a set of edges M ⊂ E such that no two
edges are incident

• A maximum matching is a matching with maximum number
of edges [c]

• A perfect matching is a matching containing an edge incident
to every vertex of G [b]

Independent Set Matchings

Determining the existence of a perfect matching
Bipartite Graphs

• For simplicity, we will deal with bipartite graphs such that G
= (U, V, E) and U = {u1 , . . . un }, V = {v1 , . . . , vn}

Definition
A simple graph G = (V,E) is called bipartite if its vertex set can be
partitioned into two disjoint V = u1 ∪ v1 , such that every edge
has the form e = (a,b) where a ∈ u1 and b ∈ v1. Note, that no
vertices both in u1 or both in v1 are connected

Independent Set Matchings

Determining the existence of a perfect matching
The Tutte Matrix

• The Tutte Matrix A of a bipartite graph G is a n × n matrix
such. that:

Aij =

xij if (ui , vj) ∈ E and i < j

−xij if (ui , vj) ∈ E and i > j

0 if (ui , vj) /∈ E

Independent Set Matchings

Determining the existence of a perfect matching
Determinant of the Tutte Matrix

Theorem
det(A) 6= 0 ⇔ G has a perfect matching

• det(A) is a polynomial with n2 variables.

• Use the Schwartz-Zippel algorithm for Polynomial Identity
Testing to check whether det(A) = 0.

• Computing the determinant is used as a subroutine.

• A n × n determinant can be computed in O(log2n) time using
polynomially many processors

Independent Set Matchings

Determining the existence of a perfect matching
Decision version of Perfect Matching

Consequence

Deciding whether a graph G has a perfect matching is in RNC
(Random Nick’s Class (NC)).

Note: the class NC (for ”Nick’s Class”) is the set of decision problems decidable in polylogarithmic time on a
parallel computer with a polynomial number of processors. In other words, a problem is in NC if there exist

constants c and k such that it can be solved in time O(logcn) using O(nk) parallel processors

Independent Set Matchings

Finding a Perfect Matching Sequentially

• Notice that if edge e belongs to a perfect matching, then for
the graph G’ = G \ e we have that det(A’) 6= 0.

• Sequential Matching

1. Pick an arbitrary edge (i, j) of G
2. Check whether G’ = G \ i, j has a perfect matching
3. IF YES, add edge (i, j) to the matching M and G ← G’
4. ELSE G ← G \ {(i, j)}.
5. While M is not a perfect matching, repeat 1

Independent Set Matchings

Finding a Perfect Matching: The Parallel Algorithm
Ideas

• Not parallelizable: G may have many perfect matchings, the
processors must be coordinated to search for the same
matching!

• IDEA: isolate a perfect matching and then employ the
algorithm

• HOW? assign random weights and look for the minimum
weight matching

Independent Set Matchings

Isolating Lemma

Will be completed by Yifan

Lemma & parallel
algorithm for perfect

matching
LEI YIFAN

General Idea

• The general idea to parallelize this sequential
algorithm is let all thread find the unique minimum
weight perfect matching.

Example

For the graph below, we have two different perfect
matching {a,d} and {b,c}.

After assigning each edge a weight, there might be
one unique minimum weight perfect matching.

Problems

• How to make sure that there is exactly one
minimum perfect matching.

• How to compute the unique minimum perfect
matching.

Problems

• To address these problems, we have some lemmas.
Since their proof is quite complex and takes too
much time, we may mainly focus on the algorithm
and how the algorithm can get the right solution.

Isolating lemma

• A set system (X, ℱ) consists of a finite universe 𝑋 =
{𝑥1, … , 𝑥𝑚} and a family of subsets ℱ = {𝑆1, … , 𝑆𝑘},
where 𝑆𝑖 ⊆ 𝑋 for 1 ≤ 𝑖 ≤ 𝑘. The dimension of the set
system is m.

• Lemma: Suppose (X, ℱ) is a set system of dimension m.
Let 𝑤:𝑋 → {1,… , 2𝑚} be a positive integer weight
function defined by assigning to each element of X a
random weight chosen uniformly and independently
from {1, … , 2𝑚}. Then,

Pr 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑢𝑛𝑖𝑞𝑢𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑤𝑒𝑖𝑔ℎ𝑡 𝑠𝑒𝑡 𝑖𝑛 ℱ ≥
1

2
.

Example

• 𝑋 = 1,2,3,4,5,6 and m=6

• ℱ = { 1,2,3 , 2,3,5 , 3,4,6 , 2,4,5,6 }

• Randomly set 𝑤:𝑋 → {1,…2𝑚} as table below:
x 1 2 3 4 5 6 mininum F

1st random
assignment

11 5 1 7 5 12 {2,3,5}

2nd 2 11 10 8 3 6 {1,2,3}

3rd 2 5 12 2 10 4 {3,4,6}

4th 2 10 3 3 9 9
{1,2,3}&{3,

4,6}

5th 3 10 8 11 10 10 {1,2,3}

6th 10 9 1 2 4 6 {3,4,6}

Simple Idea about Proof

• For element 𝑥𝑖 ,let 𝑊𝑖 be the weight of a minimum
weight set containing 𝑥𝑖 and 𝑊𝑖 be the weight of a
minimum weight set which do not contain 𝑥𝑖.

• Only when 𝑤 𝑥𝑖 = 𝑊𝑖 −𝑊𝑖, there will not be an
unique minimum weight set.

• The probability of 𝑤 𝑥𝑖 = 𝑊𝑖 −𝑊𝑖 is no more than
1/2m.

• Since we have m element. The probability that there is
a unique minimum weight set should at most

𝑚 ×
1

2𝑚
=
1

2
.

• According to Isolating Lemma, we can assign a
random weight to each edge and, with high
probability, that graph would have unique
minimum weight perfect matching.

• If there is no unique minimum weight perfect
matching, the algorithm will fail. We can repeat
until the graph do have a unique minimum weight
perfect matching.

• Let B be the matrix obtained from A by setting each
indeterminate 𝑥𝑖𝑗 to the (random) integer value 2𝑤𝑖𝑗

• Example:

If Tutte Matrix 𝐴 =

𝑥11 𝑥12 0
𝑥21 0 𝑥23
0 𝑥32 0

Then 𝐵 =
2𝑤11 2𝑤12 0
2𝑤21 0 2𝑤23

0 2𝑤32 0

Tutte Matrix

Lemma

• There is a unique minimum weight perfect
matching and that its weight is W ⇔ The highest
power of 2 that divides det(B) is 22𝑊

• Proof:

• Similar to previous proof.

Lemma

• Let M be the unique minimum weight perfect
matching in G, and let its weight be W. An edge (i,j)
belongs to M if and only if

det 𝐵𝑖𝑗 2𝑤𝑖𝑗

22𝑊

• is odd.

• Proof:
• det 𝐵𝑖𝑗 is related the perfect matching of G/(i,j).

Parallel Perfect Matching

• 1. for all edges (i,j), in parallel do
Choose random weight 𝑤𝑖𝑗 .

• 2. compute the Tutte matrix B from w.

• 3. compute det(B).

• 4. compute W such that 22𝑊 is the largest power of 2
dividing det(B).

• 5. compute 𝑎𝑑𝑗 𝐵 = det 𝐵 × 𝐵−1 whose (j,i) entry has
absolute value det(𝐵𝑖𝑗).

• 6. for all edges (i,j) in parallel do
Compute 𝑟𝑖𝑗 = det 𝐵𝑖𝑗 2𝑤𝑖𝑗/22𝑊.

• 7. for all edges (i,j) in parallel do
If 𝑟𝑖𝑗 is odd then add (i,j) to M

● “The Byzantine Generals Problem”, by Lamport, Shostak, Pease, In ACM
Transactions on Programming Languages and Systems, July 1982

○ why we need agreement
○ problem definition
○ impossible case
○ algorithm steps through examples

Byzantine Generals

● Build reliable systems in presence of faulty components
● Failed components send conflicting information to different parts of system
● Agreement in the presence of faults
● P2P Networks?

○ Good nodes have to “agree to do the same thing”.
○ Faulty nodes generate corrupted and misleading messages.
○ Non-malicious: Software bugs, hardware failures, power failures
○ Malicious reasons: Machine compromised.

Motivation

General Problem definition

● The abstract of problem:
○ Each division of Byzantine army is directed by its own general.
○ There are n Generals, some of which are traitors.
○ All armies are camped outside enemy castle, observing enemy.
○ Communicate with each other by messengers.

● Requirements:
○ R1: All loyal generals decide upon the same plan of action
○ R2: A small number of traitors cannot cause the loyal generals to adopt a bad plan

● Note: We do not have to identify the traitors.

Common Approach

● ith general sends information v(i) to all other generals
● To deal with two requirements:

○ All generals combine their information v(1), v(2), .., v(n) in the same way
○ Majority (v(1), v(2), …, v(n)), ignore minority traitors

● Common approach may not work:
○ Traitors may send different values to different generals
○ Loyal generals might get conflicting values from traitors

Reduction of General Problem

● Insight: We can restrict ourselves to the problem of one general sending its
order to others.

● Byzantine Generals Problem (BGP):
○ A commanding general (commander) must send an order to his n-1 lieutenants.

● Interactive Consistency Conditions:
○ IC1: All loyal lieutenants obey the same order.
○ IC2: If the commanding general is loyal, then every loyal lieutenant obeys the

order he sends.
● Note: If General is loyal, IC2 => IC1.

Impossible Case
● 3 generals, 1 traitor among them.
● Two messages: Attack or Retreat

Commander

L1 L2

attack

retreat

What should L1 do? Is commander or L2 the traitor???

Option 1: Loyal Commander

What must L1 do?

Commander

L1 L2

attack

retreat

attack

By IC2: L1 must obey commander and attack

Option 2: Loyal L2

What must L1 do?

Commander

L1 L2

attack

retreat

retreat

By IC1: L1 and L2 must obey same order --> L1 must retreat

Problem: L1 can’t distinguish between 2 scenarios

General Impossible Result

● No solution with fewer than 3m+1 generals can cope with m
traitors

● Refer to the paper for details

Byzantine Agreement
Dileepa Fernando

Scenario

• Presence of good people and bad people (remember the mafia
game?)

• All the good people should agree on the same decision at the end

• Bad people try to manipulate the decision of good people (How?)

How people behave

• Any two people have a two way communication link

• Every person knows the identities of the others

• Only bad people can distinguish bad people from good people

• Good people cannot identify the identities of bad people (initially)

Byzantine agreement

• All the people have their corresponding bit value(initial value)

• Final decision of all the good people should be the same value

• If initial value of all the good people is same, final decision should be
the initial value

How do bad people violate the protocol

• Good people broadcast same value to all other people in each round

• Bad people can send different values to different people in each
round and manipulate the majority value

• It is assumed that number of bad people (t) is less than n/8 (n is the
total number of people)

Terms

• L= (5n)/8 + 1 (lower threshold)

• H= (3n)/4 + 1 (higher threshold)

• G= (7n)/8

• bi Initial value of player i

• di decision of player i

• tally= number of occurrences of the majority vote

• maj= value of the majority vote (0 or 1)

• L ≥ n/2 + t + 1 (why?)

• H ≥ L + t (why?)

Algorithm

Example I

• Suppose 8 players (L=6, H=7, G=7)

• Only one bad player.

• What if all the good players broadcast ‘1’?

Example set of row vectors after 1st round

1 2 3 4 5 6 7 8 Tally

1 1 1 1 1 1 1 1 1 8

2 1 1 1 1 1 1 1 0 7

3 1 1 1 1 1 1 1 1 8

4 1 1 1 1 1 1 1 0 7

5 1 1 1 1 1 1 1 1 8

6 1 1 1 1 1 1 1 0 7

7 1 1 1 1 1 1 1 1 8

8 1 1 1 1 1 1 1 0 7

8 is the bad player, for all good players, tally ≥ G

Algorithm

Example II

• What if different players have different tally values?

• Intuition – only bad players can make this change, the difference is
bounded, nearly balanced vote can be changed

• If n1 is the tally value, n/2 ≤ n1 ≤ n/2 + t (Can you prove this?)

• What if lowest threshold is greater than the greatest tally value
possible (Remember L ≥ n/2 + t + 1)

Example set of row vectors after 1st round

1 2 3 4 5 6 7 8 Tally

1 1 1 1 1 0 0 0 1 5

2 1 1 1 1 0 0 0 0 4

3 1 1 1 1 0 0 0 1 5

4 1 1 1 1 0 0 0 0 4

5 1 1 1 1 0 0 0 1 5

6 1 1 1 1 0 0 0 0 4

7 1 1 1 1 0 0 0 1 5

8 1 1 1 1 0 0 0 0 4

8 is the bad player, for all good players, tally ≤
threshold

Algorithm

Example III

• Two cases were covered in previous example.

What is the remaining case?

All players have vectors with same majority value.

Can there be two tally values for two vectors, t1 ≤ L and t2 > H in this
case? (Remember H ≥ L + t)

Example 3 (contd)

• all tally values ≤ L,H (same as Example I)

or

• all tally values ≤ H

or

• all tally values > L

Tally values has a lower bound or upper bound

What if this bound(L or H) is generated from the coin toss? (what is the
probability?)

Example set of row vectors after 1st round

1 2 3 4 5 6 7 8 tally

1 1 1 1 1 1 1 0 1 7

2 1 1 1 1 1 1 0 0 6

3 1 1 1 1 1 1 0 1 7

4 1 1 1 1 1 1 0 0 6

5 1 1 1 1 1 1 0 1 7

6 1 1 1 1 1 1 0 0 6

7 1 1 1 1 1 1 0 1 7

8 1 1 1 1 1 1 0 0 6

8 is the bad player, for all good players, tally ≥L

Algorithm

Correctness – (Already explained by the
examples)
1. When all the good players start with the same value-line 9

2. If not all the good players get same bit value for majority vote - line
8 -> vote = 0, line 9 in next round

3. Else if, all the good players get same bit value for majority vote

line 7 , line 8, line 9 next round

Expected running time

• Constant

• May not be terminated

	Independent Set
	Independent Set

	Matchings
	Matchings

