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What is an Online Algorithm?

1 Receives inputs in parts or requests

2 Services or answers each request before going to the next one

3 Does not have overall view of entire request sequence

4 Examples of online algorithms:
1 Memory paging
2 Data structures
3 Resource allocation
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How do we analyse them?

Same method used for analysing offline algorithms cannot be
used here!
Competitve analysis is used:

Difficult to have absolute performance measure for online
algorithms

Compare against an optimal algorithm

Imagine comparing how fast you run compared to Usain
Bolt!
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Algorithm MIN

Adversary
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collude
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Types of adversaries:

Oblivious Online Adversary Knows about the algorithm used to perform
task, but not results of randomisation.

Adaptive Online Adversary Knows past answers to requests, but not
results of randomisation.

Adaptive Offline Adversary Knows everything, including randomisation
results.
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Deterministic Online Algorithms for Paging

Some examples of algorithms with fixed rules for paging are:

LRU Least Recently Used

FIFO First in, First out

LFU Least Frequently Used
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Some Notations

We use the symbol C when we compare the ratio of the cost of an
algorithm with the optimal. As in:

CostA(ρ) ≤ CADVA ×CostMIN(ρ) + b

Shawn Tan Randomised Online Algorithms



Introduction
Online Paging Algorithms

k-Server Problem

Deterministic Online Algorithms
Randomised Online Algorithms

Worst-case analysis

Lemma

Worst-case number of misses for any deterministic online algorithm is N,
where N is the length of the request sequence.

Consider an Adaptive Offline Adversary who knows at any moment, which
of the k + 1 pages is not in the cache, and simply makes that the next
request. This results in the algorithm doing a page swap at every request.
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Worst case analysis

Lemma

For the offline paging algorithm MIN, worst-case number of misses is N
k

Partition some request sequence into rounds such that there are only k
distinct requests per round.

a, . . . , b, . . . , c , . . . , d︸ ︷︷ ︸
one round

, e, . . . , b, . . . , a, . . . , d

Then for every round, MIN only misses once.
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Lower-bound for Deterministic Online Algorithms

Theorem

Let A be a deterministic online algorithm for paging. Then CA ≥ k

Proof.

From the first result, we know that we can construct a series of requests
that causes A to miss on every request. Then A misses more than k
times per round.
From the second result, we know that the MIN only misses once a round.
The result follows since A misses at least k more times a round compared
to MIN.
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Lower bound for Randomised Paging Algorithms

Theorem

Let R be a randomised algorithm for paging. Then CoblR ≥ Hk where Hk

is the kth Harmonic number

The Yao’s Minimax theorem tells us,

inf
R
CoblR = sup

P
inf
A
CPA
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Lower bound for Randomised Paging Algorithms

Theorem

Let R be a randomised algorithm for paging. Then CoblR ≥ Hk where Hk

is the kth Harmonic number

The Yao’s Minimax theorem tells us,

inf
R
CoblR = best deterministic algorithm under worst case request sequence

Shawn Tan Randomised Online Algorithms



Introduction
Online Paging Algorithms

k-Server Problem

Deterministic Online Algorithms
Randomised Online Algorithms

Lower bound for Randomised Paging Algorithms

Theorem

Let R be a randomised algorithm for paging. Then CoblR ≥ Hk where Hk

is the kth Harmonic number

Proof.

Construct a request sequence such that each request is uniformly chosen
at random from the set of pages such that the current page is not the
same as the previous (k choices).
We know that MIN faults once in a round.

. . . , b, a, . . . , b, . . . , c , . . . , d︸ ︷︷ ︸, e, . . .
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Lower bound for Randomised Paging Algorithms

Theorem

Let R be a randomised algorithm for paging. Then CoblR ≥ Hk where Hk

is the kth Harmonic number

Proof.

Construct a request sequence such that each request is uniformly chosen
at random from the set of pages such that the current page is not the
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. . . , b, a, . . . , b, . . . , c , . . . , d︸ ︷︷ ︸
length?

, e, . . .

Shawn Tan Randomised Online Algorithms



Introduction
Online Paging Algorithms

k-Server Problem

Deterministic Online Algorithms
Randomised Online Algorithms

Lower bound for Randomised Paging Algorithms

Theorem

Let R be a randomised algorithm for paging. Then CoblR ≥ Hk where Hk

is the kth Harmonic number

Proof.

Construct a request sequence such that each request is uniformly chosen
at random from the set of pages such that the current page is not the
same as the previous (k choices).
We know that MIN faults once in a round.

. . . , b, a, . . . , b, . . . , c , . . . , d︸ ︷︷ ︸
kHk
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Lower bound for Randomised Paging Algorithms

Theorem

Let R be a randomised algorithm for paging. Then CoblR ≥ Hk where Hk

is the kth Harmonic number

Proof.

. . . , b, a, . . . , b, . . . , c , . . . , d︸ ︷︷ ︸
probability of missing a page?

, e, . . .

We know that for each request, there are k possibilities, and that there is
only 1 item not in the cache, so the probability for missing is 1

k
Since MIN only misses once per round, we have the result.
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Lower bound for Randomised Paging Algorithms

Theorem

Let R be a randomised algorithm for paging. Then CoblR ≥ Hk where Hk

is the kth Harmonic number
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The Marker Algorithm

a b c d

0 0 0 0

a, c , e, b

Randomly selects page to evict, marks the location, and brings in new
page.
Resets just after a miss, before bringing in new page.
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Analysis of Marker Algorithm

Theorem

The Marker algorithm is 2Hk -competitive.

A page is considered marked if its location was marked.

A clean page is an unmarked page that was unmarked in the
previous round.

A stale page is a currently unmarked page that was marked in the
previous round.

dI = |SOPT − SM | at the beginning of the phase

dF = |SOPT − SM | at the end of the phase

Let the number of requests to clean items be c
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Analysis of Marker Algorithm

Theorem

The Marker algorithm is 2Hk -competitive.

Proof.

Number of misses made by OPT is at least c − dI

Number of misses made by OPT is at least dF

So we have,

No. of misses ≥ max{c − dI , dF} ≥
c − dI + dF

2
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Analysis of Marker Algorithm

Theorem

The Marker algorithm is 2Hk -competitive.

Proof.

Summing over all rounds, we have,

. . . +
c − dI + dF

2
+

c − dI + dF

2
+ . . .

and the terms dF and dI telescope for consecutive rounds. So we have
the number of misses a round for the offline algorithm is at least c

2
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Analysis of Marker Algorithm

Theorem

The Marker algorithm is 2Hk -competitive.

Proof.

There are c to clean items and k − c requests to stale items.

To maximise number of misses, let requests to clean items come
first.

Then expected number of requests to stale pages at time i of the
round given by

0 ∗ si − ci
si

+ 1 ∗ ci
si

=
ci
si
≤ c

k − i + 1
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Analysis of Marker Algorithm

Theorem

The Marker algorithm is 2Hk -competitive.

Proof.

Then the expected cost is given by,

c︸︷︷︸
clean

+
k−c∑
i=1

c

k − i + 1︸ ︷︷ ︸
stale

= c + c(Hk − Hc) ≤ cHk

OPT incurs at least c
2 , while Marker incurs at most cHk . From this, we

obtain the result.
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The Reciprocal algorithm

The Reciprocal algorithm evicts a page from the cache with probability

pi =
1/w(xi )∑

x∈SR
i

1/w(x)

where SR
i is the pages in the algorithm R’s cache at the time i . w(x) is

the weight incurred when a page is brought into the cache.
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Competitive Analysis of Reciprocal algorithm

Making use of a potential function,

SR
i = items in cache of Reciprocal

SADV
i = items in cache of Adaptive Online Adversary

Φi =
∑
x∈SR

i

w(x)− k
∑

x∈SR
i −S

ADV
i

w(x)

∆Φi = Φi − Φi−1

Xi = f R
i︸︷︷︸

brought in item cost

−k f ADV
i︸ ︷︷ ︸

evicted item cost

−∆Φi
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Looking at,
i∑

j=1

Xj =
i∑

j=1

f R
j − kf ADV

j −∆Φj

Adversary

Brings x into the cache, and evicts x ′

f ADV
i = w(x ′)

∆Φ ≥ −kw(x ′) = −kf ADV
j , ADV only deducts from the ‘bank’

Reciprocal

Just before Reciprocal does anything, |SR
i − SADV

i | ≥ 1. Substituting,

E[∆Φ] = w(x)− k∑
y∈SR

i
1/w(y)

+ k
|SR

i − SADV
i |∑

y∈SR
i

1/w(y)

Since f R
i = w(x)Then we have that Reciprocal also only deducts from

the ‘bank’
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Looking at,
i∑

j=1

Xj =
i∑

j=1

f R
j − kf ADV

j −∆Φj

Adversary

Brings x into the cache, and evicts x ′

f ADV
i = w(x ′)

∆Φ ≥ −kw(x ′) = −kf ADV
j , ADV only deducts from the ‘bank’

Reciprocal
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i − SADV

i | ≥ 1. Substituting,
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Theorem

The Reciprocal algorithm is k-competitive against any adaptive online
adversary.

Proof.

i∑
j=1

Xj =
i∑

j=1

f R
j − kf ADV

j −∆Φj

From the contributions of the adversary and Reciprocal:
E[
∑

Xi ] ≤ 0

Terms of ∆Φ telescope

Φ0 and Φn are bounded∑
i

(
E[f R

i ]− kE[f ADV
i ]

)
≤ some constant b

Which gives us our result.
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Why is it important?

Generalised version of paging problem

Resource allocation problems:

Motion of two-headed disks
Maintenance of data structures

However, it is still an open problem.
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Lower bound against Adaptive Online Adversary I

Theorem

Let R be a randomised online algorithm that manages k servers in any
metric space. Then CaonR ≥ k.
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Lower bound against Adaptive Online Adversary

Theorem

Let R be a randomised online algorithm that manages k servers in any
metric space. Then CaonR ≥ k.

Proof.

There are k algorithms B1, . . . ,Bk such that

CostR(ρADV ) =
k∑

j=1

CostBj (ρADV )

≥ k min
j

CostBj (ρADV )

And we have the result.
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Adversary Models

Oblivious Adversary
Adaptive Online Adversary
Adaptive Offline Adversary

Deterministic lower-bound k-competitive

Randomised lower-bound Hk -competitive

Marker against oblivious adversary 2Hk -competitive
Reciprocal against adaptive online adversary k-competitive

k-Server Problem

Lower-bound k-competitive against adaptive online adversary
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