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Synopsis

Introduction

One of the main aims of computational complexity theory is determining upper and lower
bounds on the amount of resources required to solve a computational problem. The re-
sources considered most commonly are time and space. However, when several agents are
required to arrive at an answer to a problem whose input is distributed among them, the
amount of communication required often determines whether the solution is efficient. Thus,
one is lead to study various forms of communication costs associated with computational
problems whose input is distributed between several agents. This has resulted in a rich
area called communication complezity theory, with connections and applications to various
other branches of complexity theory.

The advent of the quantum model of computation, lead to the re-examination of com-
munication complexity of various problems when the agents exchange qubits instead of
classical bits. For several problems, the quantum model is known to be much more power-
ful than the classical model. That is, if the agents are allowed quantum operations, then
they can solve certain computational problem by exchanging far fewer qubits than they
would require if they were constrained to communicate classical bits and perform classi-
cal operations. The study of such solutions and their limitations is the aim of quantum
communication complexity theory. The notion of information plays an important role in
communication complexity both in the classical and the quantum settings. In this thesis,
we develop and apply information theoretic tools to show lower bounds on the communi-
cation complexity of several problems.

In the following sections, we formally define the communication complexity models,
define the problems considered in this thesis, and present the results we obtain.

Computational models and problems studied

Two-party communication model

We first describe the classical model. In the two-party private coin randomised commu-
nication complexity model [Yao79], two players Alice and Bob are required to compute a
function f: X x Y — Z. Alice is given x € X’ and Bob is given y € ) by following a pro-
tocol II. Let II(z,y) be the random variable denoting the entire transcript of the messages



exchanged by Alice and Bob by following the protocol II on input x and y. We say II is
a d-error protocol if for all x and y, the answer determined by the players is correct with
probability (taken over the coin tosses of Alice and Bob) at least 1 —4J. The communication
cost of IT is the maximum length of II(z, y) over all z and y, and over all random choices of
Alice and Bob. The k-round d-error private coin randomised communication complexity
of f, denoted R¥(f), is the communication cost of the best private coin k-round d-error
protocol for f.

We also consider private coin randomised simultaneous message protocols. In such
protocols, in addition to the two players there is a referee. The inputs are still with Alice
and Bob, and are not known to the referee. Each player sends a message to the referee
who then computes the function. R5™(f) denotes the d-error private coin randomised
simultaneous message communication complexity of f.

Let i be a probability distribution on X x ). A deterministic protocol II has distribu-
tional error ¢ if the probability of correctness of I, when the inputs are drawn according to
the distribution y, is least 1 — §. The k-round d-error distributional communication com-
plexity of f, denoted Cllj,&( f), is the communication cost of the best k-round deterministic
protocol for f with distributional error §. We say that u is a product distribution if there
exist probability distributions puy on X and uy on Y such that p(x,y) = pr(z) - py(y)
for all (z,y) € X x Y. The k-round J-error distributional communication complexity of f
under product distributions is defined as C[k], ;(f) = sup, C’l’f,é( f), where the supremum is
taken over all product distributions y on X x ).

Whenever § is omitted, we mean that § = %

Problems studied

The first two results in this thesis are related the direct sum problem in classical commu-
nication complexity. For a function f: X x Y — Z, let f™: X™ x Y™ — Z™ be defined
by (21, ) Wrs s Ym)) 2 (F(@1, Y1), -« o f(Zimy Ym))- In the direct sum problem,
one studies the communication complexity of f™ as the parameter m increases.

The direct sum problem has received a lot of attention because of its connections with
showing lower bounds in circuit complexity. Recently, interest in this problem was revived
through a result of Chakrabarti et al. [CSWYO01], who showed a lower bound for the
communication complexity of f™ in the simultaneous message model. We extend their
arguments to get a similar result when there are more rounds of communication.

Result (Direct Sum, multiple-rounds) Let m,k be positive integers, and ¢,6 > 0.
Let f: X XY — Z be a function. Then,

2
B 2 me (55 Chaad ) = 2)

The key ingredient of our proof is a result showing that in a communication protocol,
messages can be compressed roughly to the amount of information they carry about the
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inputs. A similar result was proved using ad hoc arguments in [CSWYO01]. Our proof makes
direct use of the relative entropy of distributions, and gives us the following stronger result.

Result (Message compression, multiple-rounds) Suppose that II is a k-round pri-
vate coin randomised protocol for f : X x Y — Z. Let the average error of II under a
probability distribution g on the inputs be §. Let X,Y denote the random variables cor-
responding to Alice’s and Bob’s inputs respectively. Let T denote the complete transcript
of messages sent by Alice and Bob. Suppose (XY : T) < a, where I(XY:T) is the mutual
information between the random variables XY and T. Let € > 0. Then, there is another
deterministic protocol IT" with the following properties:

(a) The communication cost of II" is at most % + 2 bits;

(b) The distributional error of II' under p is at most 6 + 2e.

We also consider the corresponding problem in the context of quantum communication.
We show that the compression of messages which is possible in classical communication is
impossible in quantum communication. This amounts to showing the existence of certain
quantum states and projective measurements.

Result(Quantum incompressibility) Let m,n,d be positive integers and k£ > 7. Let
d > 1602, 1600 d*- k2* In(20d%) < m and 3200-d®-2?*Ind < n. Let the underlying Hilbert
space be C™. There exist n states p; and n orthogonal projections M;, 1 <[ < n, such
that

(a) VI Tr Mlﬂl =1.

(b) p = L3 m =~ I, where I is the identity operator on C™.
(c) VES(pllp) = k-

(d) For all d-dimensional subspaces W of C™, for all ordered sets of density matrices
{01} 1en) with support in W, [{l : Tr M;o; < 1/10}| > n/4.

The two-party quantum communication model

This model was defined by Yao [Ya093] to study communication as a resource in quantum
computation. Let X', ), Z be arbitrary finite sets and f : X x Y — Z be a function. There
are two players Alice and Bob, who hold qubits. When the communication game starts,
Alice holds |z) where x € X together with some ancilla qubits in the state |0), and Bob
holds |y) where y € ) together with some ancilla qubits in the state |0). Thus the qubits
of Alice and Bob are initially in computational basis states, and the initial superposition
is simply |z)|0)4|y)5|0)p. Here the subscripts denote the ownership of the qubits by
Alice and Bob. The players take turns to communicate to compute f(z,y). Suppose it is
Alice’s turn. Alice can make an arbitrary unitary transformation on her qubits and then
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send one or more qubits to Bob. Sending qubits does not change the overall superposition,
but rather changes the ownership of the qubits, allowing Bob to apply his next unitary
transformation on his original qubits plus the newly received qubits. At the end of the
protocol, the last recipient of qubits performs a measurement on the qubits in his/her
possession to output an answer. We say a quantum protocol computes f with e-error in
the worst case, if for any input (z,y) € X x Y, the probability that the protocol outputs
the correct result f(x,y) is greater than 1 —e. The term ‘bounded error quantum protocol’
means that e = 1/3.

We require that Alice and Bob make a secure copy of their inputs before beginning the
protocol. This is possible since the inputs to Alice and Bob are in computational basis
states. Thus, without loss of generality, the input qubits of Alice and Bob are never sent
as messages, their state remains unchanged throughout the protocol, and they are never
measured i.e. some work qubits are measured to determine the result of the protocol. We
call such protocols secure. We will assume henceforth that all our protocols are secure.

We also consider protocols with prior entanglement, where Alice and Bob already possess
parts of a common state which is unentangled with the inputs. Our results apply only to
protocols without prior entanglement unless we explicitly state that prior entanglement is
allowed.

Problems studied

Substate theorem

An important contribution of this work is a theorem, called Substate Theorem, about
relative entropy; it states, roughly, that if the relative entropy, S(pl|o) STy p(log p—log o),
of two quantum states p and o is at most ¢, then 20% sits inside 0. We shall present below
two natural problems in whose solution this result plays a crucial part.

Result (Substate theorem) Suppose p and o are quantum states in the same finite
dimensional Hilbert space, and S(p||o) < ¢. Then, for all » > 1, there are states p’ and p"
such that ||p — p'||, < 2 and 0 = ap’ + (1 — a)p”, where o = 270(),

A consequence of the above result is that if a POVM element F' has probability p in
p, then it has probability at least 52 in 0. Another consequence is that |[p — ||, <

2 —279(9) Fuchs and van de Graaf’s connection [FC95] between fidelity [Joz94] and trace

distance now implies that the fidelity of p and ¢ is lower bounded by 2-°().

Pointer chasing problem: The full version

Our first application of the Substate Theorem concerns the pointer chasing problem in
two-party communication complexity.

v



Let V4 and Vg be disjoint subsets of size n. Player A is given a function
Fy : V4 — Vg and player B is given a function Fg : Vg — V4. Let F' 2 FyUFR.
There is a fixed vertex s in Vz. A and B need to communicate to determine
t = F*+1(5s), where k and s are known to both parties in advance.

If B starts the communication, then there is a straightforward classical deterministic pro-
tocol where one of the players can determine ¢ after k£ messages of logn bits have been
exchanged. It appears much harder, however, to solve the problem efficiently with £ mes-
sages, when A is required to send the first message. We refer to this as the pointer chasing
problem P.

The pointer chasing problem was studied recently in the quantum communication com-
plexity model by Klauck, Nayak, Ta-Shma and Zuckerman [KNTZ0la|, who, using in-
teresting information-theoretic techniques, showed a lower bound of 9(220%) for the bit

version (defined later in this section) of this problem. They did not consider the full pointer
version of the problem. We prove the following for the full version.

Result For any constant k£, the bounded error quantum communication complexity of
the pointer jumping problem P, (full pointer version) is Q(nlog®) n).

Our proof uses a round elimination argument (using substate theorem) and correlated
input generation to arrive at this result. This matches an upper bound due to Damm,
Jukna and Sgall [DJS98] of O(nlog®) n), for constant k. Ponzio, Radhakrishnan and
Venkatesh [PRV01la] have shown the same lower bound in the classical communication
model.

Privacy and communication complexity

Our second application of the substate theorem concerns the index function problem [MNSW98a,
Nay99].

There are two players A and B. A is given an input z € {0,1}" and B is given
an index 7 € [n]. They must exchange messages so that in the end B knows z;.

In the classical setting, the index function problem (under the name set membership
problem) was considered by Miltersen, Nisan, Safra and Wigderson [MNSW98a| in the
classical setting. They showed that if B sends a total of at most b bits, then A must send
n/2°®) bits. Note that this is optimal as there is a trivial protocol where B sends the first
b bits of his index to A, and A replies by sending the corresponding part of her bit string.

In the quantum setting, Nayak [Nay99] (see also Cleve et al. [CvDNT98|) showed that
if B sends no messages at all, then A must send at least €(n) bits. This bound holds even
if the players share EPR pairs in advance, or if A and B interact but B’s messages do not
depend on his input 7. However, the case where B is allowed to send a few qubits based
on his input in order to reduce the communication from A, does not seem to have been
considered before.



In this thesis, we generalise Nayak’s result to a statement of the following form: if B
‘leaks’ only a small number of bits of information about his input, then A must ‘leak’ a large
number of bits of information about her input. Before we present our result, let us explain
what we mean when we say that B ‘leaks’ only a small number of bits of information
about his input. Fix a protocol for the index function problem. Assume that B’s input
J is a random index 7 € [n]. Suppose B operates faithfully according to the protocol,
but A deviates from it and manages to get her registers R entangled with J: we say that
B leaks only b bits of information about his input if the mutual information between J
and R, I(J : R), is at most b. This upper bound of b on the information loss must hold
for all strategies adopted by A, which have the property that the reduced density matrix
of Bob’s qubits is, at all times the same as in the original protocol. In other words, A
wants to cheat and gather a lot of information about B’s input, but B should not be able
to figure out that A is cheating. Note that we do not assume that B’s messages contain
only b qubits, they can be arbitrarily long. In the quantum setting, A has a big bag of
tricks she can use in order to extract information from B; for example, she can place a
superposition of states in her input register and extract information about B’s input (see
[CvDNT98, Kla02] for details). Our definition of privacy loss is inspired by the above
example. Let Il be a protocol for solving the index function problem INDEX,,. Let X and
Y be the input registers of Alice and Bob respectively. Let A and B be other workspace
registers in the possession of Alice and Bob respectively. Let py and pxy be distributions
on X and ) respectively. We consider a ‘cheating’ run of II when mixture py is fed to
register X and superposition |uy) 2 >y VEy(Y) ly) fed to register Y. Let p = px x py.
Let I(X : BY) denote the mutual information X with Bob’s registers BY at the end of
this run of II. We make the following definition.

Definition (Privacy loss) The privacy loss of II for function f on the product distri-

bution x4 from Alice to Bob is defined as LY(f, u, A, B) 2 I(X : BY). The privacy loss
from Bob to Alice, LY(f, u, B, A), is defined similarly. The privacy loss of II for f under
distribution p, L™ (f, ), is the larger of LY(f, u, A, B) and L(f, u, B, A).

We show the following.

Result (INDEX, privacy loss) Consider a quantum protocol II for index function
problem (INDEX,,) with worst case error at most 1/3. Let y denote the uniform probability
distribution on Alice’s and Bob’s inputs. Suppose L"(INDEX,,u,B,A) < k. Then,
LY(INDEX,,, u, A, B) > n/20%).

The following corollaries are immediate.

Corollary 1 Let II be a quantum protocol for INDEX,, with worst case error at most
1/3. Suppose Bob sends at most k& qubits to Alice. Let m be the number of qubits
communicated by Alice to Bob. Then, m = n/29®).
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Corollary 2 For the index function problem, one of the players must leak Q(logn) bits
of information about his input, i.e. for any protocol II, L"(INDEX,,, 1) = Q(logn), where
44 is the uniform distribution on the inputs.

The index function problem is just one of several problems where results like above
can be proved using our technique. In fact, it follows easily that if the communication
matrix of the function has VC-dimension at least k, then one of the players must leak at
least Q(log k) bits of information about his input, when the inputs are chosen according
to the uniform distribution. In particular, this implies an Q(logn) loss in privacy for the
set-disjointness and inner product modulo 2 problems.

Pointer chasing problem: The bit version

We also consider the bit version of the pointer chasing problem. It was originally stud-
ied by Klauck, Nayak, Ta-Shma and Zuckerman [KNTZ01b] in the two-party quantum
communication model.

Let V4 and Vg be disjoint sets of size n. Alice is given a function F4 : V4 — Vp
and player Bob is given a function Fg : Vg — V4. Let F 2 F, U Fg. There is
a fixed vertex s in V. The players need to exchange messages and determine
the most significant bit of F'**1)(s), where k and s are known to both parties
in advance.

We refer to this as the pointer chasing problem P{*. We prove the following.

Result In any quantum protocol for P{, the two players must exchange Q(%) qubits.
This improves the previous best bound of Q(?o%) in [KNTZ01b] (although their bound

holds also for protocols which start with some prior entanglement), and comes significantly
closer to the best upper bounds known O(n + klogn) (classical deterministic [PRV01a])
and O(klogn + %(1ngk/21 (n) +logk)) (classical randomised [KNTZ01b]). Our proof uses
similar round elimination argument with correlated input generation (as in the problem
Py,) making better use of the information theoretic tools than in previous papers.

Lower bounds for multi-party quantum communication complex-
ity

We show lower bounds in the multi-party quantum communication complexity model. In
this model, there are ¢ parties where the ith party has input X; C [n]. These parties
communicate with each other by transmitting qubits to determine with high probability
the value of some function F' of their combined input (X, X, ..., X;). We consider the

class of functions whose value depends only on the intersection of X, X, ..., Xy; that is,
for each F in this class there is an fp : 2" — {0, 1}, such that

F(Xl,XQ,...,Xt) :fF(XlnXgﬂﬂXt)

vii



The special case of this problem when there are two parties, and the function F'(X;, X»)
is 1 if and only if X; and X, are disjoint, is the set-disjointness problem. This problem
has a long history. In the bounded error classical setting Babai, Frankl and Simon [BFS86]
showed a lower bound of Q(y/n). This was improved to an Q(n) lower bound by Kalyana-
sundaram and Schnitger [KS92]; their proof was simplified by Razborov [Raz92]. There is
a straightforward protocol with n + 1 bits of communication where Alice sends her entire
input to Bob, who computes the answer and returns it to Alice. Interest in the communica-
tion complexity of several problems related to the set-disjointness function has been revived
recently because of their connection to showing lower bounds in the classical data-stream
model. One of these problem is the L., promise problem: Alice and Bob are given inputs
Xa,Xp €{0,1,...,m}", with the promise that either for all ¢ € [n], |Xa[i] — Xp[i]| <1
or there exists an i € [n], such that |X[i] — Y[i]| = m; they must communicate in order
to distinguish between these two types of inputs. For this problem, Saks and Sun [SS02]
showed a lower bound of Q(n/m?) in a restricted model; their lower bound was strength-
ened by Bar-Yossef, Jayram, Kumar and Sivakumar [BJKS02], who obtained the same
lower bound without any restrictions.

In the quantum setting, the set-disjointness function was first addressed by Buhrman,
Cleve and Wigderson [BCW98|, who showed that there is a protocol for this problem with
O(y/nlogn) bits of communication. This bound was improved to O(y/nc'% ™), where c is
a small constant, by Hoyer and de Wolf [HAW02], and recently to O(y/n) by Aaronson and
Ambainis [AA03]. By a result of Razborov [Raz02] this last bound is optimal.

We show the following.

Result The t-party k-round quantum communication complexity of F is Q(s,,(fr)/(k?)),
where s,,(fr) stands for the ‘monotone sensitivity of fr’ and is defined by

sm(fr) 2 max[{i s fr(SU{i}) # fr(S)}

This result also holds for protocols with prior entanglement. For two-party quantum
communication protocols for the set- disjointness problem, this implies that the two parties
must exchange Q(n/k?) qubits. An upper bound of O(n/k) can be derived from the O(/n)
upper bound due to Aaronson and Ambainis [AA03](see also [ BCW98] and [HdW02]). For
k = 1, our lower bound matches the Q(n) lower bound observed by Buhrman and de Wolf
[BAWO1] (based on a result of Nayak [Nay99]), and for 2 < k < n'/4, improves the lower
bound of Q(y/n) shown by Razborov [Raz02]. For protocols with no restrictions on the
number of rounds, we can conclude that the two parties must exchange Q(n'/?) qubits.
This, however, falls short of the optimal Q(y/n) lower bound shown by Razborov [Raz02].

Our result is obtained by adapting to the quantum setting the elegant information-
theoretic arguments of Bar-Yossef, Jayram, Kumar and Sivakumar [BJKS02]. Using this
method, in a related work (not included in this thesis) we can show similar lower bounds
for the L, function considered in [BJKS02].
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Chapter 1

Introduction

In computational complexrity theory, one studies the amount of resources required to per-
form various computational tasks. In any such study one has to fix the model of computa-
tion and identify the resources that are to be used to measure the efficiency of algorithms
that perform those tasks. For example, in classical complexity theory, one uses the Tur-
ing machine model for computation and studies the space and time used by algorithms.
Similarly in the quantum circuits model (see Nielsen and Chuang [NCO00]), one computes
using circuits made out of basic quantum gates with the goal of minimizing the number of
operations.

In this thesis, we study computational tasks where the input is distributed among sev-
eral agents. We focus on the communication complexity of such tasks, that is, the minimum
number of bits that the agents must exchange in order to complete the task. Communica-
tion complexity has a well-developed theory, with surprising and deep connections to other
areas of computational complexity, e.g., VLSI circuits, data structures, pseudorandomness
and boolean circuits. The book of Kushilevitz and Nisan [KN97] contains a comprehensive
discussion of the techniques and applications of communication complexity.

We study communication complexity problems using information theoretic tools, some
standard and some developed in this thesis. In this chapter, we define our models, both in
the classical and quantum settings, introduce the problems we consider, and present our
results. In our discussions of the quantum model, we assume that the reader is familiar
with the basics of quantum computation.

1.1 Classical communication complexity

In the two-party private coin randomised communication complexity model [Yao79], two
players Alice and Bob are required to collaborate to compute a function f : X x Y — Z.
Alice is given x € X and Bob is given y € ). Let II(z,y) be the random variable denoting
the entire transcript of the messages exchanged by Alice and Bob by following the protocol
IT on input = and y. We say Il is a d-error protocol if for all z and y, the answer determined
by the players is correct with probability (taken over the coin tosses of Alice and Bob) at
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least 1 — 6. The communication cost of IT is the maximum length of II(z,y) over all x
and gy, and over all random choices of Alice and Bob. The k-round é-error private coin
randomised communication complexity of f, denoted R¥(f), is the communication cost of
the best private coin k-round d-error protocol for f. When ¢§ is omitted, we mean that
p=1

We also consider private coin randomised simultaneous protocols in this work. In this,
both Alice and Bob send a message each to a referee who then decides on the answer
f(x,y). RS™(f) denotes the d-error private coin randomised simultaneous communication
complexity of f. When ¢ is omitted, we mean that § = %

Let i be a probability distribution on X x Y. A deterministic protocol II has distribu-
tional error ¢ if the probability of correctness of II, averaged with respect to p, is least 1—9.
The k-round é-error distributional communication complexity of f, denoted Cl’j’(;( f), is the
communication cost of the best k-round deterministic protocol for f with distributional
error 0. 4 is said to be a product distribution if there exist probability distributions px on
X and py on Y such that

wx,y) = px(z) - py(y)
for all (z,y) € X x Y. The k-round d-error product distributional communication com-
plexity of f is defined as

C 5(f) =sup Cl5(f),

I

where the supremum is taken over all product distributions . on X x). When ¢ is omitted,

we mean that § = %

1.1.1 The direct sum problem

For a function f : X x Y — Z, the m-fold direct sum is the function f™ : X™ x Y™ — Z™,
defined by

F@1s s @)y s ) 2 F @010, o f (T Yom)).

One then studies the communication complexity of f™ as the parameter m increases. This
is referred to as the direct sum problem for communication complexity.

Background: The direct sum problem for communication complexity has been exten-
sively studied in the past (see Kushilevitz and Nisan [KN97]). One of its important ap-
plications is in showing lower bounds in circuit complexity. Let f : {0,1}" x {0,1}" —
{0,1} be a function. In the deterministic two-party model, Feder, Kushilevitz, Naor and
Nisan [FKNNO95] showed that there exists a partial function f with C(f) = O(logn),
whereas solving m copies takes only

C(f™) = O(m+logm -logn).
They also showed a lower bound

C(f™) =2 m(vC(f)/2 —logn — O(1))

2
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for the deterministic model for non partial functions f. For the one-round deterministic
model, they showed that

C(f™) =2 m(C(f) —logn — O(1))

even for partial functions. For the two-round deterministic model, Karchmer, Kushilevitz
and Nisan [KKN92] showed that

C(f™) 2 m(C(f) — O(logn))

for any relation f. For the private coin randomised model, [FKNN95] showed that for the
equality function,

EQ, : {0,1}" x {0,1}" — {0,1}, R(EQ}") = O(m + logn).

Recently Chakrabarti et al. [CSWY01] considered the direct sum problem in the bounded
error simultaneous message private coin model and showed that the communication com-
plexity of EQ)" is €2(m) times the communication complexity of EQ,,. In fact, their result
is more general. Let R*™(f) be the bounded error simultaneous message private coin
communication complexity of f: {0,1}" x {0,1}" — {0, 1}, and let

R (f) £ min R(flsxs),
where S ranges over all subsets of {0, 1}" of size at least (2)2".

Theorem ([CSWY01]) R™(f™) = Q(m(R™(f) — O(logn))).
A similar result holds for two-party bounded error one round protocols too.

In this work, we prove lower bounds for the direct sum problem for protocols with more
than one round of communication. We prove the following theorem.

Theorem Let m, k be positive integers, and €,0 > 0. Let f: X x Y — Z be a function.

Then,
2

m €
R{(f™) >m - (ﬁ . Cl;,5+2e(f) - 2) :
Above theorem follows from the following compression result via standard information

theoretic arguments.

Theorem Let X and M be random variables (with some joint distribution), where X is
uniformly distributed over {0,1}" and their mutual information I(X : M) < a. Let [m] be
the range of M. Let S7,x,y € {0,1}" be randomised predicates from [m] to [0,1]. Then,
there exists a random variable M’ (correlated with X') such that

(a) M' takes values in a set of size n - 20(¢/9);

3
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(b) There exists A C {0,1}" of size at least 2 - 2" such that for all z € A and y € {0,1}",

| Pr[SE(M') | X = 2] — Pr[SE(M) | X =2]| <e.

In our context, the above theorem states that if Alice’s message contains only a bits of
information about her input, she can compress it to O(a+logn) bits without changing the
error probability of the protocol significantly. A similar message compression argument
holds for Bob too. This gives us an alternative proof of the main result of Chakrabarti et
al. [CSWYO01], with better dependence on the parameters.

In order to prove the above result we establish a connection between relative entropy
(defined later) and sampling which we believe is an important contribution of this work.
Besides giving a simpler and more transparent proof of Chakrabarti et al.’s [CSWY01] main
result, our approach quickly generalises to two-party bounded error private coin multiple
round protocols, and allows us to prove a message compression result and a direct sum
lower bound for such protocols. Direct sum lower bounds for such protocols were not
known earlier. In addition, our message compression result and direct sum lower bound
for multiple round protocols hold for protocols computing relations too.

A quantum analogue? One might ask if a similar compression of messages is possible in
the quantum setting (see section 1.2 for definition of quantum communication complexity
model). That is, for z € {0,1}", instead of distributions P, we have density matrices p, so

that the expected quantum relative entropy Ex[S(p.||p)] < a, where p 2 Ex [pz]- Also, we
are given measurements (POVM elements) My, z,y € {0,1}". Then, we wish to replace
pz by pl so that there is a subspace of dimension n - 29(/9) that contains the support of

each pl; also, there is a set A C {0,1}", |A| > £ - 2" such that for each
n T x !
(z,y) € Ax{0,1}",[Tr Mjp, — Tr M p,| <e.

Fortunately, the quantum analogue of the substate theorem has already been proved by
Jain, Radhakrishnan and Sen [JRS02a]. Unfortunately, it is the rejection sampling argu-
ment that does not generalise to the quantum setting. Indeed, we can prove the following
strong negative result about compressibility of quantum information: For sufficiently large
constant a, there exist density matrices p,, x € {0,1}" such that there is no subspace of
dimension less than n'/® that contains the supports of most of the p'. This strong nega-
tive result seems to suggest that new techniques (not based on information cost) may be
required to tackle the direct sum problem for quantum communication.

1.2 Quantum communication complexity

We consider two-party quantum communication protocols as defined by Yao [Ya093]. Let
f X x)Y — Z be a function. There are two players Alice and Bob, who hold qubits.
When the communication protocol P starts, Alice holds |z) where z € X together with
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some ancilla qubits in the state |0), and Bob holds |y) where y € Y together with some
ancilla qubits in the state |0). Alice and Bob may also share an input independent prior
entanglement. Thus, the initial superposition is simply |x)4|0)a|%)|y)B|0)5, where |¢))
is a pure state providing the input independent prior entanglement. Here the subscripts
denote the ownership of the qubits by Alice and Bob. Some of the qubits of |)) belong
to Alice, the rest belong to Bob. The players take turns to communicate to compute
f(z,y). Suppose it is Alice’s turn. Alice can make an arbitrary unitary transformation
on her qubits and then send one or more qubits to Bob. Sending qubits does not change
the overall superposition, but rather changes the ownership of the qubits, allowing Bob
to apply his next unitary transformation on his original qubits plus the newly received
qubits. At the end of the protocol, the last recipient of qubits performs a measurement in
the computational basis of some qubits in her possession (the ‘answer qubits’) to output
an answer P(z,y). We say that protocol P computes f with e-error in the worst case, if
max,, Pr[P(z,y) = f(z,y)] > 1 — e. We say that P computes f with e-error with respect
to a probability distribution g on X x Y, if

f;r[P(x,y) = f(ﬂﬁ,y)] >1-e

We require that Alice and Bob make a ‘safe’ copy of their inputs (using, for example,
CNOT gates) before beginning protocol P. This is possible since the inputs z and y are
in computational basis states. Thus, the input qubits of Alice and Bob are never sent
as messages, their state remains unchanged throughout the execution of P, and they are
never measured i.e. some work qubits are measured to determine the result P(z,y). We
call such protocols safe, and henceforth, we will assume without loss of generality that all
our protocols are safe. Note that in a safe protocol one can assume that, in each round,
the player whose turn it is to send the next message, has a set of unitary transformation,
one for each input, that she applies in the rest of the qubits in her possession to generate
her message.

Given a probability distribution x on X x ), we define

1) 23" (e, y) [2)]y)-

We define the success probability of P when superposition |u) is fed to Alice’s and Bob’s
inputs, to be the probability that measuring the inputs and the answer qubits in the
computational basis at the end of P produces consistent results. Since P is safe, the
success probability of P on superposition |u) is equal to

EM[P(xay) = f(xay)]

We call a protocol clean if the final state of the work qubits (i.e all the qubits other than
the input and the answer qubits) of Alice and Bob, is the state |0).
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1.2.1 The pointer chasing problem

In the two-party quantum communication complexity model we consider two versions of
the pointer chasing problem, namely the full pointer version and the bit version, and give
lower bounds on the amount of communication required.

The full pointer version
The full version of the pointer chasing problem is defined as follows.

Let V4 and Vg be disjoint subsets of size n. Player A is given a function
Fy : V4 — Vg and player B is given a function Fg : Vg — V4. Let FF' = FoUFpg.
There is a fixed vertex s in Vz. A and B need to communicate to determine
t = F*+(s) with probability of correctness being at least 3/4; k and s are
known to both parties in advance.

If B starts the communication, then there is a straightforward classical deterministic pro-
tocol where one of the players can determine ¢ after k£ messages of logn bits have been
exchanged. It appears much harder, however, to solve the problem efficiently with £ mes-
sages, when A is required to send the first message. We refer to this as the pointer chasing
problem P.

Background: The pointer chasing problem has been well-studied in the past to show
rounds versus communication tradeoffs in classical communication complexity. Following
some earlier results of Papadimitriou and Sipser [PS84], and Duris, Galil and Schnit-
ger [DGS87], Nisan and Wigderson [NW93] showed that A and B must exchange Q(n/k —
klogn) bits to solve Py; their bound was improved by Klauck [K1a00] to (% + k). These
lower bounds hold even when A and B can toss coins and err with some small probabil-
ity. This bound was further improved by [PRV01b] to Q(nlog® n) and thus matching the
upper bound of O(nlog® n) due to [DJS98].

The pointer chasing problem has been studied recently in the quantum communication
complexity model by Klauck, Nayak, Ta-Shma and Zuckerman [KNTZ01la], who, using
interesting information-theoretic techniques, showed a lower bound of Q(n/22°*) for the
bit version of this problem where only the least significant bit of ¢ is required. They did not
consider the full version of the problem. (Note that the classical application of the lower
bound for P, to monotone circuit depth in the paper of Nisan and Wigderson [NW93,
Theorem 2.7] is valid for the full version of the problem, not just for the bit version.) We
show the following for the full version.

Result 2: For any constant &, the bounded error quantum communication complexity
of the pointer jumping problem P (full pointer version) is Q(n log® n).

In order prove this result, an important information theoretic tool that we developed
and used is the quantum analogue of the substate theorem. We describe the substate
theorem and its quantum analogue in the next section (Section 1.3).

6
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The bit version
The bit version of the pointer chasing problem PP* is formally defined as follows:.

Let V4 and Vg be disjoint sets of size n. Alice is given a function F4 : V34 — Vp
and player Bob is given a function Fg : Vg — Vy. Let F 2 F4, U Fg. There is
a fixed vertex s in V. The players need to exchange messages and determine
the least significant bit of F**1)(s), where k and s are known to both parties
in advance.

As is the case with the full version, if Bob starts the communication, there is a straight-
forward classical deterministic protocol where one of the players can determine the answer
after k£ messages of logn bits have been exchanged and it appears much harder, to solve
the problem efficiently with £ messages, when Alice is required to send the first message.

Background: The results of Nisan and Wigderson [NW93] of Q(n/k — klogn) and of
Klauck [Kla00] of Q(% + k) hold for the PP as well. As mentioned earlier these lower
bounds hold even if randomisation is allowed. A deterministic protocol with O(n+ klogn)
bits of communication was given by Ponzio, Radhakrishnan and Venkatesh [PRV01b], and
a classical randomised protocol with O(klogn + %(logWﬂ (n) + logk)) bits by Klauck,
Nayak, Ta-Shma and Zuckerman [KNTZ01b]. Thus, the lower and upper bounds are quite
close in the the classical setting.

As mentioned earlier, this problem has been studied recently by Klauck, Nayak, Ta-
Shma and Zuckerman [KNTZO01b] in the quantum communication complexity, who, us-
ing interesting information-theoretic techniques, showed a lower bound of Q(W%) This
bound deteriorates rapidly with k£, and becomes trivial for £ > loglogn. We improve this
lower bound.

Result: In any bounded error quantum protocol for the pointer chasing problem Pf,
Alice and Bob must exchange Q(;5) qubits.

1.3 The substate theorem

Let P and P be two classical distributions. Let HP -p

denote the total variation
t

distance between probability distributions P and P. The following is easy to show:

Proposition (Substate theorem, classical version) Suppose P and () are probability
distributions on [k] such that S(P||@) = a. Let r > 1. Then there is a distribution P on
[k] such that

- 2 -
HP—PH <Z  aP<q,
t T

where
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An important contribution of this work is a quantum analogue of Proposition 1.3.

Result 3 (Substate theorem, quantum version) Suppose p and o are quantum
states with S(p||o) < c. Then, for all > 1, there are states p’ and p” such that

lp—=p'll, < 2/Vr

and
oc=ap +(1-a)p,

where o = 2079

(This has been stated here in a form that brings out the analogy with the classical
statement above. In a later chapter we give a more nuanced statement (Theorem 4.1)
which is better suited for our applications.)

1.4 Privacy model

Let f: X xY — {0,1} be a boolean valued function. Let px,puy be probability distri-

butions on X', Y, and let u 2 tx X py denote the product distribution on X x ). Let
registers A, X, B, Y denote Alice’s work qubits, Alice’s input qubits, Bob’s work qubits and
Bob’s input qubits respectively, at a particular point in time. Let p% , denote the density
matrix of Alice’s qubits in protocol P at this point in time, when P is started off with
distribution g on (z,y). Now let us suppose that Bob turns malicious, and he wants to
know as much as he can about Alice’s input, without letting Alice realize this. Thus, Alice
and Bob are now actually running a ‘cheating’ protocol P. Let p% , denote the density
matrix of Alice’s qubits in protocol P’ at the same point in time. Alice does not realize the
difference between P and P iff p% , = p% 4. The privacy loss from Alice to Bob is captured
by the mutual information T (X : BY) between Alice’s input register X and Bob’s qubits
BY in P. We want to study how large sup I (X : BY) can be for a given boolean valued
function f, product distribution p, and protocol P, where the supremum is taken over all
‘cheating’ protocols P that ‘mimic’ P with respect to Alice.

One of the ways that Bob can cheat without Alice being wiser is by running P with the

superposition
A
INYED IRV
Y

fed to register Y. This method of cheating gives Bob at least as much information about
Alice’s input as in the ‘honest’ run of P when the mixture py is fed to Y. Sometimes it
can give much more. Consider the index function problem, where now Bob has a bit string
y and Alice has an index ¢ and Alice is supposed to determine the value of the ith bit y;
of y. Consider a safe protocol P for the index function problem in which Alice sends the
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index i to Bob who just sends back to Alice both 7 and a copy of y;. For simplicity, assume
that it is error less (an error of 1/4 will only change the privacy losses by a multiplicative
constant). Bob can cheat by feeding a uniform superposition over bit strings into his input
register Y, and then running P. Alice is honest, and she has a random index i € [n]. At
the end of this ‘cheating’ run of P, Bob applies a Hadamard transformation on each of the
registers Y;,1 < j <n. Suppose he were to measure them now in the computational basis.
For all j # i, he would measure |0) with probability 1. For j = 7, he would measures 1 with
probability 1/2. Thus, Bob has extracted about logn/2 bits of information about Alice’s
index 7. An ‘honest’ run of P would have yielded Bob only 1 bit of information about .
Klauck [Kla02] (based on Cleve et al. [CvDNT98]) has made a similar observation about
Q(n) privacy loss for clean protocols computing the inner product mod 2 function. The
significance of our lower bounds on privacy loss is that they make no assumptions about
the protocol P.
Our definition of privacy loss is inspired by the above example.

Definition 1.1 (Privacy loss) We consider a ‘cheating’ run of P when mizture py is
fed to register X and superposition |puy) to register Y. Let I'(X : BY') denote the mutual
information of Alice’s input register X with Bob’s registers BY at the end of this run of
P. The privacy loss of P for function f on the product distribution p from Alice to Bob is
defined as

LP(f,u, A,B) 2 I'(X : BY).

The privacy loss from Bob to Alice, L¥ (f, u, B, A), is defined similarly. The privacy loss of
P for f under distribution p, L¥(f, ), is the larger of L¥(f,u, A, B) and LP(f, u, B, A).
The privacy loss of P for f, LT (f), is the mazimum over all product distributions u, of
LP(f, ).

Remarks:

1. Since we are only considering a particular class of ‘cheating’ protocols that ‘mimic’ P
with respect to Alice, lower bounds for privacy loss proved in this model also hold for the
model of general ‘cheating’ protocols that mimic P with respect to Alice.

2. Our notion of ‘superpositional’ privacy loss can be viewed as a quantum analogue of the
“combinatorial-informational” bounded error measure of privacy loss, I7 ;, in Bar-Yehuda
et. al [BCKO93].

3. In [Kla02], Klauck defines a similar notion of privacy loss. In his definition, a mixture
according to distribution u (not necessarily a product distribution) is fed to both Alice’s
and Bob’s input registers. He does not consider the case of superpositions being fed to
input registers. For product distributions, our notion of privacy is more stringent than
Klauck’s, and in fact, the L”(f, u, A, B) defined above is an upper bound (to within an
additive factor of 1) on Klauck’s privacy loss function.

4. We restrict ourselves to product distributions because we allow Bob to cheat by putting
a superposition in his input register Y. He should be able to do this without any a prior:
knowledge of x, which implies that the distribution u should be a product distribution.
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We now define two more communication problems for which we will show logarithmic
privacy lower bounds later on.

Definition 1.2 (Set disjointness) In the set disjointness problem DISJ,, Alice has a bit
string x € {0,1}", Bob has a bit string y € {0,1}", and they want to communicate and
determine the value of \/i—, (z; A y;).

Definition 1.3 (Inner product mod 2) In the inner product mod 2 problem IP,,, Alice
has a bit string x € {0,1}", Bob has a bit string y € {0,1}", and they want to communicate
and determine the value of @;_, (z; A ;).

Klauck [K1a00] has given a lower bound for the communication complexity of bounded
error one-way quantum protocols for f in terms of the VC-dimension (see Definition 2.2).
We prove a lower bound for the privacy loss of bounded error safe quantum protocols for
f in terms of the VC-dimension. Note that INDEX,, (defined below), DISJ, and IP,, each

have VC-dimension n for X.

1.4.1 The index function problem

Let us recall the definition of the index function problem INDEX,, [MNSW98b, ANTV99,
Nay99].

There are two players A and B. A is given an input = € {0,1}" and B is given
an index 7 € [n]. They must exchange messages so that in the end B knows z;.

Background: Miltersen, Nisan, Safra and Wigderson [MNSWO98b] considered this prob-
lem (they called it the set membership problem) in the classical setting, and showed that
if B sends a total of at most b bits, then A must send n/2°®) bits. Note that this is
optimal as there is a trivial protocol where B sends the first b bits of his index to A, and A
replies by sending the corresponding part of her bit string. This was one of the problems
where they applied their richness technique. However, there is a natural round-elimination
argument that gives this lower bound. Fix a protocol where B sends a total of at most
b bits, perhaps spread over several rounds. Modify this protocol as follows. Let A guess
all of B’s messages. A sends her guesses as well as her responses to those guesses to B.
Now, if B finds that A guessed all the messages correctly on his behalf, he accepts the
answer given by the original protocol; otherwise, he tosses a fair coin. Thus, if the original
protocol was correct with probability 1/2 + €, the new one-round protocol is correct with
probability at least % + 50m- A standard information theoretic argument now shows that
A must send ne?/2°0) bits.

In the quantum setting, Nayak [Nay99] (see also Cleve et al. [CvDNT98]), showed that
if B sends no messages at all, then A must send at least €(n) bits. This bound holds
even if the players share EPR pairs in advance, or if A and B interact but B’s messages
do not depend on his input 7. However, the case where B is allowed to send a few qubits
based on his input in order to reduce the communication from A, does not seem to have

10
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been considered before. Nayak (private communication) observed that the classical round
elimination argument described above can be applied in the quantum setting as well: if
A and B share EPR pairs in advance, then using teleportation [BBCT93], B’s messages
can be assumed to be classical. Now, A can guess B’s messages, and we can combine the
classical round elimination argument above with the existing results for the index function
problem in the quantum setting.

In this thesis, we generalise this result to a statement of the following form: if B ‘leaks’
only a small number of bits of information about his input, then A must send a large
number of bits. Before we present our result, let us explain what we mean when we say
that B ‘leaks’ only a small number of bits of information about his input. Fix a protocol for
the index function problem. Assume that B’s input J is a random index i € [n]. Suppose
B operates faithfully according to the protocol, but A deviates from it and manages to get
her registers R entangled with J: we say that B leaks only b bits of information about his
input if the mutual information between J and R, I(J : R), is at most b. This must hold
for all strategies adopted by A, which have the property that the reduced density matrix
of Bob’s qubits is at all times the same as in the original protocol. In other words, A wants
to cheat and gather a lot of information about B’s input, but B should not be able to
figure out that A is cheating. Note that we do not assume that B’s messages contain only
b qubits, they can be arbitrarily long. In the quantum setting, A has a big bag of tricks
she can use in order to extract information from B (see Section 1.4 for an example of a
cheating A for the index function problem).

Result 1’ (informal statement) If there is a protocol for the index function problem
where B leaks only b bits of information about his index i, then A must send (n/2°®)
bits.

This result should be compared with results on private information retrieval [CKGS98].
There, one requires that the party holding the database x know nothing about the index
i. Result 1’ generalises this notion and shows a trade-off between the loss in privacy for
the the database user B and the communication cost for A.

Klauck [Kla02] recently studied privacy in quantum communication protocols. In
Klauck’s setting, two players collaborate to compute a function, but at any point, one
of the players might decide to terminate the protocol and try to infer something about the
input of the other player using the bits in his possession. The players are honest but curi-
ous: in a sense, they don’t deviate from the protocol in any way other than, perhaps, by
stopping early. In this model, Klauck shows that there is a protocol for the set disjointness
function where neither player reveals more than O((logn)?) bits of information about his
input, whereas in every classical protocol, at least, one of the players leaks Q(y/n/logn)
bits of information about his input. Klauck, however, proves no lower bounds for privacy
loss in the quantum setting. Our model of privacy is more stringent. We allow malicious
players who can deviate arbitrarily from the protocol, but with the restriction that the
honest player does not realize the difference. Note that this precludes the malicious player

11
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from prematurely aborting the protocol. In this model (defined formally in Section 1.4),
we can strengthen Result 1'.

Result 1 (informal statement) If there is a protocol for the index function problem
where B leaks only b bits of information about his input 7, then A must leak Q(n/2°®))
bits of information about her input z. (Note that this implies Result 1'.)

Corollary (informal statement) For the index function problem, one of the players
must leak Q(logn) bits of information about his input.

Remark: For clean quantum protocols, it is easy to see that an Q(logn) privacy loss is
inevitable for the index function problem (for details, see Section 1.4). But it is conceivable
that Alice and Bob can protect their privacy by using unclean protocols. Our lower bound
makes no assumptions about the quantum protocol, and thus, we show that an (logn)
privacy loss in inevitable for any safe quantum protocol for the index function problem.
We use the substate theorem in a central fashion to arrive at the above results.

General result and other problems: The index function problem is just one of several
problems where a statement like Result 1 can be proved using our technique. In fact, it
follows easily that if the communication matrix of the function has VC-dimension at least
k, then one of the players must leak at least Q2(log k) bits of information about his input.
In particular, this implies an 2(logn) loss in privacy for the set disjointness and inner
product modulo 2 problems.

1.4.2 The set disjointness problem

The set disjointness problem is a very central problem in communication complexity and
has a long and interesting history.

Background: In the bounded error classical setting Babai, Frankl and Simon [BFS86]
showed a lower bound of ©(y/n). This was improved to an Q(n) lower bound by Kalyana-
sundaram and Schnitger [KS92]; their proof was simplified by Razborov [Raz92]. There is
a straightforward protocol with n + 1 bits of communication where Alice sends her entire
input to Bob, who computes the answer and returns it to Alice. Interest in the communica-
tion complexity of several problems related to the set disjointness function has been revived
recently because of their connection to showing lower bounds in the classical data stream
model [AMS99, FKS02, GGIT02, Ind00, GMMO00, JKS03, SS02]. One of these problems
is the L, promise problem: Alice and Bob are given inputs X4, Xp € {0,1,...,m}", with
the promise that either for all

i € [n], | Xali] — Xpi]] <1

12
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or there exists an i € [n], such that
[ X[i] = Y[i]| = m;

they must communicate in order to distinguish between these two types of inputs. For this
problem, Saks and Sun [SS02] showed a lower bound of 2(n/m?) in a restricted model; their
lower bound was strengthened by Bar-Yossef, Jayram, Kumar and Sivakumar [BJKS02],
who obtained the same lower bound without any restrictions.

The quantum communication complexity of set disjointness was first studied by Buhrman,
Cleve and Wigderson [BCW98|, who showed that there is a protocol for this problem with
O(y/nlogn) qubits of communication. This bound was improved to O(y/nc'° ™), where c
is a small constant, by Hoyer and de Wolf [HAWO02], and recently to O(y/n) by Aaronson
and Ambainis [AA03]. By a result of Razborov [Raz02] this last bound is optimal.

Therefore, if no restrictions are imposed on the number of rounds (i.e. the number
of messages) in the protocol, the upper and lower bounds on the two-party quantum
communication complexity of the set disjointness function are tight up to constant factors.
The best upper bound uses O(y/n) rounds of communication, and from it one can derive a
k-round protocol where the parties exchange a total of at most O(n/k) qubits. For k =1,
Buhrman and de Wolf [BAWO01] observed that a lower bound of Q(n) follows from the
results of Nayak [Nay99] for the index-function problem. For k& > 2, Klauck, Nayak, Ta-
Shma and Zuckerman [KNTZ01a] showed a lower bound of Q(n'/%), but this is subsumed
by Razborov’s [Raz02] lower bound of Q(y/n) which holds even if there is no restriction
on the number of rounds. However, for small k£, Razborov’s lower bound is far from the
best upper bound known, namely O(n/k). Our first result implies lower bounds for the
two-party bounded error k-round quantum communication complexity of set disjointness
that comes closer to the upper bound of O(n/k).

Result 1.1 The two-party k-round bounded error quantum communication complexity of
the set disjointness problem is Q(n/k?).

In fact, this result extends for a class of disjointness like problems in the multi-party
quantum communication model. Below we define the multi-party quantum and classical
communication models and subsequently state our results..

1.5 The t-party quantum communication model

We define t-party quantum communication protocols as a natural extension of two-party
quantum communication protocols defined by Yao [Ya093]. Let

f:XIXXQ"'Xt—)Z

be a function. There are ¢ parties P, ..., P; who hold qubits. When the quantum commu-
nication protocol II starts, P; holds |z;) where z; € A; together with some ancilla qubits

13
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(‘work qubits’) in the state |0). Pi,...,P; may also share an input independent prior
entanglement pure state (say [¢)). Different parties possess different qubits of |1). The

parties take turns to communicate to compute f(z1,zo,---,2;). Suppose it is P;’s turn
to communicate. P; can make an arbitrary unitary transformation on the qubits in her
possession at this time and then send some of her qubits to P, ..., P;. Whose turn it is to

communicate, the unitary transformation applied by the active player and the qubits that
the active player sends to the other players are predetermined by II and independent of
the input (x1, ..., ;). A round of communication denotes the qubits that the active player
sends to the other players. Sending qubits does not change the overall superposition, but
rather changes the ownership of the qubits. At the end of the protocol II, one of the
parties performs a von Neumann measurement in the computational basis of some qubits
in her possession (the ‘answer qubits’) to output an answer II(xq,zs,---,2;). The party
performing the measurement as well as the qubits that she measures are predetermined
by IT and independent of the input (z1,...,x;). We say that protocol II computes f with
error ¢ if
max Pr[Il(z,...,x¢) # f(x1,...,2)] < 4.

L1y---9 Tt
The communication cost of II is the number of qubits exchanged in IT between all the
parties. The t-party k-round d-error quantum communication complexity of f, denoted by
tk . .. ..
s (f), is the minimum communication cost of a ¢t-party k-round d-error quantum protocol
with prior entanglement for f. When ¢ is omitted, we mean that § = 1/3.
As in the two-party model, we require that the parties make a ‘safe’ copy of their
inputs before beginning the protocol II. We call such protocols safe, and henceforth, we

will assume that all our protocols are safe.

1.5.1 The t-party classical communication model

In fact, there are several ways to generalise the two-party model to the multi-party model.
In this thesis, we will consider the version where there are t parties P, P, ..., P, with
respective inputs X1, Xs, ..., Xy C [n]. In each round of communication some party sends
a message to another party. The party who receives the last message can determine the
desired value F(X;, Xs,...,X;) based on his current state at that point.

We consider the class of boolean valued functions whose value depends only on X;N---NXjy;
that is, for each F in this class there is an fp : 2" — {0, 1}, such that

F(Xl,...,Xt) :fF(XlﬂﬂXt)

We call such functions F' set disjointness-like. Define the ‘monotone sensitivity of fr’ as
A . .
sm(fr) = max {i: fr(SU{i}) # fr(S)}.

Result 1.2 The t-party k-round bounded error quantum communication complexity of a
set disjointness-like function F is Q(sm(fr)/k?).

14
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In fact, Result 1.2 follows from the following result via easy reductions.

Result 1.2° The t-party k-round bounded error quantum communication complexity of
the promise set disjointness problem is Q(n/k?). This lower bound also holds for Nisan’s
approzimate set disjointness problem [Nis02].

Recently, because of its connection to the problem of computing frequency moments in
the data stream model [AMS99], the following promise set disjointness problem has been
studied. Here, the parties are required to distinguish between two types of inputs: in the
first type, X1, Xo,...,X; are pairwise disjoint; in the second type, Xi, Xy, ..., X; have
exactly one element in common but are otherwise pairwise disjoint. For this problem,
Chakrabarti, Khot and Sun [CKS03] show a lower bound of Q(n/(tlogt)), improving an
earlier Q(n/t?) lower bound of Bar-Yossef, Jayram, Kumar and Sivakumar [BJKS02] and
an Q(n/t*) lower bound of Alon, Matias and Szegedy [AMS99]. A slight variant of this
problem, called the approximate set disjointness problem, was considered by Nisan [Nis02];
the lower bounds mentioned above apply to Nisan’s version as well. The multi-party
quantum communication complexity of these problems has not been considered before this
work.

In a related work (not included in this thesis) we get the following lower bound for the
Lo promise problem.

Result 1.3 The two-party k-round quantum communication complexity of the L, promise
problem is Q(n/(k3m**1)).

Remarks:

1.  Observe that the lower bound in Result 1.2’ is independent of ¢! This appears to
contradict the O((nlogn)/t) upper bound for the promise set disjointness problem in
[BJKS02]. However, that upper bound is in the multi-party simultaneous message model,
whereas in our definition of multi-party quantum protocols it is required to pass messages
from one party to another. Thus, the simultaneous message protocol of [BJKS02] is actually
a t-round protocol in our model.

2. For two-party quantum protocols with an unbounded number of rounds, we get a lower
bound of Q(n'/3) for the set disjointness problem.

3. All our lower bounds hold even if the parties start with arbitrary prior entanglement
that is independent of the inputs.

4. Finally, we remark that our quantum communication complexity lower bounds imply
space lower bounds for a natural model of ‘quantum data stream computation’, in exactly
the same way as in the classical setting.

1.6 Organisation of the thesis

In Chapter 2 we give some information theoretic facts and definitions which will be used
in later chapters. In the following chapter (Chapter 3), we prove the direct sum results
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for the simultaneous message and the two-party multiple round protocols. In Chapter 4
we prove the information theoretic result, which we believe is an important contribution
of this work, and then use it to prove the privacy results. In Chapter 5 we present the
results for both the full version and the bit version of the pointer chasing problem. The
following chapter (Chapter 6) contains the proofs of the results on the set disjointness and
related problems. Finally we conclude with Chapter 7 stating our conclusions and a few
open problems.
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Chapter 2

Information theory

In this chapter we give some definitions and state a few facts which will be used in subse-
quent chapters.

2.1 Classical information theory

In this thesis, In denotes the natural logarithm and log denotes logarithm to base 2. All

random variables will have finite range. Let [k] 2 {1,...,k}. Let P,Q : [k] » R. The
total variation distance (aka ¢-distance) between P, () is defined as

1P -Qll, 2 Y |P() - QG)|.
i€[k]

We say P < @ iff P(i) < Q(i) for all 7 € [k]. Let X be a random variable. The Shannon
entropy of X is defined as

H(X) 2 =Y Pr[X = a]log Pr[X = g].
Suppose X,Y, Z are random variables with some joint distribution. The mutual informa-
tion of X and Y is defined as
I(X:Y)2 HX)+HY) - HXY).

For z € range(Z), I((X : Y) | Z = z) denotes the mutual information of X and Y condi-
tioned on the event Z = z i.e. the mutual information arising from the joint distribution

of X,Y conditioned on Z = z. Define I((X : Y) | Z) 2 EzI(X :Y)| Z=2%). Itis
readily seen that

I(X:Y)|2)=H(XZ)+H(YZ) - HXYZ) - H(Z).

For a good introduction to information theory, see e.g. [CT91].
The following fact follows easily from the definitions.
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Fact 2.1 Let X,Y,Z, W be random variables with some joint distribution. Then,
(a) I(X:YZ)=I(X:Y)+I(X:2)|Y),
(b) I(XY :Z|W)>I(XY:2Z2)- HW).

We now recall the definition of an important information theoretic quantity called
relative entropy, also known as information divergence or the Kullback-Leibler divergence.

Definition 2.1 (Relative entropy) Let P and @ be probability distributions on a set
[k]. The relative entropy of P and @ is given by

P(i)
Qi)

S(PIQ) 2 Y P(i)log
1€[k]

The following fact follows easily from the definitions.

Fact 2.2 Let (X, M) be a pair of random variables with some joint distribution. Let P
be the (marginal) probability distribution of M, and for each x € range(X), let P, be the
conditional distribution of M given X = x. Then

I(X : M) = B[S(Px|P)),

where the expectation is taken by choosing X according to its marginal distribution.

Thus, if I(X : M) is small, then we can conclude that S(P,||P) is small on the average.
Using Jensen’s inequality, one can derive the following property of relative entropy.

Fact 2.3 (Monotonicity) Let P and Q be probability distributions on the set [k] and € C
[k]. Let Dp = (P(£),1—P(€)) and Dg = (Q(€),1 — Q(E)) be the two-point distributions
determined by £. Then,

S(Dp||Dq) < S(P||Q).

We recall here the definition of the Vapnik-Chervonenkis dimension (VC-dimension).
Some of our results are stated in terms of VC-dimension.

Definition 2.2 (VC-dimension) For a boolean valued function f : X x Y — {0,1}, a
set S C Y is shattered, if for all R C S there is an x € X such that

VyeS: flxz,y)=1<yeR.

The VC-dimension of f for X, VCx(f), is the largest size of such a shattered set S C ).
VCy(f) is defined analogously.
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2.2. Quantum information theory

2.2 Quantum information theory

We now recall some basic definitions and facts from quantum information theory, which will
be useful in stating and proving our main results. For excellent introduction to quantum
information theory, see Nielsen and Chuang [NCO00].

In this thesis all quantum systems are finite dimensional. We will use the notation
A > B for Hermitian operators A, B in the same finite dimensional Hilbert space H as a
shorthand for the statement ‘A — B is positive semidefinite’. Thus, A > 0 denotes that A
is positive semidefinite. A density matrix p over C™ is a Hermitian, positive semidefinite
operator on C™ with unit trace. If A is a quantum system with density matrix p, then

S(A) = S(p) = —Tr plogp

is the von Neumann entropy of A.

Mutual information

Let A, B,C be three disjoint quantum systems. The mutual information of A and B is
defined as
I(A: B) £ S(A) + 5(B) — S(AB).

The conditional von Neumann mutual information of A and B given C' is defined as
I((A:B) | C) 2 5(AC) + S(BC) — S(C) — S(ABC).

If C is a classical random variable taking the classical value |c¢) with probability p., it is
easy to see that

I((A:B)|C) = pl(A°: B°),

where (AB)°¢ denotes the joint density matrix of A and B when C = |c).
We also write I((A: B) | C' = ¢) for I(A° : B®). Mutual information satisfies the following

monotonicity property:
I(A:BC)>I1(A:B).

The following facts are standard, and can be found in some form or the other in Nielsen
and Chuang’s book [NC00, Chapters 11, 12].

Fact 2.4 Let Xq,..., X, be classical random variables and let M be a quantum encoding
of X 2 X,...Xn. Then,

I(X:M)>> I(X;: M) = > H(X;)+ H(X),
i=1 i=1
which tmplies that if X1,..., X, are independent random variables then,
I(X:M)>>"I(X;: M).
i=1
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2.2. Quantum information theory

Also, if M is n qubits long, then (X : M) < n.

Fact 2.5 (Monotonicity of mutual information) Let A, B be two disjoint quantum
systems and let I(A : B) denote their mutual information. Consider completely positive
trace preserving superoperators Fi, Fa acting on A, B respectively. Let I'(A : B) denote
the mutual information after their action. Then,

I(A:B)>1'(A: B).
Fact 2.6 (Fano’s inequality) Let X,Y be classical boolean random variables. Let
PriX =Y]=1/2+,
where —1/2 < § < 1/2. Suppose Pr[X = 0] = Pr[X = 1] = 1/2. Then,
I(X:Y)>1—-H(1/2+06) > &%
The following fact can be implicitly found in Cleve et al [CvDNT98|.

Fact 2.7 Let Alice have a classical random variable X. Suppose Alice and Bob share a
prior entanglement independent of X. Initially Bob’s qubits have no information about X.
Now let Alice and Bob run a quantum communication protocol, at the end of which Bob’s
qubits possess m bits of information about X. Then, Alice has to totally send at least m/2
qubits to Bob.

POVM

Definition 2.3 (POVM element) Let H be a finite dimensional Hilbert space. A POVM
(positive operator valued measure) element F' on H is a positive semidefinite operator on
H such that F < I, where I is the identity operator on H.

If p is a density matrix in H, the success probability of the mixed state p under POVM
element F'is Tr (Fp).

Definition 2.4 (POVM) Let H be a finite dimensional Hilbert space. A POVM F on
H is a set of POVM elements {Fy, ..., Fy} on H such that

where I is the identity operator on H.

If p is a density matrix in H, Fp denotes the probability distribution {p,...,ps} on [k],
where p; = Tr (Fip).
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Trace distance

The trace norm of a linear operator A is defined as

|A]l, £ Tr VATA.

The trace distance between two linear operators A, B is defined as ||A — B||,. The impor-
tance of trace distance as a metric on density matrices stems from the following fact.

Fact 2.8 (see [AKIN98]) Let p,0 be density matrices in the same finite dimensional
Hilbert space H. Let F be a measurement (POVM) on H. Then,

1Fp—=Fal, <llp—oll,-

Suppose A, B are disjoint quantum systems. Let p4p,04p be two density matrices of the
joint quantum system AB. The trace distance satisfies the following property of mono-
tonicity:

|paB — oasll; = llpa — oall, -

In fact, Fact 2.8 can be derived from the monotonicity of trace distance.

Relative entropy

If p, o are density matrices in the same Hilbert space, their relative entropy is defined as

S(pllo) = Tr (p(log p — log 7).

The following fact lists some useful properties of the relative entropy function. Proofs can
be found in [NC00, Chapter 11]. The monotonicity property below is also called Lindblad-
Uhlmann monotonicity.

Fact 2.9 Let p, o be density matrices in the same finite dimensional Hilbert space H. Then
1. S(p|lo) > 0, with equality iff p = o.

2. S(p|lo) < +oo iff supp(p) C supp(c). Here supp(p) denotes the support of p i.e. the
span of the eigenvectors corresponding to non-zero eigenvalues of p.

3. S(-||) is continuous in its two arguments when it is not infinite.

4. (Joint convezity) Let py, pe, 01,09 be density matrices in H. Let p 2 Apr+ (1= XA)p2
and o 2 Aoy + (1 — N)og, where 0 < A < 1. Then

S(pllo) < AS(pillo1) + (1 = A)S(pz|o2).

5. (Unitary invariance) If U is a unitary transformation on H,

SUpUM|[UoUT) = S(pllo).
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6. (Monotonicity) Suppose K is a finite dimensional Hilbert space, and p', o’ are density
matrices in HQ K such that Tri p' = p and Trx o' = 0. Then,

S(p'lle’) = S(pllo).

This tmplies, via unitary invariance and the Kraus representation theorem, that of F
15 a completely positive trace preserving superoperator, then

S(FpllFo) < S(pllo).
The following fact shows the connection between mutual information and relative entropy
and is easy to derive.

Fact 2.10 Let X be a classical random variable and M be a quantum encoding of X. Let
X take the values 1,...,1 with probabilities p1,...,p; and let o1,...,0, be the respective

density matrices of M. Let
l
A
o =D pio;
j=1

be the average density matriz of M. Then,
!
I(X : M) =) p;S(ojllo).
7j=1

Fidelity

Definition 2.5 (Fidelity) Let p, o be density matrices in the same finite dimensional
Hilbert space H. Their fidelity is defined as

B(p,0) 2 e [16)],

where IC ranges over all finite dimensional Hilbert spaces and |1), |@) range over all purifi-
cations of p,o respectively in H® K.

The fidelity (or sometimes its square) is also known as the Bhattacharya distinguishability
coefficient or the “transition probability” of Uhlmann.

Jozsa [Joz94] gave an elementary proof for finite dimensional Hilbert spaces of the
following basic and remarkable property about fidelity.

Fact 2.11 Let p,o0 be density matrices in the same finite dimensional Hilbert space H.
Then for any finite dimensional Hilbert space K such that dim(K) > dim(H), there exist
purifications |¢), |¢) of p,o in H® K, such that

B(p,0) = [(4[4)]-

Also,
B(.0) = |Vl
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We will also need the following result about fidelity, proved by Fuchs and Caves [FC95].

Fact 2.12 Let p,0 be density matrices in the same finite dimensional Hilbert space H.

Then
k

B(p,0) = inf Y VTr (Fip) Tr (Fo),
-

where {F, ..., Fy} ranges over POVMs on H. In fact, the infimum above can be attained
by a complete orthogonal measurement on H.

The following relation is known between fidelity and trace distance between two density
matrices [NCO00.

Fact 2.13 Let p,0 be density matrices in the same finite dimensional Hilbert space H.
Then
2(1 - B(p,)) < |lp — oll, < 2v/T— B(p, 0)".

2.3 Miscellaneous

2.3.1 Chernoff-Hoeffding bounds

We will need the following standard Chernoff-Hoeffding bounds on tails of probability dis-
tributions of sequences of bounded, independent, identically distributed random variables.
Below, the notation B(t,q) stands for the binomial distribution got by ¢ independent coin
tosses of a binary coin with success probability ¢ for each toss. A predicate or a randomised
predicate S on [k] is a function S : [k] — [0, 1]. For proofs of the following bounds, see e.g.
[AS00, Corollary A.7, Theorem A.13].

Fact 2.14

(a) Let P be a probability distribution on [k] and S a randomised predicate on [k|. Let p 2
E [S(z)]. Let Y 2 (Y1,...,Y,) be a sequence of r independent random variables,
k

zEP|

each with distribution P. Then,

Brll B [SO0] =l > d < 2exp(-26).

1€y |r

(b) Let R be a random variable with binomial distribution B(t,q). Then,

1 1
Pr[R < §tq] < exp (—étq> i
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2.3.2 A minimax theorem

We will require the following minimax theorem from game theory, which is a consequence
of the Kakutani fixed point theorem in real analysis.

Fact 2.15 Let Ay, Ay be non-empty, convexr and compact subsets of R* for some n. Let
u: A X Ay — R be a continuous function, such that

e Yay € Ay, the set {a; € Ay : Va)| € Ay u(ay,az) > u(ay, as)} is convex; and
e Ya; € Ay, the set {ay € Ay : Vah € Ayu(ay, az) < ular,ah)} is conver.
Then, there is an (aj, a3) € Ay X Ay such that

. ik ay
max min u(ay, az) = u(aj, ay) = [nin max u(ay, ag).

Remark: The above statement follows by combining Proposition 20.3 (which shows the
existence of Nash equilibrium a* in strategic games) and Proposition 22.2 (which connects
Nash equilibrium and the min-max theorem for games defined using a pay-off function
such as u) of Osborne and Rubinstein’s [OR94, pages 19-22] book on game theory.
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Chapter 3

The direct sum problem

In this chapter we present our compression and direct sum results for the simultaneous
message (Section 3.2) and two-party communication complexity (Section 3.3) models.
The proof of these results follows the information theoretic framework of Chakrabarti
et al. [CSWYO01]. Let the k-round information complexity of f under distribution p for the
inputs, denoted by IC’;,J( f), be the minimum over all é-error k-round private coin proto-
cols of the mutual information between the random inputs of the players and the complete
message transcript they generate. It can be easily seen that

R 5(f™) 2 1Chm 5(f™).

In the rest of the proof we show a lower bound for ICZW,J( f™). This argument has two
parts. The first part is purely information theoretic, and is straightforward. Define the
probability distribution g™ on X™ x Y™ as

A
M((xla crey $m>, <y1a SRR ym>) = /'L(‘Tlayl) : M(.??z,yg) o ,LL(.??m, ym)
Then it is easy to see that, for any product distribution ,

ICK, 4(f™) > m- ICE ().

The second, more technical, part is to relate IC}, 5(f) and C} 5(f). To prove such a result in
the case k = 1 (and also for the simultaneous message model) Chakrabarti et al. [CSWY01]
employed an interesting message compression result. Informally, it states that if the mes-
sage contains at most a bits of information about the player’s input, then one can modify
the (one round or simultaneous message) protocol so that the length of the message is
O(a + logn), where n is the total input size of both the players.

Comparison with previous work Chakrabarti et al. [CSWY01] used an ad hoc smoothen-
ing and sampling argument to show this compression result. Our approach on the other
hand is more information theoretic. In particular, we make use of relative entropy of
probability distributions and substate theorem. We know from the previous chapter that

I(X 5 M) = ES(P|P))
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where P is the distribution of M and P, is the distribution of M when we condition on
the event X = xz, and the expectation is over the (marginal) distribution of X. Thus, if
I(X : M) < a, then typically the value of S(P,||P) is at most a. For simplicity, let us
consider for now the bounded error private coin simultaneous message model. Alice and
Bob have to compute a function f : {0,1}" x {0,1}" — {0,1} in this model. Let X, M
denote the random variables corresponding to Alice’s input and her message respectively.
Let 7.7 (m) denote the correctness predicate (of the protocol when Alice’s input is x, Bob’s
input is y, and Alice sends the message m to the referee. The main advantage of the
substate theorem is that we can compress Alice’s message for each x € {0,1}" separately.
We now indicate how this is done. Ideally on input x, Alice would like to pick messages
according to the distribution P,. It is easy to see via Chernoff-Hoeffding bounds that, for
every x € {0,1}", there exists a set S* of O(n) messages such that on input z, if Alice
sends a message from S* uniformly at random, the predicates T for all y € {0,1}™ will
be satisfied with high probability. In fact, a random sample of O(n) elements according
to P, serves as a suitable S” with exponentially high probability. However, Alice needs to
pick these sets S* in such a way that their union is small, so that she and the referee can
settle on a common succinct encoding for the messages. The substate theorem allows Alice
to pick such correlated sets S*. Informally stated, it allows her to argue, via a rejection
sampling argument, that if she picks a sample of messages according to the distribution P,
then one in every 2°(%) messages can serve as a message sampled according to P,, where P,
is a distribution close to P, in the total variation distance. Thus, if we pick a sample of size
n-29(® according to P, then for most = we can get a sub sample of O(n) elements according
to ﬁz Since ]356 is close to Py, the O(n)-sized sub sample still serves as a suitable S* with
exponentially high probability. In particular, we can prove the following (see Lemma 3.2).

Theorem Let X and M be random variables (with some joint distribution), where X is
uniformly distributed over {0,1}" and their mutual information I(X : M) < a. Let [m] be
the range of M. Let Sy, x,y € {0,1}" be randomised predicates from [m] to [0, 1]. Then,
there exists a random variable M’ (correlated with X') such that

(a) M' takes values in a set of size n - 20(¢/¢);

(b) There exists A C {0, 1}" of size at least Z-2" such that for allz € A and y € {0,1}",

|Pr[S¥(M') | X = 2] — Pr[SE(M) | X =a]| <

In our context, the above theorem states that if Alice’s message contains only a bits of
information about her input, she can compress it to O(a+logn) bits without changing the
error probability of the protocol significantly. A similar message compression argument
holds for Bob too. This gives us an alternative proof of the main result of Chakrabarti et
al. [CSWYO01], with better dependence on the parameters.
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3.1 The rejection sampling argument

In this section we prove a few lemmas which build the rejection sampling argument. These
lemmas are then used to prove the compression and direct sum results in the later sections.

Lemma 3.1 Let P and Q be probability distributions on [k] such that 27°P < Q. Then,
for each integer t > 1, there exist correlated random variables X = (X1, Xo, ..., X;) and
Y = (V,Ys, ..., YR) such that

(a) The random variables (X; : i € [t]) are independent and each X; has distribution Q;
(b) R is a random variable with binomial distribution B(t,27%);

(c) Conditioned on the event R = r, the random variables (Y; : i € [r]|) are independent
and each Y; has distribution P.

(d) Y is a subsequence of X (with probability 1).

Proof: We choose X and Y using a standard rejection sampling idea (see e.g. [Ros97,
Chapter 4, Section 4.4]): first pick the sequence X; now if X; = £ retain it in Y with
probability

P(6)27/Q(0).

We now give the formal details. Let (X, x) be a pair of random variables taking values in
[k] x {0,1}, whose joint distribution is given by

PriX =i =Q(i) and Pr[x=1]|X;=/4=P£)2*/Q(L).
Now, pick ¢ pairs of random variables (X, x;),7 € [t], where each (X, x;) has the
same distribution as (X, x) defined above, and (Xj, x;) is independent of (X;, x;),7 # i.

This specifies the joint distribution of the random variables X 2 (X1, Xo,...,X;) and

X 2 (X1, X2y ---,xt)- Now, let Y be the subsequence (X; : x(i) = 1). That requirements
(a) and (d) hold for (X,Y) constructed in this manner are immediate from our definition.

For part (b), note that
¢
R = Z Xi>
i=1

where the x; are independent random variables, and

Prix;=1] = Y Pr[X;=4 -Pru=1|X;=/{
L€[K]

(P02,
2. (o) =
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3.1. The rejection sampling argument

We first show part (c) by conditioning on the event “x = ¢” for an arbitrary o € {0, 1}!

such that
Z o; =T.
i

Since the event R = r is the disjoint union of events of the form y = o, this implies (c¢) in
general. For j € [r], let h; be the position of the jth 1 in o, that is,

h
h; 2 min{h : Zai =7}
i=1

Then, under the condition x = o,
Y - <Xh1,Xh2, ey th)'

Since (Xj, x;) are independent for different i, we conclude that the Yj’s are independent
under the condition x = 0. We only need to show that Y} has the right distribution:

PrlY;=/(|x=0] = Pr[Xy, =£]|xn =1]
_ PI'[XhJ. =/ th = ].]
- PI‘[th = 1]
Q- P02 Q)
2—a
= P(0).

> m

Lemma 3.2 Let Q and Py, Ps,..., Py be probability distributions on [k]. Define a;
S(P||Q). Suppose a; < oo for all i € [N]. Let S1,Ss,...,Sy be randomised predicates on
[k]. Define

A
i = Pr |S;(y)]
py 2 PrISi(0)

Fiz € € (0,1]. Then, there exists a sequence x 2 (z1,...,x¢) of elements of [k] and

subsequences y', ..., y" of x such that

(a) y' is a subsequence of (xy,...,Ty) where

t 2 ([8 : 2<ai(+11>f€-)1602g(2N)]> _

(b) Fori,j=1,2,...,N, .
| E_[S;(y'14D] = pisl < 26,
Ley[Ri]

where R; is the length of Y*.
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3.1. The rejection sampling argument

(c) t 2 max; t;.

Proof: Using part (b) of Theorem 4.1, we obtain distributions P; such that

) P — P <2
t
and _
(1 _ 6)2—(ai+1)/€Pi S Q
Using Lemma 3.1, we can construct correlated random variables (X,Y!,Y? ..., YY)

such that X is a sequence of ¢ 2 max; t; independent random variables, each distributed
according to @, and (X[1,%],Y?) satisfying conditions (a)-(d) (with P = P;, a = (a; +
1)/e —log(1 —€) and t = t;). We will show that with non-zero probability these random
variables satisfy conditions (a) and (b) of the present lemma. This implies that there is
a choice (x,y!,...,y") for (X,Y?},..., YY) satisfying parts (a) and (b) of the present
lemma.

Let R; denote the length of Y. Using part (b) of Fact 2.14, we conclude that

: 4 1 1

Now, condition on the event
4

for all 1 <7 < N. Define
A

pi; = Pr [S;(y)]
P2 P [50)
We use part (a) of Fact 2.14 to conclude that for i,5 =1,2,..., N,

Pl B S(Y0)] - Byl > o] < s

Y Ley(rs] (2N)87
implying, 1
Ylv--fYN[ R ‘ZEUE[’I‘i][ J( [ ])] p.?‘ 6] 9 ( )

From (3.1) and (3.2) and the fact that
Vi, j |pij — Pigl <€

P, - P,
bility. Part (@) is never violated. Part (c) is true by definition of ¢. n

(since ’ < 2¢), it follows that part (b) of our lemma holds with non-zero proba-
¢
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3.1. The rejection sampling argument

Lemma 3.3 Let P and Q be probability distributions on [k], such that
Pl
Good 2 {i € [K] - ¥ < Q)

has probability exactly 1 — € in P. Then, there exist correlated random wvariables X 2
(Xi)ien, , R and Y such that

(a) the random variables (X; : 1 € Ny ) are independent and each has distribution Q;

(b) R takes values in N, U {oo} and E[R] = 2%;

(¢c) if R# o0, thenY = X orY =0;

(d) Y takes values in {0} U [k], such that

P(i) ifi e Good
PrlY =] = 0 ifie k] — Good .
e ifi=0

Proof: First, we define a pair of correlated random variables (X, Z), where X takes values
in [k] and Z in [k] U {0,x}. Let P': [k] — [0, 1] be defined by P'(i) = P(i) for i € Good,
and P'(i) = 0 for ¢ € [k] — Good. Let
A —a —a
B2 /(1—(1-e2™)

and
% 2 P'(1)27°/Q).

The joint probability distribution of X and Z is given by

Pr[X =4 = Qi) and

Vi ifj=1i

e a B —%) ifj=0

PriZ =j1X =i = 4 1 B —m) ifj=x
0 otherwise

Note that this implies that
Pr(Z # ] = ZQ i+ Bl-y)] = B+(1-8 ZP’

- 5+(1_5)(1-e)2 a=ge

Now, consider the sequence of random variables
A
X = <Xz'>ieN+
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3.1. The rejection sampling argument

and
A

Z = (Z;)ien, ,

where each (Xj, Z;) has the same distribution as (X, Z) defined above and (X;, Z;) is
independent of all (X, Z;),j # i. Let

R min{i : Z; # *};

R2 o if {i: Z; # x} is the empty set.
R is a geometric random variable with success probability 27¢, and so satisfies part (b) of

the present lemma. Let Y 2 Zp if R # oo and Y 2 0if R = co. Parts (a) and (c) are
satisfied by construction.
We now verify that part (d) is satisfied. Since Pr[R = oo| = 0, we see that

Pry =i] = ) Pi[R=7]-Pr[Z, =i|R=1]
= Y PrR=r]-Pr[Z, =i| Z #+]
B _ g Pz, =]
— 7"g\;rPr[R r] Pr[Z;«é*]

where the second equality follows from the independence of (X, Z;) from all (X}, Z;), j # r.
If i € [k], we see that

jﬁ
~
~
Il
Il

_ . Pr[Z, =]
EZM PriR =1l 57 2

_ ZPT[RZT].Pr[Xr:i]-Pr[Zr:i\XT:i]

o Pr[Z, # 4]
_ _ Q1)
= TEZM PrlR=r]- o
= Y PrR=r]P'(i)
= P'(i).

Thus, for i € Good, Pr[Y =i| = P(i), and for ¢ € [k] — Good, Pr[Y =] = 0. Finally,

Priy =0] = ZPr[Rﬂ]-%
_ Z@ZPM( —4]-Pr[Z, =0 | X, = j]
reNg JE[K]
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3.2. Simultaneous message protocols

=y PRS00 - )

reNy JElk]
= Z Pr[R = rle
reNy
= e

Lemma 3.4 Let Q and Py, ..., Py be probability distributions on [k]. Define S(P;||Q) =
a;. Suppose a; < oo for all i € [N]. Fiz € € (0,1]. Then, there exist random variables
X = (Xi)ien,, R1,...,Ry and Y1,..., Yy such that

(a) (X;:i € Ny) are independent random variables, each having distribution Q;
(b) R; takes values in N, U {oo} and E[R;] = 2(@+V/¢;
(¢) Y; takes values in [k] U {0}, and there is a set Good; C [k]| with

P;(Good,) > 1—¢

such that for all ¢ € Good;,
Pr{Y; = €] = Py(0),

for all ¢ € [k] — Good;,

PrlY; =4 =0 and Pr[Y; =0] =1— P;j(Good;) <¢;
(d) if Rj < oo, thenY; = Xg, or Y =0.
Proof: Using Theorem 4.1, we obtain for j =1,..., N, a set Good; C [k] such that

Pj(GOOd]’) 2 1—c¢

and for all + € Good,

Py(i)27 @D < Q(i).
Now from Lemma 3.3, we can construct correlated random variables X, Yj,..., Yy, and
Ry, ..., Ry satisfying the requirements of the present lemma. [ ]

3.2 Simultaneous message protocols

In this section we prove the compression and direct sum result for the simultaneous message
model in communication complexity.
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3.2. Simultaneous message protocols

Theorem 3.1 (Compression result, simultaneous messages) Suppose Il is a 0-error
private coin simultaneous message protocol for f : {0,1}" x {0,1}" — Z. Let the inputs to
f be chosen according to the uniform distribution. Let X,Y denote the random variables
corresponding to Alice’s and Bob’s inputs respectively, and My, Mg denote the random
variables corresponding to Alice’s and Bob’s messages respectively. Suppose

I(X :My)<a and I(Y :Mg)<b.

Then, there exist sets Good 4, Goodp C {0, 1}" such that
2
|Good 4| > 3" 2"

and 5
|Goodp| > 3 2",

and a private coin simultaneous message protocol II' with the following properties:

a) InTl', Alice sends messages of length at most 3¢ 4+log(n + 1) + log -~— + L 4+ 4 bits
€ e2(1—e) €
and Bob sends messages of length at most 371’ + log(n + 1) + log ﬁ + % + 4 bits.

(b) For each input (x,y) € Goods x Goodpg, the error probability of II' is at most § + 4e.

Proof: Let P be the distribution of My, and let P, be its distribution under the condition
X = x. Note that by Fact 2.2, we have

EIS(P.[IP)] < a,

where the expectation is got by choosing z uniformly from {0,1}". Therefore there exists
a set Good,, |Good,| > % - 2" such that for all x € Goody,

S(P:|P) < 3a.
Define
A 8(n +1)200+1)/e
t, &
€2(1 —e)
From Lemma 3.2, we know that there is a sequence of messages o = (my,...,my, ) and

subsequences o, of ¢ such that on input z € Goody,, if Alice sends a uniformly chosen
random message of o, instead of sending messages according to distribution P,, the prob-
ability of error for any y € {0,1}" changes by at most 2e. We now define an intermediate
protocol II"” as follows. The messages in ¢ are encoded using at most logt, + 1 bits. In
protocol IT” for x € Good 4, Alice sends a uniformly chosen random message from o,; for
x ¢ Good,, Alice sends a fixed arbitrary message from o. Bob’s strategy in I1” is the same
as in IT. In I1”, the error probability of an input (z,y) € Good x {0,1}" is at most § + 2e,
and
I(Y : Mg) <b.
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3.2. Simultaneous message protocols

Now arguing similarly, the protocol II” can be converted to a protocol IT' by compressing
Bob’s message to at most logt, + 1 bits, where

ty =
b (1 —c¢)

A 8(n+1)2(3b+1)/e

In IT', the error for an input (z,y) € Goods x Goodp is at most § + 4e. u
The following corollary is immediate from Theorem 3.1.

Corollary 3.1 Let 6,e > 0. Let f:{0,1}" x {0,1}" — Z be a function. Let the inputs to
f be chosen according to the uniform distribution. Then there exist sets Goody, Goodg C
{0,1}"™ such that

2 2
|Good 4| > 3 2", |Goodg| > 3 2",

and
. € :
1C5™(f) 2 3 (R (f') = 2log(n + 1) — 2log o

where f' is the restriction of f to Goods X Goodp.
We can now prove the main result of Chakrabarti et al. [CSWYO01].

Theorem 3.2 (Direct sum, simultaneous messages) Let §,¢ > 0. Let f : {0,1}" x
{0,1}™ — Z be a function. Define

pHsim A : sim / p!
R; (f)ZH}}nRé (),

where the minimum is taken over all functions f' which are the restrictions of f to sets of
the form A x B, A, B C {0,1}", |A| > % 2" |B| > %-2". Then,

im/ pm me  ~sim 1 2
R3™(f )Z?( §+4e(f)_210g(n+1)—210g62(17_6)—2_8)_
Proof: Immediate from Fact 6.2, Fact 6.1 and Corollary 3.1. -

Remarks:

1. The above theorem implies lower bounds for the simultaneous direct sum complex-
ity of equality, as well as lower bounds for some related problems as in Chakrabarti et
al. [CSWYO01].

2. A very similar direct sum theorem can be proved about two party one-round private
coin protocols.

3. All the results in this section, including the above remark, hold even when f is a
relation.
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3.3. Two-party multiple round protocols

3.3 Two-party multiple round protocols

In this section we prove the compression result and the direct sum result for the two-party
multiple round protocols.

Theorem 3.3 (Compression result, multiple rounds) Suppose 11 is a k-round pri-
vate coin randomised protocol for f : X x Y — Z. Let the average error of 11 under a
probability distribution u on the inputs X x Y be 0. Let T denote the complete transcript
of messages sent by Alice and Bob. Suppose I(XY : T) < a. Then, there is another
deterministic protocol II' with the following properties:

(a) The communication cost of II' is at most

2k(a+1) 2k
72 + JE—
€ €

bits.

(b) The distributional error of II' under u is at most 6 + 2e.

Proof: The proof proceeds by defining a series of intermediate k-round protocols I}, . . ., IT.
IT; is obtained from II}, ; by compressing the message of the ith round. Thus, we first com-
press the kth message, then the (k — 1)st message, and so on. Each message compression
step introduces an additional additive error of at most €/k for every input (z,y). Protocol
[T, uses private coins for the first i — 1 rounds, and public coins for rounds i to k. In fact,
IT; behaves the same as II for the first i — 1 rounds. Let IIj_ ; denote the original protocol
I1.

We now describe the construction of II from II;,,. Suppose the ith message in II;
is sent by Alice. Let M denote the random variable corresponding to the first i messages
in II; ;. M can be expressed as (M, M;), where M, represents the random variable
corresponding to the ith message and M, represents the random variable corresponding to
the initial 7 — 1 messages. From Fact 2.1,

I(XY: M) = I(XY:Ml)-l—A]/E[][I((XY:Mz) | My =my)]

= I(XY: M) [S(M3¥™ || M3™)],

+ E
MiXY

where M;Y™" denotes the distribution of M, when (X,Y) = (z,y) and M; = m;, and M3™
denotes the distribution of My when M; = m;. Note that the distribution of My¥™ is
independent of y, as II;_ , is private coin up to the sth round. Define

A TYym1 m1
a; = B _[S(M"™ || M3™)].

M1 XY

Protocol II; behaves the same as II;_; for the first 7 — 1 rounds; hence II; behaves the
same as II for the first ¢ — 1 rounds. In particular, it is private coin for the first ¢+ — 1

35



3.3. Two-party multiple round protocols

rounds. Alice generates the ith message of I} using a fresh public coin C; as follows: For
each distribution M3", m; ranging over all possible initial ¢ — 1 messages, C; stores an

e A
infinite sequence X™ = (27" );en, , where (27"

: 7 14 € Ny) are chosen independently from
distribution M3"'. Note that the distribution M3"' is known to both Alice and Bob as m,
is known to both of them; so both Alice and Bob know which part of C; to ‘look’ at in
order to read from the infinite sequence X™ . Using Lemma 3.4, Alice generates the ith
message of II; which is either z7** for some j, or the dummy message 0. The probability of
generating 0 is less than or equal to ;. If Alice does not generate 0, her message lies in a set
Good,,, which has probability at least 1 — £ in the distribution M;*™. The probability
of a message my € Good,,,, being generated is exactly the same as the probability of ms

in M;Y™ . The expected value of j is

k(S(MEV™ | M) 41) /e

Actually, Alice just sends the value of j or the dummy message 0 to Bob, using a prefix
free encoding, as the ith message of II]. After Alice sends off the ith message, II; behaves
the same as II ; for rounds ¢ + 1 to k. In particular, the coin C; is not ‘used’ for rounds
i+ 1 to k; instead, the public coins of II}, ; are ‘used’ henceforth.

By the concavity of the logarithm function, the expected length of the ith message of
IT; is at most

2ke M (S(MY™ || MJ™) + 1) + 2

bits for each (z,y, m;). Also in IT}, for each (z,y,m;), the expected length (averaged over
the public coins of II}, which in particular include C; and the public coins of II}, ;) of the
i + 1st to kth messages does not increase as compared to the expected length (averaged
over the public coins of II} ) of the i + 1st to kth messages in II;, ;. This is because
in the 7th round of II}, the probability of any non dummy message does not increase as
compared to that in IIj_,, and if the dummy message 0 is sent in the sth round IIj aborts
immediately. For the same reason, the increase in the error from II}, ; to II; is at most
¢ for each (2,y,m;). Thus the expected length, averaged over the inputs and public and
private coin tosses, of the ith message in II; is at most

2ke Y(a; +1) +2

bits. Also, the average error of II} under input distribution u increases by at most .
By Fact 2.1,

k
Y a=I(XY:T)<a,

where I(XY : T) is the mutual information in the original protocol II. This is because the

quantity Epgxy[S(MyY™ || M3™)] is the same irrespective of whether it is calculated for

protocol IT or protocol II; ,, as II;, ; behaves the same as II for the first ¢ rounds. Doing
the above ‘compression’ procedure £ times gives us a public coin protocol IT} such that the
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3.3. Two-party multiple round protocols

expected communication cost (averaged over the inputs as well as the public coins of IT})
of IT} is at most
2ke '(a + 1) + 2k,

and the average error of Il under input distribution p is at most § + €. By restricting the
maximum communication to

2ke *(a+ 1) + 2ke ™

bits and applying Markov’s inequality, we get a public coin protocol I1” from II} which
has average error under input distribution pu at most 6 + 2¢. By setting the public coin
tosses to a suitable value, we get a deterministic protocol I’ from I1” where the maximum
communication is at most

2ke *(a+1) + 2ke

bits, and the distributional error is at most § + 2e. [ ]
The following corollary is immediate from Theorem 3.3.

Corollary 3.2 Let f : X X Y — Z be a function. Let p be a probability distribution on
the inputs X x Y. Let §,¢ > 0. Then,

2

ICES(f) = o - CF 50c(f) — 2.

l\D|m
N

Theorem 3.4 (Direct sum, k-rounds) Let m,k be positive integers, and €,6 > 0. Let
f: X xY — Z be a function. Then,

2
RE™) 2 mesup (5 Chavadf) =2 )
oK

where the supremum s over all probability distributions p on X X Y and partitions k of p.

Proof: Immediate from Fact 6.2, Fact 6.1 and Corollary 3.2. ]

Corollary 3.3 Let m, k be positive integers, and €,6 > 0. Let f : X x Y — Z be a

function. Then,
2

RE™) 2 me (5 Chsnnd ) —2).

Remarks:

1. Note that all the results in this section hold even when f is a relation.

2. The above corollary implies that the direct sum property holds for constant round
protocols for the pointer chasing problem with the ‘wrong’ player starting (both the bit
version and the full pointer version), since the product distributional complexity (in fact,
for the uniform distribution) of pointer chasing is the same as its randomised complex-
ity [NW93, PRVO01b].
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3.4 Impossibility of quantum compression

In this section, we show that the information cost based message compression approach
does not work in the quantum setting.

3.5 Sampling uniformly random orthonormal sets

To prove our result about the incompressibility of quantum information (section 3.4) we
need to define the notion of a uniformly random set of size d of orthonormal vectors from
cm.

One way of generating a uniformly random unit vector in R™ is as follows: First choose

(Y1, ..., Ym) independently, each y; being chosen according to the one dimensional Gaussian
distribution with mean 0 and variance 1 (i.e. a real valued random variable with probability
exp(—y?)

density function ). Normalise to get the unit vector (z1,...,z,,), where

Vor
A
T S Y/ U

(note that any y; = 0 with zero probability).

What follows is a formal justification of why the above mentioned method does indeed
generate a uniformly random unit vector in R™. Reader can skip it if she is already
convinced.

Let U(m) denote the group (under matrix multiplication) of m X m complex unitary
matrices. Being a compact topological group, it has a unique Haar probability measure
on its Borel sets which is both left and right invariant under multiplication by unitary
matrices (see e.g. [Chapter 14, Corollary 20|[Roy88]). Let Uy, 4, (1 < d < m) denote the
topological space of m X d complex matrices with orthonormal columns. U,, 4 is compact,
and the group U(m) acts on U, 4 via multiplication from the left. Let f,, 4 : U(m) — U, 4
be the map got by discarding the last m — d columns of a unitary matrix. f,, 4 induces a
probability measure p,, 4 on the Borel sets of U,, 4 from the Haar probability measure on
U(m). fim,q is invariant under the action of U(m), and is in fact the unique U(m)-invariant
probability measure on the Borel sets of Uy, 4 (see e.g. [Chapter 14, Theorem 25][Roy88]).
By a uniformly random ordered set (vq,...,vq), 1 < d < m of orthonormal vectors from
C™, we mean an element of U,, 4 chosen according to piy, 4. By a uniformly random d
dimensional subspace V of C™, we mean a subspace

= Span(vy, . .., vg),

where (v1,...,v4) is a uniformly random ordered set of orthonormal vectors from C™.
Let O(m) denote the group (under matrix multiplication) of m X m real orthogonal
matrices. Identify C™ with R*™ by treating a complex number as a pair of real numbers.
A uniformly random unit vector in C™ (i.e. a vector distributed according to jin, 1) is the
same as a uniformly random unit vector in R*™, since U(m) is contained in O(2m). From
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3.5. Sampling uniformly random orthonormal sets

now on, while considering metric and measure theoretic properties of Uy, 1, it may help to
keep the above identification of C™ and R?*”™ in mind.

Now it is easily seen that the resulting distribution on unit vectors generated by the
above mentioned method is O(m)-invariant, and hence, the above process generates a
uniformly random unit vector in R™.

From the above discussion, one can prove the following fact.

Fact 3.1

(a) Let 1 < d < m. Let (vq,...,vq) be distributed according to pimq. Then for each
i, v; is distributed according to fi,1, and for each i,j, i # j, (vi,v;) is distributed
according to [y 2,

(b) Suppose x,y are independent unit vectors, each distributed according to i, 1. Let

A
w" 2

y — (zly)z,
and set w2 z and w' 2 ﬁ (note that w" = 0 with probability zero). Then the pair
(w,w") is distributed according to iy, s.

(¢) Suppose x,y are independent unit vectors, each distributed according to pim1. Let V
be a subspace of C™ and define

~a Pz A Py
x = I’ y = b

[Pzl [Pyl
where P is the orthogonal projection operator onto V' (note that Pxr = 0, Py = 0
are each zero probability events). Then T,y are uniformly random independent unit
vectors in V.

We will need to ‘discretise’ the set of d-dimensional subspaces of C™. The discretisation
is done by using a 0-dense subset of U,, ;. A subset N of U,,; is said to be d-dense if each
vector v € Uy, ; has some vector in N at distance no larger than ¢ from it. We require the
following fact about §-dense subsets of Uy, ;.

Fact 3.2 ([Mat02, Lemma 13.1.1, Chapter 13]) For each 0 < § < 1, there is a 0-
dense subset N of Up, 1 satisfying

V< (4/0)"™.

A mapping f between two metric spaces is said to be 1-Lipschitz if the distance between
f(z) and f(y) is never larger than the distance between z and y. The following fact says
that a 1-Lipschitz function f : U, 1 — R greatly exceeds its expectation with very low
probability. It follows by combining Theorem 14.3.2 and Proposition 14.3.3 of [Mat02,
Chapter 14].
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3.5. Sampling uniformly random orthonormal sets

Fact 3.3 Let f: U, 1 — R be 1-Lipschitz. Then for all 0 <t <1,

Pr[f > E[f] +t + 12/v2m] < 2exp(—t*m).
The following definitions will be needed in our proof of the incompressibility result.

Definition 3.1 Consider a quantum system with Hilbert space C™. For a POVM element
M over C™ and a subspace W of C™, define

M(W)é max  (w|M|w)w.

weW:||lw||=1

For subspaces W, W' of C™, define
AW, W') £ max |M(W) - M(W')].

where the mazimum is taken over all POVM elements M over C™. A(W,W') is a measure
of how well one can distinguish between subspaces W, W' via a measurement.

The following fact can be proved from the results in [AKN98] and will be needed later.
Fact 3.4 Let M be a POVM element over C™ and w,w € C™ be unit vectors. Then

(w|M|w)yw — (D|M|w)w| < |lw— .
We first need a few lemmas.

Lemma 3.5 Fix positive integers d,m and € > 0. Then there is a set S of at most d-
dimensional subspaces of C™ such that

(a) |S| < exp(O(mdlog(d/e))).

(b) For all d-dimensional subspaces W of C™, there is an at most d-dimensional subspace
W e 8 such that AW, W) <.

Proof: Let N be a d-dense subset of U, satisfying Fact 3.2. For a unit vector v € C™,
let ¥ denote the vector in A/ closest to it. Let W be a subspace of C™ of dimension d. Let

d
w = E ;W5
i=1

. . . . t
be a unit vector in W, where {ws, ..., w4} is an orthonormal basis for Wand )., |o;/? = 1.

Define
d
;A ~
w = Zaiwi
i=1
and .
pa Y
|||

It is now easy to verify the following.



3.5. Sampling uniformly random orthonormal sets

(a) [lw —w'l| < 6Vd.
(b) [lw'l| > 1 —6vVd.
(c) llw—@|| < 26/d.

Choose
€

2vd
Define W to be the subspace spanned by the set {wq,...,wg}. dim(W) < d. By Fact 3.4
and (c) above, A(W, W) < e. Define

52

SE {W : W subspace of C™ of dimension d}.
S satisfies Part (b) of the present lemma. Also,
S| < (4/6)*™ < exp(O(mdlog(d/e))),

proving Part (a) of the present lemma. u
We next prove the following two propositions using Fact 3.3.

Proposition 3.1 Let V be a fized subspace of C™ of dimension m/l. Let P be the orthog-
onal projection operator on V. Let (w,w') be an independently chosen random pair of unit
vectors from C™. Then,

1 m
> < _m
Pr [Kw‘w” d2] = 26Xp( 100d4)’

Pr{|Pal| > 2/V1] < 2exp (-

!
T=w,w.

o)
and

4 m
!
> - .
Pr [\(w\P|w> | d%} 6exp( 100d4l)

Proof: To prove the first inequality, we can assume by the U(m)-invariance of s, that
w' = e;. The map w — |[{wl|ep)| is 1-Lipschitz, with expectation 1/y/m by symmetry. By
Fact 3.3,

Pr [\(w\wﬂ > 522} <Pr [|(w|w>\ > 1/v/m+12/vV2m + 10d2} < 2exp (_ﬁ) ’

proving the first inequality of the present proposition.
The argument for the second inequality is similar. By symmetry,

E[llPwl] = E[| Pv'|] =1/ VL.
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3.5. Sampling uniformly random orthonormal sets

Since the map w +— ||Pw]|| is 1-Lipschitz, by Fact 3.3 we get that

Pr[||[Pz| > 2/VI] < Pr[||Pz| > 1/VI+12/vV2m+0.1/V1]

< 2exp(— T =w,w,

a01)
1001
proving the second inequality of the present proposition.
We now prove the third inequality of the present proposition. Let

. a Puw
“ T Pull
and
~ A Pu'
[P

(note that ||[Pw|| = 0 and ||Pw'|| = 0 are each zero probability events). By Fact 3.1, @, w’
are random independently chosen unit vectors in V. By the argument used in the proof of
the first inequality of the present proposition, we get that

pr (101091 > ] < 20w (~ ).

5d? 1001d*
Now,
4 m m m
Pr {[(PwlPu))| > — | < 2exp (—100 ) +dexp (-0 ) < Gexp (- )
| [{Pwl w>|—5d2z} = 2P~ 1g0qa) TP\ T1001) = PP\ T 100401/
proving the third equality of the present proposition. [

Proposition 3.2 Let V be a fized subspace of C™ of dimension m/l. Let P be the orthog-
onal projection operator on V. Let (w,w') be a random pair of orthonormal vectors from
C™. Then,

’ 2 m
> 1< - .

Proof: By Fact 3.1, to generate a random pair of orthonormal vectors (w, w') from C™ we
can do as follows: First generate unit vectors z,y € C™ randomly and independently, let

A
w" =y — (zly)z,
and set w 2 z and
, A wll
w = —-.
[|w” ||

Now,

[{w|Plw)w’| _ [(w|Plw)w| + [(w]w'){w|Plw)w|

[{w| Plw)uw'| = FITIRS ;
[[w"] 1 = [{w|w’)]
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3.5. Sampling uniformly random orthonormal sets

By Proposition 3.1 we see that,

Pr ||(w|Plw)uw'| > %} < Pr [|<w| Pluyw!| > 4/(5d211>j 8//((;3)))) - (4/5)}
< 6exp (— 10:;;4l> + 2exp (_107(?(14) + 2exp <_%>

m
s 10exp <_100d4l) ’

proving the present proposition. ]

Lemma 3.6 Let V be a fized subspace of C™ of dimension m/l. Let P be the orthogonal
projection operator on V. Let W be a random subspace of C™ of dimension d. Then,
m
Pr[F3w e W, ||w|| =1 and |(w|P|w)w|> 6/1] < exp ( 200d4l) :
Proof: Let (wi,...,wy) be a randomly chosen ordered orthonormal set of size d in C™,
and let
W Span(wy, . .., wy).

By Fact 3.1, each w; is a random unit vector of C™ and each (w;,w;), i # j is a random
pair of orthonormal vectors of C™. By Propositions 3.1 and 3.2 we have with probability
at least

m m
1-2d (——) — 10d? (— ) ,
P 1001 P\ 10044
4 2
Vi, (w;| Plwi)w; < 7 and Vi,j,1 # j, |{wi| Plwi)w;| < 2l
We show that whenever this happens
[(w|Plw)w| < 6/I
for all w € W, ||w|| = 1. Let
d
w é ZO!Z'UJZ',
i=1
where
d
D e =1.
i=1
Then,
(w| Plwyw| = | Y afa;(wil Plw;)uw;
i,J
< el (wil Plwgywil + Y ooy [(wil Plw;yw;|
i i\jiit]
4 2
< - +d =
S 7T
_ 0
= 7
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3.5. Sampling uniformly random orthonormal sets

Thus,
Prl3w e W, |l =1 and |(w|Plw)w| > 6/]] < 2dexp (—15) +10d*exp (—— )
> IO = = = P\ 1000 P\ " 10044
< exp (—L>
- 200d41/
completing the proof of the present lemma. [ ]

We can now prove the following ‘incompressibility’ theorem about (mixed) state com-
pression in the quantum setting.

Theorem 3.5 (Quantum incompressibility) Let the underlying Hilbert space be C™.
There exist n states p;; and n orthogonal projections M, 1 <1 < 5, 1 < j < 2k such
that

(0,) \V/Z,]TI' Mijpij =1.

(b) p 2 L. Do Pif = L . I, where I is the identity operator on C™.
(c) Vi, 3 S(piillp) = k.

(d) Suppose d > 2%, n = Q(d°log d2?*) and 2¥dlogd = Q(n/m). Then for all subspaces
W of dimension d,
{Mi; - My(W) <1/10} > n/4.

Proof: For 1 <4 < 2, choose B' = (|b%),...,[b},)) to be a random orthonormal basis of
C™. B’ is chosen independently of B, k # 1. Partition the sequence B’ into 2* equal parts;
call these parts BY, 1 < j < 2*. Define

A 2F
pig = > )l

veBY

Define N
M;; 2 ) u)(vl.
vEBI
It is easy to see that p;;, M;; satisfy parts (a), (b) and (c).
To prove part (d), we reason as follows. Let W be a fixed subspace of C™ of dimension
d. Let V be a random subspace of C™ of dimension 2*¥. Let P denote the orthogonal

projection operator on V. By the U(m)-invariance of the distribution f, 4 and from
Lemma 3.6,

m
Pr[Fw € W, wl =1 and |(w|Plwyw| > 6/2] < exp (—5 "5

Define the set
Bad 2 {i € [n/2"] : 3j € [2¥]M;;(W) > 6/2"}.
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3.5. Sampling uniformly random orthonormal sets

Hence for a fixed i € [n/2F],

. k m =
Pr[i € Bad] < 2%exp <—m) < exp (‘W) :

Since the events ¢ € Bad are independent,

3n ok 3mn
Pr[|Bad‘24-2’“} < ()Xp<—m)

4.2k

3mn
< (de/3)3n/2*? ___omn )
< (4e/3) P\ T 1200 - 222

So
. k 3 /2k+2 3mn
By setting e = 1/20 in Lemma 3.5, we get
Pr[3W subspace of C™,dim(W) = d, [{M,; : M;;(W) < 1/10}| > 3n/4]
3 /2k+2 an
< (4e/3)*? exp(O(mdlogd)) exp <—m)
< 1,

for the given constraints on the parameters. This completes the proof of part (d) of the
present lemma. u

Remark: The above theorem intuitively says that the states p; on log m qubits cannot
be compressed to less than logd qubits with respect to the measurements M;.
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Chapter 4

Substate theorem and the index
function problem

4.1 Substate theorem

In this chapter we prove a fundamental theorem about relative entropy of quantum states,
which roughly states that if the relative entropy, of two quantum states p and o is at most
c, then p/29(9) ‘sits inside’ o. Using this substate theorem, we give tight lower bounds for
the privacy loss of bounded error quantum communication protocols for the index function
problem. In the next chapter we will the pointer chasing problem, in whose solution also
substate theorem plays a crucial role. We will explain our information theoretic result, by
first considering its classical analogue. Let P and () be probability distributions on the set
[n] such that their relative entropy is bounded by ¢, that is

P(i)
Q@) = °

S(PIQ) 2 )" P(i)log, (4.1)
i€[n]

When ¢ < 1, this implies that P and () are close to each other; indeed, one can show that
(see [CT91, Lemma 12.6.1])

IP=QIl, = > 1P() - ()| < v(2m2)e (4.2)
i€n]

That is, the probability of an event £ C [n] in P is close to its probability in Q:

[P(€) = Q(E)] < V(cIn2)/2.

We are, however, sometimes concerned with a situation when ¢ > 1. In that case, (4.2)
becomes weak: we cannot even infer from it that an event & with probability 3/4 in P
has positive probability in . But is it true that when S(P||Q) < +oo P(£) > 0, then
Q(E) > 07 Yes! To see this, let us reinterpret the expression in (4.1) as the expectation of
log P(i)/Q(i) as i is chosen according to P. Thus, one is lead to believe that if S(P||Q) <
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4.1. Substate theorem

¢ < 400, then log P(i)/Q(%) is typically bounded by ¢, that is, P(i)/Q(i) is typically
bounded by 2¢. One can formalise this intuition and show, for all r > 1,
ieP | Q(7) T
Let

Good £ {i : P(3)/27° < Q(i)},

P'(i) 2 P(i | i € Good).

That is in P’ we just discard the bad values of i, and renormalised. Now, —I=i5P' is

dominated by @ everywhere. We have thus proved the following.

Proposition 4.1 If S(P||Q) < ¢, then for all r > 1, there exists a distribution P’ such
that

2
|P—P'l; <=
r

and
Q =aP + (1- a)P",

where P" is some other distribution and o = 2 90¢),

Let us return to our event £ that occurred with some small probability p in P. Now, if
we take 7 to be 2/p, then £ occurs with probability at least p/2 in P’, and hence appears
with probability p/2°"9) in @Q. Thus, we have shown that even though P and @ are far
apart as distributions, events that have positive probability (no matter how small) in P,
continue to have positive probability in ).

We prove the following quantum analogue of Proposition 4.1.

Result 3 (Substate theorem) Suppose p and o are quantum states with S(p||o) < c.
Then, for all » > 1, there are states p’ and p” such that

lo=p'll, < 2/V/r

and
o=ap +(1-a)p’,

where o = 20(r9),

(This has been stated here in a form that brings out the analogy with the classical
statement above. Below (Theorem 4.1) we give a more nuanced statement which is better
suited for our applications.)

The ideas used to arrive at Proposition 4.1 do not immediately generalise to get this
statement, because p and ¢ may not be simultaneously diagonalisable. As it turns out,
our proof of the substate theorem takes an indirect route. First, by exploiting the Fuchs
and Caves [FC95] characterisation of fidelity and a minimax theorem of game theory,

47



4.1. Substate theorem

we obtain a ‘lifting’ theorem about an ‘observational’ version of relative entropy; this
statement is interesting on its own. Using this ‘lifting’ theorem, and a connection between
the ‘observational’ version of relative entropy and actual relative entropy, we argue that
it is enough to verify the original statement when p and o reside in a two-dimensional
space and p is a pure state. The two dimensional case is then established by a direct
computation.

We now state the substate theorem as it is actually used in our lower bound proofs for
the index function problem and the pointer chasing problem.

Theorem 4.1 (Substate theorem) Consider two finite dimensional Hilbert spaces H
and K, where dim(K) > dim(H). Let C? denote the two dimensional complex Hilbert
space. Let p,o be density matrices in H. Let r > 1 be any real number. Let 1)) be a
purification of p in H® K. Then there exist pure states |¢),|0) € HQ K (depending on r)
and |¢) e H® K ® C? such that |() is a purification of o and

) (@l = @) {@lll, < 2/v/r,

where

2\ or 00+ (1= ) and k2 8S(slo) + 14

- 7-27"19

Remarks:
1. Note that Result 3 follows from above by tracing out X ® C2.
2. From Result 3, one can easily see that

lp=oll, <2279
This implies a 27°®*) lower bound on the fidelity of p and o.
As stated earlier, to prove the substate theorem, it is useful for us to define a new notion
of distinguishability between density matrices. We shall call this notion observational
divergence.

Definition 4.1 (Observational divergence) Let p,o be density matrices in the same
finite dimensional Hilbert space H. Their observational divergence is defined as

Tr (Fp)

D(plo) £ sup (10 (Fp)tog 73 )

where F' above ranges over POVM elements on H such that Tr (Fo) # 0.
The following properties of observational divergence follow easily from the definition.

Lemma 4.1 Let p,o be density matrices in the same finite dimensional Hilbert space H.
Then

1. D(pllo) > 0, with equality iff p=o.
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4.1. Substate theorem

2. D(p|llo) < +oco iff supp(p) C supp(o). If D(p|lo) < +oo, then there is a POVM
element F' which achieves equality in Definition 4.1.

3. D(-||) is continuous in its two arguments when it is not infinite.

4. (Joint convezity) Let py, pe, 01,09 be density matrices in H. Let p 2 Ap1+ (1= XN)p2
and o & Aoy + (1 — N)og, where 0 < A < 1. Then

D(pllo) < AD(pilo1) + (1 — A)D(p2|lo2).

5. (Unitary invariance) If U is a unitary transformation on H,

D(UpUM|UsUY) = D(pllo).

6. (Monotonicity) Suppose K is a finite dimensional Hilbert space, and p', o' are density
matrices in HQ K such that Tri p' = p and Trx o' = 0. Then,

D(p'llo") = D(pl|o).

This tmplies, via unitary invariance and the Kraus representation theorem, that if F
15 a completely positive trace preserving superoperator, then

D(Fpl|Fo) < D(pllo)-

Fact 2.9 and Lemma 4.1 seem to suggest that observational divergence and relative
entropy are very similar quantities. In fact, the relative entropy is an upper bound on the
observational divergence to within an additive constant.

Lemma 4.2 Let p,o be density matrices in the same finite dimensional Hilbert space H.
Then,
D(pllo) < S(pllo) +1.

Proof: By Fact 2.9 and Lemma 4.1, D(p|lo) = +oo iff supp(p) € supp(o) iff S(p|lo) =
+o0o. Thus, we can henceforth assume without loss of generality that D(p||o) < +o00. By
Lemma 4.1, there is a POVM element F' such that

D(pllo) = plog(p/q),

where p 2 Tr (Fp) and ¢ 2Ty (Fo). We now have

p 1—p
S(ollo) > plog? + (1= ) 1og {1 =)
P 1
> plog=+(1—-p)lo -1
g, (1-p) X
> plogg—l
q
= D(pllo) — 1.
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4.1. Substate theorem

The first inequality follows from the Lindblad-Uhlmann monotonicity of relative entropy
(Fact 2.9), and the second inequality follows because

(1-p)log(1—p) > (=loge)/e > —1,

for 0 < p < 1. This completes the proof of the lemma. [
We now prove the following lemma, which can be thought of as a substate theorem
when the first density matrix is in fact a pure state.

Lemma 4.3 Let 1)) be a pure state and o be a density matriz in the same finite dimen-
stonal Hilbert space H. Let

A
k=D ((lb)@)llo).
If k > 0, then for all r > 1, there exists a pure state |¢) (depending on r) such that

ool = ol < 2= ana (T2} 6106l <o

Proof: We assume without loss of generality that 0 < £ < +o00. Consider

M 2 o — (jY)(w]/27).

Since —(|1)(1|/2"*) has exactly one non-zero eigenvalue and this eigenvalue is negative viz.
—1/2% and o is positive semidefinite, M is a hermitian matrix with at most one negative
eigenvalue.

If M > 0 we take |¢) to be [¢). The lemma trivially holds in this case.

Otherwise, let |w) be the eigenvector corresponding to the unique negative eigenvalue
—a of M. Thinking of |w){w| as a POVM element, we get

0>—a=Tr (Mw){w|) = {w|lo|lw) — Kﬂ%w
= (wlo|w) < |<1/’2‘:Z>‘2
Hence 9
k= D)) > []w) Plog WL S o s

(wlow)
= [P < - <1

In particular, this shows that [¢), |w) are linearly independent.

Let n 2 dim(H). Let {|v),|w)} be an orthonormal basis for the two dimensional sub-
space of H spanned by {|v¢), |w)}. Extend it to {|v1), ..., |v,_2), |v),|w)}, an orthonormal
basis for the entire space H. In this basis we have the following matrix equation,

F e d 0 0 0 ;
o (43

*

e a b | 0* T Yy
d* b* ¢ 0~ Yoz
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4.1. Substate theorem

where the first, second and third matrices are o, [¢)(1)|/2"* and M respectively. F is an
(n —2) x (n — 2) matrix, P is an (n — 1) x (n — 1) matrix, d, e are (n — 2) x 1 matrices
and [ is an (n — 1) x 1 matrix. a,c,z, 2, are non-negative real numbers and b,y are
complex numbers. The zeroes above denote all zero matrices of appropriate dimensions.
The asterisk denotes conjugate transpose.

Claim 4.1 We have the following properties.
1. byeC, a,c,z,z,aa € R

2.b=y#0,1/(r2")>z=c+a>c>0,a>0,a>0,
0<x<1/2% x4+2=1/2"% 1=0 and d = 0.

3 0< Z <2 =1.

Proof: The first part of the claim has already been mentioned above. Since |w) is an
eigenvector of M corresponding to eigenvalue —a, [ = 0. By inspection, we have b =y, z =
c+a,d=0. z > 0 since |1), |w) are linearly independent, and z > ¢ > 0 since a > 0.

z+z="Tr ([p)(¥|/2") =1/2"

=z < 1/2%

Also,
2= [(Ylw)P/2* < 1/(r2"™).

“ ﬁ] > 0. Hence,

Since 0 > 0, F' > 0 and [b*

a

det [ b

b:| =ac— [b]? > 0.
c
Since [1)(1)|/27* has one dimensional support,
T Yl )2 =
det[y* z] =zz— |y|*=0.

If ¢ = 0 then y = b = 0 which implies that xz = 0, which is a contradiction. Hence, ¢ > 0

and b # 0. Similarly, a > 0. This proves the second part of the claim. The third part now

follows easily. |
We can now write o = g1 + 09, where

o 2 2 and o 2 2
e e* a— % 0 2 0* % b
0* 0* 0 0* b*
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4.1. Substate theorem

Note that
|£> = (O: L) 05 1: (—b*)/C)

is an eigenvector of o, corresponding to the eigenvalue 0. o9 > 0, and in fact, o has one
dimensional support. We now claim that o; > 0. For otherwise, since ' > 0, there is a
vector |@) of the form (ay,...,an_2,1,0) such that

(0]0116) < 0.

Now consider the vector
A

10y = (ay,...,an_9,1,(=b*)/c).
We have,
(0']o]6") = (0'|o1|0") + ('|02|0") = (B01|0) + (£lo2|€) <O,

contradicting o > 0. This shows that oy > 0, and hence, o > 0.
We are now finally in a position to define the pure state |¢). |¢){¢| is nothing but oy
normalised to have unit trace.

A 02
DICEE <=
- tc
Using Claim 4.1 we get,
= E E — _ r—1
Tro, = tez +ec=rx+z—a> ork
C z r
Hence,
r—1
o |o)(dl <oz <o

This shows the second assertion of the lemma.
To complete the proof of the lemma, we still need to show that |||¢){v)| — |¢)(¢]|, is
small. Up to global phase factors, one can write [1), |¢) as follows.

)+ Vzw) )+ Velw)
\/ @ +z \/ @ +c

We now lower bound |{¢|1)| as follows, using Claim 4.1.

B+ ez

\/@ + C\/g +z
b2 + cz
V(B2 + e)([b? + 22)
b2+ cz
V(B2 + c2)([b]? + 22)

6)

%)

{8]¥)]

v
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4.1. Substate theorem

T+ z
1—-1/r.

Vv

This proves that

1o 2
[0} (W] = @) (Slll, = 2v/1 = [{8]¢)] <

establishing the first assertion of the lemma and completing its proof. |
We next prove the following lemma, which can be thought of as an ‘observational
substate’ lemma.

Lemma 4.4 Consider two finite dimensional Hilbert spaces H and IC, dim(K) > dim(H).
Let p,o be density matrices in H. Let |¢) be a purification of p in HQ K. Let F be a
POVM element on H® K. Then there exists a purification |@) of o in HQ K such that

q = 2,%,
where A A
p="Tr (F[Y)(¥]), ¢ = Tr (F|g)(8])
and

kK £ 4D(p||o) + 2.

Proof: We assume without loss of generality that 0 < D(p|lo) < 400 and that p > 0.

Let n 2 dim(H) and {|a;)}", be the orthonormal eigenvectors of F' with corresponding
eigenvalues {\;}" ;. Note that 0 < A; <1 and |o;) € H® K. We have,

p=Y Allal¥)]> and ¢=> Nil{aule).
i=1 i=1

Define,
v Aoy o) A |0")
'y & izt and |§) 2 .
%) i 0= T
Note that
p = |(¥]6)*]l|6")]]?
and

0 < [ll)* < 1.
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Using the Cauchy-Schwarz inequality, we see that

8 Adaal)(@laa)[”

KelO) 101" = [(gl6")]* = >im1 Ail{ealy)[?

< > Ail{aild)? =
i=1
Thus,
p__ [@IOPINNE _ [(16) 11167
oK' /p ok /(IO —  ok'/KlO)> T
Hence, it will suffice to show that there exists a purification |¢) of o in H® K such that
[(4(6)[?

2
‘<¢|0>‘ = ok'/| 1/}|9)‘2

Define the density matrix 7 in H as
T 2 Tre |0)(0).

By Facts 2.11 and 2.12, there is a purification |¢) of 0 in H® K and a POVM {F},..., F;}
in H such that,

(10)] = Z Veib;,

where ¢; 2Ty (F;r) and b; 2Ty (Fio).
Let a; £ Tr (Fip). We know from Facts 2.11 and 2.12 that

l

0< b <@l <B(r,p) <> Ve

=1

Note that the a;’s are non-negative real numbers summing up to 1, and so are the b;’s and
the ¢;’s.
Define the set S as

S é {Z € [l] a; > bi24k/B(T’p)2} ,

where N
k= D(pllo).
Note that Vi € S, b; # 0 as supp(p) C supp(o), k being finite. Define the POVM element

G on H as
G=Y F.

1€S
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4.1. Substate theorem

Let a 2 Tr (Gp) and b 2Ty (Go). Then
a = Zai, b= sz,
i€s ieS
b> 0 and a > b2M%/Be)”,

We have that
4ka

B(r, p)?

D(pllo) = k > alog% >

B(r,p)”
YR
Now, by the Cauchy-Schwarz inequality and the other inequalities proved above, we get

=a<

B(r.p) < ) Ve
= Y Vaa+y Vaa

ics igs

< e [Sarrmer s o
1ES 1ES €S

S 1. \/_+22k:/B('r,p) B 7_ O'

< B(;P) 4 92k/B(7:p)’ B(r, 0).

This shows that
B(t,p)* < 4- 24’“/3(7”’)2B(7', 0)?

= (1)1 < 4- 2/1VOF (4]g) 2.

Since k' = 4k + 2, we get

(]6)
(DO > s,

completing the proof of the lemma. [
In the previous lemma, the purification |¢) of o was a function of the POVM element

F. We now prove a lemma which, for any fixed 0 < p < 1, removes the dependence on F,
for

Tr (Fl¢)(@) = p,

at the expense of having a mixed extension of ¢ in the place of a pure extension (i.e.
purification).
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Lemma 4.5 Consider two finite dimensional Hilbert spaces H and IC, dim(K) > dim(H).
Let p, o be density matrices in H and 1) be a purification of p in HQ K. Let 0 < p < 1.
There exists a density matriz w in H® K such that

Tri w = o,
and for all POVM elements F on H® I such that
Tr (Fl)(¥]) 2 p, Tr (Fw) > p/2¥7,

where
K 2 4D(p||o) + 2.

Proof: We assume without loss of generality that 0 < D(p||oc) < +o0 and that p > 0.
Consider the set A; of all extensions w of 0 in H® K i.e.

Tre w=o.

A; is a non-empty, compact, convex set. Consider the set A, of all POVM operators F' in
H ® K such that

Tr (Flg) (@) = p-

A, is a compact convex set. Without loss of generality, A is non-empty. The conditions
of Fact 2.15 are trivially satisfied (note that we think of our matrices, which in general
have complex entries, as vectors in a larger real vector space). For every F' € Ay, we have
a purification |¢*) € H® K of o such that

Tr (Fly){¢) p
Tr (Flo")") 2 ow/IT (Floyw)) = ¥ /b

Using Fact 2.15, we see that there exists a density matrix w in H ® K such that,

Trcw=0
and »
Tr (Fw) > 7
for all F' € Ay. This completes the proof. ]

The previous lemma depends on the parameter p. We now remove this restriction, to
get an ‘observational substate’ theorem.

Theorem 4.2 (Observational divergence lifting theorem) Consider two finite dimen-
sional Hilbert spaces H, KC, dim(KC) > dim(H). Let p,o be density matrices in H. Let |1))
be a purification of p in H® K. Then there exists a density matriz w in H® K such that

Trx w=0
and

D(([){¢]) llw) < 8D(pllo) + 6.
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4.1. Substate theorem

Proof: We assume without loss of generality that 0 < D(p||oc) < +oo and that p > 0.
Define the function f : [0, 1] — [0, 1] as follows.

f(p)é;ﬁ where 0<p<1 and ké4D(p||a)+2

For a fixed positive integer [, define the density matrix w; in H® K as

1/l zl:w (z/1),

where for 0 < p < 1, w(p) is a density matrix in H® K such that
Tre w(p) =0

and
Tr (Fw(p)) = f(p)
for all POVM elements F' on H ® I satisfying

Tr (Fl){(yl) 2 p
Such an w(p) exists by Lemma 4.5. Then,

Tre w(l) = 0.

Suppose F'is a POVM element on H® IC. Let

J/L<p2Tr (Flo) ) < (G + 1)/,

where 0 < 7 < [. We assume without loss of generality that p > 0. Then,
Tr (Fw;) > ! iT F i ! i f !
r (Fw - r wl - - -
V& l 14 l

> -f(f“)z(p—;)f(g).

The third inequality above follows from the convexity of f(-). By compactness, the set
{w; : 1 € N} has a limit point w. By standard continuity arguments, Trx w = o and

v

2
A Py__P

¢=Tr (Fw)zpf<2) T2 %
Hence, ¢ > 0 and

plog]—) < —plogp+p+2k < 2k+2 < 8D(p|lo) + 6
q
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4.2. Privacy tradeofts

The second inequality follows because
—plogp+p <2

for 0 < p < 1. This completes the proof of the lemma. |

The above theorem relates the observational divergence of a pair of density matrices to
the observational divergence of their extensions in an extended Hilbert space, where the
extension of the first density matrix is a pure state. Using this, we are now finally in a
position to prove the substate theorem.

Proof:(Substate theorem, Theorem 4.1) By Lemma 4.2 and Theorem 4.2, there exists
a density matrix w in H ® K such that

Trcw=0
and
D (([9)(@]) [[w) < 8D(pllo) +6 < 8(S(pllo) +1) +6 = 85(pllo) + 14 = k.
By Lemma 4.3, there exists a pure state |¢) such that

r—1
rork

1)) = [6)(@lll, < % and < ) 6){(8] < w.

Let A
71 = Tr [$)(d).

By above, there exists a density matrix 7 in H such that

_ r—1 r—1
g = 7‘2”‘; 1+ 1-— TZTk T9.

Let |§) € H® K be a canonical purification of 75. Then |() defined above is a purification
of 0 in H® K ® C2. This completes the proof. |

4.2 Privacy tradeoffs

In this section, we prove a tradeoff between privacy loss of Alice and privacy loss of Bob
for the index function problem INDEX,. We then indicate how similar tradeoffs can be
proved for disjointness DISJ,, and inner product mod 2 IP,,, and formalise the idea in terms
of VC-dimension. From these tradeoffs, the logarithmic privacy loss for INDEX,,, DISJ,
and IP,, trivially follows. We also mention some corollaries of these results.

Before proving our results let us briefly mention why substate theorem is crucial in our
proofs.
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4.2. Privacy tradeofts

Need for substate theorem We know (by Nayak’s observation described above) that if
B sends only b qubits, then A must send n/ 2000 qubits to solve the index function problem.
Our results appear similar, but unfortunately, the old proof is not applicable now. The old
argument relied on the fact that A can generate a distribution on messages, so that every
potential message of B is well-represented in this distribution: if the messages are classical
and only b bits long, the uniform distribution is such a distribution—each b bit message
appears in it with probability 27°. This argument depends crucially on the fact that the
message contains only b classical bits. In our problem, we are not assuming that messages
of B have at most b qubits, only that they reveal less than b bits of information about
B’s input. So, A cannot just guess B’s messages. This is where the substate theorem
comes in handy. Let p; be the state that A and B reach when A’s input is a uniform
superposition and B’s input is . The substate theorem allows us to show that (roughly)
A and B can exchange messages (independent of i) and arrive at a state p which contains
pi/2°®) as a ‘substate’. After this, a standard argument of Cleve, van Dam, Nielsen and
Tapp [CvDNTO98| takes over.

Lemma 4.6 Consider a safe quantum protocol P for INDEX,,. Let u denote the uniform
probability distribution on Alice’s and Bob’s inputs. Suppose P has error at most 1/4 with
respect to u. Suppose

L7 (INDEX,,, 1, B, A) < k.

Then,
LP(INDEX,, i, A, B) > n/2°%).

Proof: Let registers A, X, B,Y denote Alice’s work qubits, Alice’s input qubits, Bob’s
work qubits and Bob’s input qubits respectively, at the end of protocol P. We can assume
without loss of generality that the last round of communication in P is from Alice to Bob,
since otherwise, we can add an extra round of communication at the end wherein Alice
sends the answer qubit to Bob. This process increases L” (INDEX,, i, A, B) by at most
two (by Fact 2.7), and does not increase L”(INDEX,, u, B, A). Thus, at the end of P,
Bob measures the answer qubit (which is a qubit in the register B) in the computational
basis to determine f(z,y). In the proof, subscripts of pure and mixed states will denote
the registers which are in those states.

Let [1;) xayp be the state vector of Alice’s and Bob’s qubits and (p;)xa the density
matrix of Alice’s qubits at the end of the protocol P, when Alice is fed a uniform su-
perposition over bit strings in her input register X and Bob’s is fed the index |i) in his
input register Y. Let 1/2+ ¢; be the success probability of P in this case. Without loss of
generality, ¢; > 0. Consider a run, Run 1, of P when a uniform mixture of indices is fed to
register Y, and a uniform superposition over bit strings is fed to register X. Let 1/2 + ¢
be the success probability of P for Run 1, which is also the success probability of P with
respect to p. Then

1/4§e=(1/n)2q.
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Let I(Y : AX) denote the mutual information of register Y with registers AX at the end
of Run 1 of P. We know that

I(Y : AX) = L¥(INDEX,,, 1, B, A) < k.

Let .
p= (1/n) Y pi and ki 2 S(pillp).
=1
By Fact 2.10, . .
E2 I AX) = ) S(aill) = 5 Dk
Let o ZZln
ki 2 8k + 14,1, £ (4/¢;)? and k' 2 (1/n) Y Kl
=1
Then,

k' < 8k + 14.

Let us now consider a run, Run 2, of P with uniform superpositions fed to registers
X,Y. Let |¢)xayp be the state vector of Alice’s and Bob’s qubits at the end of Run 2 of
P. Since P is a safe protocol,

Tryp [¢)(B] = pxa,

and the success probability of P for Run 2 is 1/2 + €. Let @ be an additional qubit. By
the substate theorem (Theorem 4.1), there exists a state

A ri — 1 r; — 1
|pi) xaYBQ = ik Vi) xave|0)o + /1 — T 100 x avB|1) g,
where
g sl = ) 1, < 4/ =
and

Trypq [9:){¢:i] = pxa-
In fact, there exists a unitary transformation U; on registers Y B(), transforming the state

|¢>XAYB|O>Q to the state ‘¢i>XAYBQ-

For each i € [n], let X! denote the classical random variable got by measuring the ith
bit of register X in state |¢)xayp. We now prove the following claim.
Claim For each i € [n], there is a boolean valued POVM M, acting on Y B such that, if
Z! is the result of M, on |¢)x sy 5, then

Pr(Z] = X]] > 1/2 + €;/20®/,

Proof: M, proceeds by first applying U; to |@) xays|0)g to get |¢:) xaypg- It then mea-
sures () in the computational basis. If it sees |0)q, it measures the answer qubit in the
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4.2. Privacy tradeofts

computational basis and declares the result as Z;. If it measures |1)q, it tosses a fair
boolean coin and declares the result as Z;.

Let us now analyse the probability that X; = Z. In the case when M, measures |0)
for qubit @, which happens with probability (r; — 1)/(r;2"%), the state vector of X AY B
collapses to |¢}). In this case, by Fact 2.8,

€
5"

In the case when M; measures |1) for qubit @), which happens with probability 1 — (r; —
1)/(ri27%),

1 1 1
Pr[Z] = X]|Q = 0] > 3 + 6 — B [[19ha) (il — 1)l > 9 +

Pr[Z; = X;|Q@ =1] = 1/2.

Thus,

(T‘i -1 ) €; + €;
2r;2miks

1
> - .
=92 90(k)/e

1
Pr(Z;=X] > +

[ ]
Consider now a run, Run 3, of P when a uniform mixture over bit strings is fed to
register X and a uniform superposition over indices is fed to register Y. Let px 4y p denote
the density matrix of the registers X AY B at the end of Run 3 of P. In fact, measuring in
the computational basis the register X in the state |¢)xayp gives us pxayp. Let I(X : Y B)
denote the mutual information between register X and registers Y B in the state pxays.
For each i € [n], let X; denote the classical random variable corresponding to the ith bit
of register X in state pxayg. Then Xi,..., X, are independent random variables and
X =X;...X,. Let Z; denote the result of POVM M, on pxayp. Then,

Pr[Z; = X;] = Pr[Z! = X!] > 1/2 + ¢; )20/
By Facts 2.5 and 2.6,
I(X;: YB) > I(X; : Z;) > €] /200
By Fact 2.4 and convexity,
I(X:YB) > zn:I(X,- . YB)
z;l )

€ ne n
=z Z 90(k;)/€; =z 20(k) /€ = 20(k) "

=1

This shows that
LP(INDEX,,, 4, A, B) = I(X : YB) > n/2°®).
[ ]
Remark: This lemma is the formal version of Result 1 stated in the introduction.
The same privacy tradeoff result holds for functions f into which INDEX, can be
‘embedded’. Examples of such functions f are DISJ,, and IP,,. This idea can be formalised
in terms of VC-dimension as follows.
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Theorem 4.3 Let f: X x Y — {0,1} be a boolean valued function. Let
VCX(f) = n.

Then there is a product distribution p on X X Y such that, if P a safe quantum protocol
for f with average error at most 1/4 with respect to pu,

LP(f, 1, B, A) <k & LP(f, s, A, B) > n/2°®).
An analogous statement holds for VCy(f).

Proof: Since VCx(f) = n, there is a set S C Y, |S| = n which is shattered. Without loss
of generality, S = [n]. Let r € {0,1}". r can be thought of as the characteristic vector of
a subset R C S. There is an z € X such that

VyeS: flxz,y)=1<y€R.

We now give a reduction from INDEX,, to f as follows: In INDEX,,, Alice is given an

r € {0,1}" and Bob is given a y € [n]. Alice and Bob run the protocol P for f on inputs

x and y respectively, to solve INDEX,,. The theorem now follows from Lemma 4.6. [ ]
The following corollaries are now immediate, using Fact 2.7.

Corollary 4.1 INDEX,,, DISJ, and IP,, suffer from Q(logn) privacy loss.

Corollary 4.2 Let P be a safe quantum protocol for INDEX,, with average error at most
1/4 with respect to the uniform distribution p. Suppose

LP(f, 1, B, A) < k.
Let m be the number of qubits communicated by Alice to Bob. Then,
m = n/2°0).

Corollary 4.3 Let P be a safe quantum protocol for INDEX,, with worst case error at
most 1/4. Suppose Bob sends at most k qubits to Alice. Let m be the number of qubits
communicated by Alice to Bob. Then,

m = n 20",
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Chapter 5

The pointer chasing problem

In this chapter we prove our lower bounds for both the full and the bit versions of the
pointer chasing problem.

5.1 The pointer chasing problem P;

In this section, we prove our lower bound for the pointer chasing problem P,. Below we
define it again.

Let V4 and Vg be disjoint subsets of size n. Player A is given a function
Fy: V4 — Vg and player B is given a function Fg : Vg — V4. Let F' = F4UFpg.
There is a fixed vertex s in Vz. A and B need to communicate to determine
t = F*+D(s) with probability of correctness being at least 3/4; k and s are
known to both parties in advance.

Before proving the lower bound, we discuss the difficulty one encounters while applying
the existing techniques for this problem, and explain at an intuitive level why our new tool
namely substate theorem is useful.

Comparison with previous work Let us review the idea behind the Q(n/22°“) lower
bound for P, proved in Klauck et al. [KNTZ01a|. Assume that A and B are given uniformly
random functions, and there is a protocol that solves P, using k messages with en qubits
each, ¢ < 1. In particular, the first message of the protocol (from A) has at most en
bits. Then, for a typical s € V, the information contained in this message about F4[s']
must be O(e). That is, the first message is ‘roughly the same’ when F4[s'] takes different
values. So, we should be able to eliminate the first message and assume that F[s] = ¢/,
to obtain a solution for the problem Pj_;. This, is the (simplistic) intuition behind the
proof in [KNTZ01la]. However, much depends on the notion of ‘roughly the same’. For
[KNTZ01a], two messages are deemed to be ‘roughly the same’ if their trace distance
(see section 2.2 for definition) is small, which implies that an observation can distinguish
them by probability at most § (which goes to zero as € goes to zero). In particular, this
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5.1. The pointer chasing problem Py

implies that any event in one state will occur in the other state with probability roughly
the same (within §/2, in fact). This connection between trace distance of the messages
and information (i.e. the connection between § and €) is not powerful enough when the
information is not € < 1 but some large number (perhaps even growing with n). Consider,
for example, two random logn bit numbers which share their first ten bits. If we take
two typical (with probability 1 — 271%) instances of the first number, the two conditional
distributions on the second number have trace distance 2. Thus, the quantity d above can
be close to 2 when the information is allowed to grow above 1 (in the above example, the
information is 10). In particular, an event that occurs with probability 3/4 in one case
might not happen at all in the other. We are precisely in such a situation. If the messages
have rn bits, all we can guarantee is that A’s first message contains at most r bits of
information about F[s'], for typical s', and we wish to allow 7 to grow with n (or at least
take values larger than 1).

To get around this limitation in the existing techniques, which exploit only the connec-
tion between information and trace distance, we consider a different notion of ‘roughly the
same’ for quantum states. This notion is that of relative entropy. Using substate theorem,
this allows us to conclude that if an event occurs with probability p in one case, then it
occurs with probability p/2°/P) in the other. This is good enough for eliminating the first
message and for obtaining a solution to the problem Py ;.

Our proof technique: The underlying information theoretic tools we use are, in fact,
mainly taken from the paper Klauck, Nayak, Ta-Shma and Zuckerman [KNTZ01b]. Our
proofs use the round elimination method, stated explicitly in the classical communication
complexity setting by Miltersen, Nisan, Safra and Wigderson [MNSW98a]. This technique
was applied in the quantum setting by Klauck et al., who developed several tools, notably
the average encoding theorem and the local transition theorem. Their argument was refined
further by Sen and Venkatesh [SV98]. In this thesis, we adapt this argument but we
consider a slightly different pointer chasing problem, where the two players are allowed to
generate their own inputs and then proceed to compute the answer. To keep this problem
non-trivial we must impose some restrictions on the way the players behave. First, we
insist that the inputs they generate must be sufficiently rich. Second, the amount of
communication before the input is generated, is limited. In previous round elimination
arguments, the inputs were supplied to the two players from ‘outside’. While this worked
well for many problems, for the pointer chasing problem it made things difficult. However,
letting the players generate their inputs gives rise to new technical difficulties, because the
inputs they generate are not exactly what we want, but only close to it. So, we need to
apply a correction step, that converts a protocol whose inputs have a distribution close to
the one we desire into one where the inputs are exactly what we want. Overall, we believe,
the main contribution of this work is in showing how existing information theoretic tools
can be better exploited for round elimination in quantum communication protocols.

Below we mention an improved version of the average encoding theorem and the local
transition theorem which we will be using in our proofs.
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5.1.1 Improved average encoding and local transition theorem

In this section, we observe that the following lemma from [DHR78] can be used to improve
the average encoding and local transition arguments of [KNTZ01a]. If Lemmas 5.2 and
5.3 are used in their place, the factor k* in the denominator of some existing lower bounds
(e.g. [KNTZ01a] and [JRS02b]) can be replaced by k.

Lemma 5.1 Let p and o be two density matrices such that S(p||o) is finite. Then,
B(p,0) > 9—=S(sllo)/2_

Proof: Let M be the complete orthogonal measurement which achieves the infimum as in
the Fact 2.12. Let P and @ be the classical distributions resulting after the measurement
M is performed. From Fact 2.9 and concavity of the log function it follows that:

—(1/2)S(pllo) < =(1/2)S(PIQ) = Zpilog\/qi/pz—

< log ) \/gip;
= log B(P,Q) = log B(p, o).

Corollary 5.1 Let p and o be two density matrices such that S(p||o) is finite. Then,

1= B(p,0) < ((In2)/2)S(pllo).

Proof: If ((In2)/2)S(p|lo) > 1 then the inequality is trivial since B(, ) > 0. Therefore
when ((In2)/2)S(p|lo) <1,

B(p,o) > 9—S(pllo)/2
> exp(=((In2)/2)S(pllo))
> 1—-((In2)/2)S(p|lo) (since exp(—z)>1—z, for 0 <z <1)
S1-B(po) < ((02)/2)S(lo).

The following lemma follows immediately from the above corollary and Fact 2.10.

Lemma 5.2 (Average encoding theorem) Suppose X, Q are two disjoint quantum
systems, where X is a classical random variable which takes value x with probability p,,
and Q) is a quantum encoding x — o, of X. Let the density matriz of the average encoding

be o 2 > wP20g. Then,

S pall = Blp,p.)) < (In2/2)I(X : Q).
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The following lemma follows immediately from Fact 2.11 and Fact 2.13 and Corollary 5.1

Lemma 5.3 (Local transition theorem) Let p1, ps be two density matrices in the same
finite dimensional Hilbert space H, IC any Hilbert space of dimension at least the dimension
of H, and |¢;) any purifications of p; in HQI. Then, there is a local unitary transformation

U on K that maps |¢p9) to |dh) 2 (I @U)|po) (I is the identity operator on H) such that
@1} (1] — |¢'2><§/)'2|||t = 2v/1 = B(p1,p2)’
< 230~ Blpr, o)) < 2/ M2l

Fact 5.1 ([Lin91]) Suppose X and Q are two classical correlated random variables, where
X is uniformly distributed over {0,1} and Q is an encoding v — P, of X. Then,

1-B(P, R) <I(X:Q).
Following corollary is immediate from Fact 2.12 and monotonicity of information,

Corollary 5.2 Let x — o, be a quantum encoding, where z € {0,1}. Let X be a random
variable uniformly distributed in {0,1}. Let 0 = (01 + 02)/2. Then,

1 — B(oy,00) < I(X : 0).
We will also use the following elementary fact.

Fact 5.2 Suppose D, D' are two probability distributions on the same finite set X, whose
total variation distance is ||D — D'||; = 6. Then, there exists a stochastic matrizc P =
(Pza)zwrex, Such that D = PD' and

Y P(a',a')D(x') =1- g

r’'eX

Let ‘H be a Hilbert space with basis (|x) : © € X). Let C be a unitary transformation on
H ® H that maps basis vectors of the form |z')|0) (where O is a special element of X)
according to the rule
[#)[0) = |2') ® Y /pawr| ),
T€X

and maps other standard basis vectors suitably. Suppose R' and R are registers that can
hold states in H, where R' contains a mizture of basis states with distribution D' and R is
in the state |0). Apply C to (R', R), and then measure the registers in the computational
basis. Let the resulting random variables (taking values in X ) be Z' and Z. Then, Z' has
distribution D', Z has distribution D and

Pr[Z # 7' < g

Note, that C acts safely on R'.
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We prove our lower bound using an inductive argument. It will be convenient to state
our induction hypothesis by means of predicates Q1 and QZ, defined below. Roughly, the
induction proceeds as follows. We show that if there is an efficient protocol for P, then
Q4 is true. We then show independently that Q' implies Q2 | and QF implies Q' |, and
that Qf' and QF are false. Thus, there is no efficient protocol for P.

We first define

Qi(ct,. .., Cr, Nay Ny, €),

for k > 1. Then, separately, we define Q!(¢). For k > 0, QZ is the same as @, with the
roles of Alice and Bob reversed. Consequently, all our statements involving Qi and QP
have two forms, where one is obtained from the other by reversing the roles of Alice and
Bob. We will typically state just one of them, and let the reader infer the other.

From now on, the term measurement means a von Neumann measurement in the com-
putational basis.

5.1.2 The predicate Q;;l, kE>1

The predicate Q1 (cy, - . . , Ck, Na, M, €) holds if there is a quantum protocol P of the following
form.

Input generation: In P, Alice and Bob ‘generate’ most of their inputs themselves. Alice
has n input registers (Fu[u] : u € V4) and Bob has n input registers (Fg[v] : v € Vp).
There is a fixed vertex s € Vg, that is known to both players. Each of Alice’s registers
has logn qubits so that it can hold a description of a vertex in Vp; similarly, each of Bob’s
registers can hold a description of a vertex in V4. In addition, Alice and Bob have registers
for their ‘work’ qubits W, and Wp.

When P starts, Alice’s registers are all initialised to zero. On Bob’s side, the register
Fg[s] starts off with the uniform superposition

% > la);

a€Vy

his other registers are all zero. . .

Alice starts by generating a pure state in M;M;, where M;, M, are each c;n-qubit
registers. Then she applies a unitary transformation U4 on M, plus some ancilla qubits to
generate a pure state in registers Fy, W4 and M;. After the application of Uy, F4 holds
the ‘generated input’ to Alice for the pointer chasing problem, and W4 holds Alice’s ‘work
qubits’. Alice then sends M; to Bob.

Now, Bob generates his input by applying a unitary transformation Ug on the registers
M, Fg and Wpg. Upg operates “safely” on Fpg[s|. After the application of Ug, Fi holds
the ‘generated input’ to Bob for the pointer chasing problem, and Wjg holds Bob’s ‘work
qubits’.

We will use F4, Fig to refer to the actual states of the respective registers; fa, fg will
denote the states that would result, were we to measure Fl4, Fig. Thus, typically Fjy, Fg
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will be parts of a pure state (the global state of Alice’s and Bob’s qubits), whereas f4, fp
will be mixtures of computational basis states.

For our predicate Qf(cl, <+ vy Cky Mg, My, €) to hold for a £ > 0, this input generation
process must satisfy some conditions.

Requirement 1(a): There is a subset X4 C Vy of size at most n, such that
the variables (fa(u) : u € V) are independent, and for u € Vi — X4, fa(u) is
uniformly distributed.

Requirement 1(b): There is a subset Xg C Vg — {s} of size at most n; such
that the random variables (fg(v) : v € V) are independent, and fg(v) for v €
Vi — Xp is uniformly distributed. Note that fgz[s] is automatically uniformly
distributed, because initially Fg[s] contains the uniform superposition, and Up
acts safely on Fjp|s].

Communication: After Uy, Up have been applied, Alice and Bob follow a quantum
protocol exchanging further messages Mo, ..., My of lengths can, ..., cxn. Bob sends the
message Ms. The rest of the protocol P (after the application of Uy and Ug) is required
to act safely on registers F4, Fg. At the end of P, the player who receives M} places logn
qubits in a special register Ans. P then terminates.

The success probability: Once P has terminated, all registers are measured. Let ans
denote the value observed in Ans, and let f4 and fg be the values observed in Fy and F;
we treat f4 and fp as functions from V4 to Vg and Vp to V4 respectively. Let

F2faUfs.

Requirement 4: Pr[ans = f*+1)(s5)] > .

5.1.3 The predicate Q()‘l

The predicate Q4 (¢) holds if there is a quantum protocol P of the following form. At the
start of P, Alice’s registers are all initialised to zero. On Bob’s side, the register Fp|s]
starts off with the uniform superposition

% > la);

a€Vy

his other registers are all zero. . .

Alice starts by generating a pure state in M;M;, where M;, M, are each c;n-qubit
registers. Then she applies a unitary transformation U4 on M; plus some ancilla qubits to
generate a pure state in registers F)u, W4 and M;. Alice then sends M; to Bob.

Now, Bob generates his input by applying a unitary transformation Ug on the registers
M, Fg and Wg. Ug operates “safely” on Fjp[s].
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Alice now places logn qubits in a special register Ans and P terminates. All the
registers of Alice and Bob are measured. We require that

ans = fp|s]

with probability at least e.
Following two lemmas are immediate from definitions.

Lemma 5.4 If there is a safe quantum protocol for P with vy = s € Vg, messages of
lengths cin, . .., cxn, and success probability at least 3/4 in the worst case, then
Qi (e, ..., cx,0,0,3/4) is true.

Lemma 5.5 If Q{(¢) is true, then
e<n b

The following lemma is the key to our inductive argument.

Lemma 5.6 (Round elimination) (a) For k > 2, suppose that Qi (cy,...,Ck,na, N5, €)
holds (with na < mn). Then, QF (¢ + ca,¢3y. .., Cxyna,np + 1,€) holds with

—128( ney +2)

n—a

r29 ()

€
(b) If Q4 (c1,ma,np,€) holds (with na < n), then Qo(€') holds, where € is the same as in

(a).

The next subsection is devoted to the proof of this lemma. Now, assuming this lemma
and Lemma 5.5, we get a lower bound on Q..

Theorem 5.1 Let us suppose that k is constant and that Qi (ci, ..., cx,0,0,3/4) holds.
Then
e +co+ -+, = Qlog® n).

Now, by using Lemma 5.4, we can derive our lower bound for P;.

Corollary 5.3 In any protocol for Py, k constant, Alice and Bob must exchange a total of
Q(nlog®™ n) qubits.

5.1.4 Round elimination: proof of Lemma 5.6

We consider Part (a) first. Part (b) follows by using similar arguments, and we do not de-
scribe them explicitly. Suppose Q% (c1, ¢s, - - -, Ck, N4, N, €) is true and let protocol P satisfy
the requirements. We will show that there is a protocol Q that satisfies the requirements
for QP | with parameters stated in Lemma 5.6(a).

In what follows, subscripts of pure and mixed states will denote the registers which are
in those states. For u € V4, we use the subscript u instead of F4[u]. Similarly, for v € Vj,
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5.1. The pointer chasing problem Py

we use the subscript v instead of Fg[v]. For example, we say that the register Fp[s] is
initially in the state
)= —= Z )

uEVA
For u € V4, Fa, is a shorthand for registers (Falw] : w € V4 — {u}). For v € Vg, Fp,
denotes likewise.

Suppose a € V4. Let T denote the registers M;, Fu, and W,. Let |¢a_)b) denote
the (pure) state of 7" in protocol P just before Alice sends M; to Bob, if fa[a] = b. (If
Pr[fala] = b] =0, then [9p2,,) is defined to be the zero vector.) Let R denote the registers
Fp s and Wpg. Let ¢, Siifae X 4 and £, £ 5 otherwise. The global state vector of Alice
and Bob in P just before Alice sends M; to Bob is

Wm : Z Z ‘b ‘¢a—)b ) |O)

aEV bEV

At this point in P, the first message M, is sent to Bob. Let the rest of the protocol starting
from this point be P’.
Let €, be the probability of success when P’ is run starting from the state

[b)al 2 i) 1a)s|0) p-

Since P’ is safe, we have
ass = Prfans = f0(s) | fols] = a and fala] = b].

Also, we have

n
€ = Eleqs] < E  [eass] +—. (5.1)
a,b aEVA—XA,bGVB n

In the first expectation, (a,b) are chosen with the same distribution as (fg[s], falfz[s]])
of the given protocol P; in the second, they are chosen uniformly and independently from
the sets specified.

Let 01,45 be the density matrix of register M; in Wa '), and oy be the density matrix
of register M; in |tin). Note that oy is independent of the contents of register Fj[s|. Let
(M, Ml) contain the canonical purification of o1, where M1 is a cyn-qubit register. Then
by the substate theorem (Theorem 4.1), there exists a unitary transformation U,_,; that
when applied to Ml together with ancilla qubits, takes the pure state (M, J\A/fl) to a pure
state \Oa_ﬂ) on registers Fy, W4, M1, @, where () is a single ancilla qubit, such that

|9~:l4—)b>FAWAM1Q =V (Sa—)b‘ﬁ&f—)b>FAWAMl |0>Q +
\% 1- 6a—>b ‘(ﬁgx—ﬂ))FAWAMI‘]‘)Q'

Above, |1ﬂf_)b), ‘(Ef—)ﬁ are pure states on registers Fy, W, and My,
1 — 63_—7()

16
9(16/€2_,,)(8S(01,a—/l01)+14)’ (5-2)

>

5a—>b
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and

[19)061 @ e wis] = Bl (Dl < =52

In particular, if P’ is started from |2, p, waan|a)s|0) g (instead of |bYg |12, )r|a)s|0)R),
the probability of success is at least

€a—b — (ea—)b/4) = (3€a—>b/4)-

The protocol P,_,,

Let us now fix a € V, and b € Vi and consider the case when fg[s] = a and fala] = b. We
now describe a protocol P,_,,. This is just an intermediate protocol. Later we will describe
how we obtain our final protocol Q (satisfying the requirements of QF ;) from P,_. It
will be helpful, meanwhile, to keep in mind that in Q, the roles of Alice and Bob will be
reversed, F[s] will be fixed at |a) (thus, we will add s to Xg), a will be our new s, and
the state of F4[a] will be the uniform superposition

vEVR

Step 1: Alice generates the canonical purification of o; in registers (M7, Ml) Alice applies
U,—p to Ml plus some ancilla qubits initialised to zero. She sends M; to Bob.

Step 2: Bob sets Fig[s] to |a).

Step 3: Alice and Bob now proceed according to the protocol P’. P’ does not ‘touch’ the
ancilla qubit ) described above.

lilemark on the inputs generated: Let f Aja—sb be the random variable with distribution
D,_, resulting on measuring F in the state |¢/',,). Let fa, . be the random variable

with distribution D,_,p, resulting on measuring F4 in the state |b)[¢)7,,). Then,

||Da—)b - Da—)b”l < Ea—)b/2-

Let €,.,, denote the probability of success of P,_,. Since the ancilla qubit () is zero
with probability d, .5, we get that

ga—)b > (35a—>b6a—)b)/4-

In P, s, fp satisfies Requirements 1 and 2 with respect to Xp U {s} (note that we want
to eventually switch the roles of Alice and Bob). However, we cannot say that f, satisfies
Requirements 1 and 3. To get over this hurdle, we have to do a “correction process” on
Alice’s input registers as described below, leading us to protocol P, _.,.
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The protocol P._,,

We now describe the protocol P, ;. In P,_,;,, in addition to her registers in Py, Alice
has a fresh set of registers Fy of nlogn qubits, initialised to zero. After P! _,, terminates,
F is treated as Alice’s input register while determining whether P! _, succeeded or not.
Step 1(a): Alice generates the canonical purification of o in registers (M, M;). Alice
applies U,_,; to ]\Z plus some ancilla qubits initialised to zero.

Step 1(b) (Correcting Alice’s input registers): Alice now does a “correction process”
on her input registers in order to satisfy Requirements 1 and 3. Let C,,; be the unitary
transformation corresponding to Da—)b and Da_,b according to Fact 5.2. If the ancilla qubit
Q is zero, Alice applies C,_,p to registers Fly, Fy. If @ is one, Alice sets Fy to

> VDass®)y).

ye[n]Va

The input generation for Alice is now complete.

Step 1(c): Alice sends M; to Bob.

Step 2: Bob sets Fi[s] to |a).

Step 3: From this point on, Alice and Bob just follow P’. The registers F, and the ancilla
qubit @ are not ‘touched’ by P’.

While executing P’, Alice’s old input registers (in protocol P) F)4 are used. Alice’s
new input registers F4 are not touched by any unitary transformation in P’. At the end
of P._,, however, we will check the correctness of the answer with respect to I:’A and Fp.
Let fA a—b denote the random variable got by measuring F, at the end of P! _,- Note that
if we measure (Fy, F ) at the end of P! _,,. the resulting random variables ( fA,a—)b, fA,a—m)
have distribution precisely D, and D, ;. Furthermore (see Fact 5.2), if @) is zero then

Pr(faass # faas] < (1/2) - (€asb/2) = €ams/4.

Let €,_,, be the success probability of P._,,. Then one can see that

6;_”, > (1 - 6a—>b/4) (35a—>b€a—>b/4)

g (96a—b€4—b/16). (5.3)

The protocol P

InP._,,, fA[a] = b and fg[s] = a. We now describe a protocol P! where Fp[s] is fixed to
la), but F4[a] contains the uniform superposition

=3

TIEVB

In P!, Alice starts the communication and k£ — 1 rounds take place. FA, Fg are Alice’s and
Bob’s input registers respectively in P.. Alice’s old input registers F4 continue to exist,
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5.1. The pointer chasing problem Py

but they count as her work qubits now. In P., in addition to her registers in P! Alice
has a fresh register Z of logn qubits. Initially, all qubits are initialised to zero.

Step 1: Bob generates the canonical purification of oy in registers (M, M;). He sets
Fg[s] to |a), and using the transformation Up, generates his inputs Fp and work qubits
Wpg. Then he generates the first message M; of protocol P’ (this corresponds to message
M, of P), and sends M) along with M, to Alice.

Step 2(a): Alice places the uniform superposition state

=)

UEVB

a—b’

in register FA[a]. On receiving Ml, Alice applies a unitary transformation on M, plus
some ancilla qubits initialised to zero. This unitary transformation is nothing but U,_,; if
fala] = b. Note that it is safe on Fs[a].

Step 2(b): Alice does an ‘input correction process’ as follows. Let Y denote the registers
Ey o and Z. If the ancilla qubit @ is zero, Alice applies C,_ to registers Fa, U if f A[a] =b.

If @ is one, she sets Fy 4 to
Y. VDaw)ly).

y€[n]Va—tad

Note that this ‘input correction process’ is safe on Fy [a].
Step 3: Alice resumes the protocol P’. Note that Bob has already executed the first step
of P’ and sent M!. Alice responds to M/ as before. P’ does not ‘touch’ Fy, Z, Q.

Let €, be the success probability of ”P’ Then, one can see that €, = Epcvs, [e
b is chosen uniformly from Vg in the expectation.

! ), where

The final protocol Q

We first describe a protocol P, with £ — 1 rounds of communication and Alice starting,
which satisfies Requirements 1, 2 and 3 with respect to X4 and XgU{s}, the roles of Alice
and Bob being reversed, with a as the new ‘starting vertex’. The only difference between
P, and P! is in Step 1. Let M, denote the first message of P!, that is,

M1 - (Ml, M{)
]\//71 is (¢;+co)n-qubits long. Let (J\//Tl, ]\71) contain a canonical purification of ]\//71, where J\//Tl
is (¢;+co)n-qubits long. In Step 1 of P,, Bob applies an appropriate unitary transformation

on M 1 to generate the same state as in at the end of Step 1 of P!. After this, P, proceeds
in the same fashion as P.,. The success probability é, of P, is the same as the success
probability €, of P,.

It can be shown that in P,
ncy

E  [I(fald] : My)] <

a€Vy—X4y n—"ng
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From this and (5.1), (5.2), (5.3) and joint convexity, we get that

—128(:3%14—2)
O
a€VA—X 4 -

In the expectations above, a is chosen uniformly from V, — X 4.

Thus, there exists an a € V4 — X4 such that ¢, > €. Our final protocol Q is nothing
but P, for this a. It can be verified that Q satisfies the requirements for QP  (c; +
C2,C3, .-, ChyNa,np + 1,€). This completes the proof of Lemma 5.6.

5.2 The pointer chasing problem P["

In this section we prove our result concerning the bit version of the pointer chasing problem.
We prove our result using a similar inductive argument as in the proof of the full version
of the problem. First let us recall the definition of the problem

The input: Alice’s input is a function
Fy:V4y— Vg
Bob’s input is a function
FB : VB — VA.

V4 and Vg are disjoint sets of size n each. We assume that n = 2" for some r > 1.

The golden path: There is a fixed vertex s € Vg. Let
F2 F,UFg:

let
ans 2 Isb(F*+D(s)).

Here Isb(z) is the least significant bit of x; we assume that vertices in V4 and Vg
have binary encodings of length logn.

The communication: Alice and Bob exchange messages M;, ..., My, having lengths
cin, ..., cgn, via a safe quantum protocol in order to determine ans. Alice starts
the communication, that is, she sends M;. The player receiving M) places a guess
for ans in the register Ans. We require that the bit obtained by measuring Ans in
the computational basis' should be the correct answer (i.e. equal to Isb(F®*+1(s))
with probability at least 2, for all Fy, Fip.

!From now on, all measurements are to be performed using the computational basis.
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5.2.1 The predicate Qf

We will show our lower bound for P using an inductive argument. It will be convenient
to state our induction hypothesis by means of a predicates Qi and QF, defined below,
which are again very similar to the ones defined for P;. In the inductive argument we
show that if there is an efficient protocol for PP then Q' is true. We then show that
Q;' implies QF | and QP implies Q;' |, and that Qi and QF are false. Thus, there is no
efficient protocol for PP

We now define Q{(cy, .. ., Ck, N, Ny, €) for k > 1. Then, separately, we define Q. For
k > 0, QF is the same as Q3, with the roles of Alice and Bob reversed. Consequently,
all our statements involving Qi and QP have two forms, where one is obtained from the
other by reversing the roles of Alice and Bob. As earlier, we will typically state just one
of them, and let the reader infer the other.

The predicate Q7 (ci,- - -, Ck, Ma, My, €) holds if there is a quantum protocol of the fol-
lowing form.

Input generation: The input generation process is the same as in Py; we repeat here
for completeness. Alice and Bob ‘generate’ most of their inputs themselves. Alice has n
input registers (Fa[u] : u € V4) and Bob has n input registers (Fg[v] : v € Vg). There is
a fixed vertex s € Vp, that is known to both players. Each of Alice’s registers has logn
qubits so that it can hold a description of a vertex in Vpg; similarly, each of Bob’s registers
can hold a description of a vertex in V. In addition, Alice and Bob have registers for their
‘work’ qubits W, and Wpg.

When the protocol starts, Alice’s registers are all initialised to 0. On Bob’s side, the
register Fg[s| starts off with the uniform superposition

) N > la);

a€Vy

1>
ot

the other registers are all 0. . .

Alice starts by generating a pure state in M;M;, where M;, M; are each c¢;n qubit
registers. Then she applies a unitary transformation Uy on her registers other than M; to
generate a state in registers F4 and Wy. Alice then sends M; to Bob.

Now, Bob generates his input using the message M; as follows. He applies a unitary
transformation Ug on the registers that he owns at this point:

e M, the message registers just received from Alice;

e Fp[s] the register holding the start pointer, which is in the state |u) in tensor with
the other register;

o (Fglb] : b € Vg — {s}) and the registers Wg holding the work qubits of B, which
contain 0.
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5.2. The pointer chasing problem PP

Up must operate “safely” on Fp[s]. F holds the ‘generated input’ to Bob for the pointer
chasing problem, and Wy Bob’s ‘work qubits’.

We will use Fly, Fg also to refer to the actual states of the respective registers; fa, fr
will denote the states that would result, were we to measure Fl4, Fg. Thus, typically F4, Fg
will be parts of a pure state (the global state of Alice’s and Bob’s qubits) whereas f4, fp
will be mixtures of computational basis states.

For our predicate Qi(cy, ..., Ck,Tq, Ny, €) to hold, this input generation process must
satisfy some conditions.

Requirement 1(a): There is a subset X4 C Vy4 of size at most n, such that
the variables (fa(u) : u € V) are independent, and for u € Vi — X4, fa(u) is
uniformly distributed.

Requirement 1(b): There is a subset X C Vi — {s} of size at most n;, such
that the random variables (fg(v) : v € V) are independent, and fg(v) for v €
Ve — Xp is uniformly distributed. Note that fg[s] is automatically uniformly
distributed, because initially Fg[s] contains the uniform superposition, and Up
acts safely on Fpls].

Communication: After Uy, Up have been applied, Alice and Bob follow a quantum
protocol exchanging further messages Mo, ..., My of lengths can, ..., cxn. Bob sends the
message M,. The rest of the protocol is required to act safely on registers F4, Fg. At the
end of the protocol, the player who receives M places a qubit in a special register Ans.
The protocol then terminates.

The probability of error: Once the protocol has terminated, all registers are measured.
Let ans denote the value observed in Ans, and let f4 and fg be the values observed in F4
and F; we treat f4 and fp as functions (from V4 to Vz and Vi to V4 respectively). Let

A
J=1rfaU [
Note that ans and f are random variables.

Requirement 2: Pr[ans = Isb(f**1(s))] > 1 —e.
Base case: In @} (e), there is no input generation phase or communication. Bob and
Alice start as before, with |u) in Bob’s register Fpg[s]. Alice produces a guess ans for

Isb(fp(s)), which must be correct with probability at least 1 — e. Clearly, we have the
following base case for our induction.

Proposition 5.1 If Qf'() is true then € > 3.

Our goal is to show that if Q7 holds, then ¢; +co+. ..+ ¢, = Q(k™*). By the following
lemma, this implies a lower bound 5 for P,;‘l.
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Lemma 5.7 If there is a safe quantum protocol for P with vy = s € Vg, messages of
lengths cin, ..., cgn, and worst case error at most i, then Q?(cl, coyCyna=0,npg =0, i)
18 true.

Proof: We are given a safe quantum protocol P for PP where Alice sends the first
message M;. Consider the operation of P when uniform superpositions are fed for F4 and
F. Consider the state of Alice just before M; is sent to B. This state has two parts.

1. The qubits that Alice keeps with herself, F4W 4, where F4 is nlogn qubits long.

2. The c¢yn qubits that constitute the message M;.

Let MlMl contain a canonical purification of M7, where Ml is cin qubits long. Clearly,
it is within Alice’s powers to first generate the canonical purification in M; M, and then
apply a unitary transformation U, on M; plus some initially zero ancilla qubits in order
to generate the correct state of F4uW M. Alice then sends M;

In our protocol, on Bob’s side, Fg[s] already has a uniform superposition in tensor
with the rest of Alice’s and Bob’s qubits. Then, Bob generates the rest of his “input”,
Fglv],v # s as a uniform superposition in tensor with everything else. The registers Wg
are set to |0). At this point, the state of F4W4M;FgWpg is exactly the same as it would be
in P after Bob receives the first message. From now on, Alice and Bob operate exactly as
in P, which is “safe” on Fy4, Fz. The above parameters for Qs can now be verified easily.
|

The following lemma is the key to our inductive argument.

Lemma 5.8 (Round elimination) (a) For k > 2, if Qi(cy,...,cr,na,np,€) holds
(with na < n) then QF_(c1 + ca,¢3,. .., ckyna,np + 1,€) holds with

e':< n )[e+3((1n2)cl)%].

n—"ng

(b) If Q1 (c1,ma,np,€) holds (with ny < n), then Q4 (¢') holds, where € is exactly as in
part (a).

The next subsection is devoted to the proof of this lemma. Now, let us assume this lemma
and prove our main lower bound.

Theorem 5.2 Suppose k < n+ and Qe .-, cx,0,0, i) holds. Then
Lot +o =k ).

Proof: (Sketch) By k£ — 1 applications of Part (a) of Lemma 5.8 (a) and one application
of Part (b), we conclude that either Q' (€') or QE(¢') holds with

N

n—=k 4

Our theorem follows immediately from this and Proposition 5.1. [ ]
Now, by using Lemma 5.7, we can derive from this our lower bound for PY*.

6/§< i )k[1+3k((21n2)(c1+c2+---+ck))
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Corollary 5.4 (Main result) In any protocol for P, Alice and Bob must exchange a
total of Q%) qubits.

5.2.2 Round elimination: proof of Lemma 5.8

We consider Part (a) first. Part (b) follows using similar argument, and we do not describe
them explicitly. Suppose Qi (ci,ca, ..., Ck, na,np,€) is true. That is, there is a protocol P
satisfying Requirements 1 and 2 in the definition of Q;.. We need to show that there is a
protocol that satisfies the requirements for @2 | with parameters stated in Lemma 5.8 (a).

In what follows, subscripts of pure and mixed states will denote the registers which are
in those states. For u € V4, we use the subscript u instead of F4[u]. Similarly, for v € Vp,
we use the subscript v instead of F[v]. For example, we say that the register Fp[s] is
initially in the state

Z w)s.

uEVA

Let |¢") be the (pure) state of Alice’s registers just before she sends M; to Bob. At
this point the state of all the registers taken together is the pure state

|in) = Z |a) (5.4)

aEVA

where R is the set of registers corresponding to the rest of B’s input (Fg[v] : v € Vg —{s}),
and work qubits Wp. For a € V,, we may expand [¢4) as

|¢aﬂb (55)

bEV

where ¢, = 1 if a € X, and ¢, = n otherwise. Here, [¢)2,,) is a pure state of Alice’s
registers (Fa(v) 1 v € Vy — {a}) and Wy. Note that Wa_,b) is precisely the state of these
registers when F4[a] is measured and found to be in state |b). (If Pr[fs[a] = b] = 0, then

[,y = 0.) From (5.4) and (5.5), we have

|1/}1n \/— Z \/— Z |b W}a—)b >5‘0>R (56)

a€Vy beVp

At this point the first message M; is sent to Bob. Let the rest of the protocol starting
from this point be P’; that is, in P’ Bob starts by generating his input from M; and Fp[s],
sends the message M, to A, to which Alice responds with Mj3, and so on. At the end of
P’ we have a register containing the answer which we measure to find ans, and the input
registers of Alice and Bob, which when measured yield f4 and fg.

Let €, be the probability of error when P’ is run starting from the state

[B)alt20)|a)s10) .
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Thus, we have

€aso = Prans # Isb(f**1(s)) | f5[s] = a and f4[a] = ],

in the original protocol P (or in P’, when it is run starting from |t;,)). In particular, we

have
n—n,

€= El€éssp] > E [€asb]- (5.7)
a,b n a€y,Va—Xa,bE, VB

In the first expectation, (a, b) are chosen with the same distribution as (fg[s|, fa[fs[s]]) of
the given protocol P; in the second, they are chosen uniformly from the sets specified.

Overview: We want to eliminate the first message sent by Alice, at the cost of increasing
the probability of error slightly, but preserving the total length of the communication. This
is based on the following idea (taken from [KNTZO01b]). Let M; ., be the state of the
registers holding the first message when the entire state of Alice’s registers is 12, that
is, M1 .—s is the state of the message registers correspondlng to message M;, when we
measure Fy[a] and observe |b) there. Note, that 12 ,, is a purification of M , ;. Also, the
state of the first message in P, M; is the average, taken over the choices of b, of M ;.

Suppose there is an a € V4 — X4 such that for all b, the message M, ,_,; is independent
of b, that is, it is always the fixed sate M*. Then, we can eliminate the first message.
Informally stated, this amounts to restricting ourselves to the sub case of the protocol
when Bob’s first pointer Fp[s] is fixed at |a), and Bob generates M* himself, and sends
some small advice along with his message Mj, to enable Alice to reproduce the right
entanglement between her registers and Bob’s. Unfortunately, we will not be able to show
that there is an @ and an M* such that M, , ., = M*, for all b. Instead, we will show that
there is an M* that will be close to M 4, for typical b. In fact, the message M; (which
is the average of M, ,_,;, as b varies) will be our M*.

Let (M, J\Z) be the canonical purification of the first message of the protocol P. Our
first goal is to show that if M, is close to M; .5, then Alice can create a state close to

[pA,,) from (M, Ml) by applying a unitary transformation on Ml. More precisely, suppose
A
1 — B(My,44, M1) = da—ss-

Then, by the Local Transition Theorem(Theorem 5.3), there is a unitary transformation
U,—p that when apphed to M1 (together with ancilla qubits initialised to zero) takes the
pure state (My, My) to a state ), such that

H W)a—)b a—)b |wa—>b a—>b| H <2 25a—)b (58)
In particular, if the protocol P’ is run starting from the state

[Va) [1)s10)
(instead of [1)2,,)|1)s|0)z), the probability of error is at most

€ash T 2 V 26a—)b-
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5.2.3 The protocol P,_;

Now, we fix a € V4 and b € Vi and consider the case when fg(s) = a and fa(a) = b. We
now describe a protocol that functions for this situation (see Figure 5.1) . This is just an
intermediate protocol. Later we will describe how we obtain our final protocol (satisfying
the requirements of QF ,) from this. It will be helpful, meanwhile, to keep in mind that
in our final protocol, the roles of A and B will be reversed, Fg[s] will be fixed at |a) (we
will add s to Xg), a will be our new s, and the state of Fa[a] will not be fixed at |b) but
will be the uniform superposition |u).

Step 1: Alice generates the canonical purification (M, Ml) Alice applies U,_,p
to M, (plus some ancilla) to produce the state [1)2,,) in the registers (My, Fa, Wa).

Step 2: Alice and Bob proceed according to the protocol P’ starting from the
state

|1Za—>b> = |1/~)¢;,4—>b> |a>8 |0>R’

where, as before, R is the set of registers of Bob corresponding to (Fgv] : v €
Vs — {s}) and work qubits Wp .

Figure 5.1: The intermediate protocol P,

Remark on the inputs generated: Suppose we measure registers Fy just after U, .
has been applied in the above protocol. Let f1'4’a _,p be the resulting random variable with

distribution D! _,,. On the other hand, if we were to measure the same registers in the
state |w;1 "), then the resulting random variable is f4 5 whose distribution is D; that is,

D is the distribution of f4 conditioned on the event f4[a] = b. Then, it follows from (5.8)
and Theorem 3.4 that
|Daso — Di_ulli < 24/280 5. (5.10)

We will want Alice’s input registers to satisfy Requirement 1(b). Unfortunately, the distri-
bution D’ may not satisfy this requirement automatically, but (5.10) will help us ‘correct’
this.

Next consider Bob’s input registers. In P, Bob’s register Fp[s| contained the uniform
superposition p and he generated the input in the rest of the registers himself form M;
using the unitary transformation Ug. The input he generated satisfied Requirement 1(b).
In P, 5, Bob applies the same transformation Ug on M;, but Fj[s] is now |a) and not |u).
Suppose Fp is measured at this stage resulting in the random variable fp, ., : VB — Va.
Note that fg,» has the same distribution as fp conditioned on the event fg(s) = a.
Thus,

Bl. fp.a-b is constant on X4 U {s} (in fact, fg[s] = a), and

B2. the set of random variables (fp,-b(v] : v € Vg — X — {s}) are independent and
uniformly distributed over V4.
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Probability of error in P,;: By (5.8) and Theorem 3.4, the probability of error of
P.—sp, which we denote by €,_,;, is at most

€a—b T 2 V 25(1—)()-

Correcting Alice’s input registers: The random variable f} , ., that results from
measuring Fy has a distribution D _,, which is close to the desired distribution D, of
faa—ss (by (5.10) above). It will be easier to satisfy Requirement 1(b), however, if we could
arrange that the distribution of Alice’s inputs is exactly D, ;. To do this, we use Fact 5.2;
let Cyp be the unitary transformation corresponding to D! ., and D,_,. We revise the
protocol P,_,; by including this operation (see Figure 5.2).

Error probability of the revised protocol: At that end of the protocol, we measure
all registers and obtain the answer ans, and the inputs f4 .., and fp .. We also have
fa,a—p corresponding to Alice’s old input registers Fy. Let

fa—>b fA a—b J fBasb

and
f(i—)b an—)bUfBa—ﬂ)

This revised protocol makes an error whenever
ans # Isb f. k+1)( ).

We then have

Ey = Pr[ans # lsbfa’ch1 (s)]
< Pr[fﬁb # fi_] + Prfans # 1sb £, (s)]
<

5 -2 V 25a—>b + €a—b T 2 V 250,—)1)
€ash + 3/ 200 (5.11)

5.2.4 The final protocol: P,

A small modification now gives us our final protocol, which will satisfy the requirements
for Q¥~'. We make two changes to the revised version of P, ;. First, instead of Alice
sending M, and retaining M;, now Bob creates the canonical purification (M, Ml) and
sends Alice Ml, while retaining M;. Second, in P,_,;, the register FA[ | is fixed to the value
). Now, however, Alice starts with |z) in F[a]. With these modifications, Alice’s role
in the input generation phase of the new protocol is similar to Bob’s role in the protocol
we started with. The resulting protocol P, (see Figure 5.3) depends on the choice of a.
Using an averaging argument we will conclude that there is a choice for a € V4 so that P,
satisfies the requirements for @QF ; as needed in Lemma 5.8(a).

I
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5.2. The pointer chasing problem PP

The probability of error of P,: For a € V4 — X4, let €, be the probability of error of
P,. Then, by (5.11), we have

R o (5.12)
beL VB

S E [ea—>b+3\/26a—>b]- (513)
€uVB

We need to show that there exists an a such that €, is small. For this we consider the
average of ¢, as a is chosen uniformly from V, — X y:

E [éa] S E;)[Qz—)b +3 V 25a—>b]7 (514)

a€y,Va—Xa

where on the right a is chosen uniformly from V4 — X4 and b is chosen independently and
uniformly from Vz. (From now on, when we average over a and b, we will assume that
they are chosen in this manner.) By (5.7), we have

a,b n—"ng

E ea] < ( n ) 8 (5.15)

It remains to bound

(F,b[ V 6a—)b]-

Consider the state obtained by measuring Alice’s input registers F4 just before M is sent
to Bob in the original protocol. As stated earlier, if the value b is observed for F4[a|, then
the state of the message registers will be M; ,; also, M; is the average of these states,
that is,

M, = % Z Ml,a—)b-

beVp

Claim 5.1 Fora € V4 — Xy,

Eb)[éa_)b] < (In2/2)I(fala] : My).

Proof: Consider the encoding of elements of Vp given by b — M, by restricting
attention the registers F4[a] and M;. Our claim now follows from the Average Encoding
Theorem (Theorem 5.2) and the definition of 4. (]

Claim 5.2

D [I(fA[a1:M1)]s( n )

a€uVa—Xa n—"mng
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Proof: Using Fact 2.4 and (5.10), we have

an > I(fa: M)
> ) I(fala]: My) > Y I(fala] s My).

[ ]
By combining these two claims, and noting that the square-root function is concave,
we obtain

g}[éﬁb] < E[(In2/2)I(fala] : M)]

< (n2/2)ElI(faa] : My)] < ( n )(ln?/?)cl.

n—ng

This implies, again because the square root is concave, that

N

E[\/ﬂ] < K n )(1n2/2)01] . (5.16)

n— g

Now we return to (5.14), and use (5.15) and (5.16) to obtain

E[e] < ( ) [e+3((2)en)? ]

n—ng

Thus, there exists an a € V4 — X4 such that

éa < (nfn) [e+3((m2)en)?] .

Now, it can be verified, the protocol P, satisfies the requirements for
QB (c1+c9,¢3,...,¢k,na,np+1,6,). This shows Part (a) of Lemma 5.8. Part (b) can be
established similarly.
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5.2. The pointer chasing problem PP

Revised Step 1:
e Alice generates the canonical purification (M, ]\Z) Alice applies U,_,3 to M,

(plus some ancilla) to produce the state [2,,) in the registers (M, Fa, Wa).
Alice sends M; to Bob.

e Next, to produce input registers satisfying Requirement 1(a), Alice uses a
fresh set of registers F4 and sets Fu[a] = |b). Next, Alice applies a unitary
transformation to registers (Fa|a], Fa, Fa) defined by

|b>ﬁ'[a]‘1/}>FA,FA - ‘b>ﬁ[a}ca—)b|w>FA,ﬁA'

Before the application of this the registers F are initialised to |0) (as in
the statement of Fact 5.2). Alice then copies (F4lu] : u € Vi — {a}) into
(Falu] : uw € V4 — {a}). The input generation for Alice is now complete.

Note that at this point if we measure (Fa, Fy ), the resulting random vari-
ables (fl o sp» fa,0b) have distribution precisely Dy _,, and Dq_p. Fur-
thermore, (see Fact 5.2),

Pr[fxlél,a—)b 7é fA,a—)b] S -2 5a—>b- (59)

DN | =

Step 2: From this point on, Alice and Bob just follow P’ described above. On
receiving M;, Bob generates his input and work qubits by appropriately applying
the unitary transformation Ug. He then generates message M, and sends it to Alice.

Let |pqa—p) denote the state of the entire system just after My is sent to
Alice.

After this, Alice and Bob continue as before. In particular, the Alice continues to
use her old input register F4 (safely) as before. The registers F' are not used until
the end, when they are measured in order to decide if the answer returned by the
protocol is correct.

Figure 5.2: The revised protocol P,_,;
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The new input registers for Alice will be denoted by F4. The old input
registers will continue to exist, but they will count as work qubits of
Alice. Initially, in the register F' '4[a] we place a uniform superposition
|). All other registers are initialised to 0.

Step 1: Bob generates the canonical purification (Ml,Ml) of the first message
of P. He sets his register Fp[s] to the state |a), and using the transformation Ug
generates his inputs Fz and work qubits Wg. Then, he generates the first message
of protocol P’ (this corresponds message M, of the P), and sends this message along

with M; to Alice.

Step 2: (a) One receiving ﬂl, Alice applies a unitary transform on registers
(F4la], J\A/fl,A) to generate a state in registers F4 (the old input registers) and Wy
(the work qubits of the original protocol). Here, A is a set of ancilla qubits initialised
to 0. This unitary transformation acts according to the rule

10) 1)) 37,4 > [0) ) Ua—ss10) 37, 4

Note that this transformation is safe on FJa).

(b) Since Fy is not in the desired state, Alice applies the correction used in the
revised Step 1 of P,_,,. That is, she applies a unitary transformation to registers
(Fala), Fi, F4) defined by

‘b>ﬁ[a]w>FA,FA = |b>ﬁ[a]0a—>b|1/’)FA,ﬁA-
Before the application of this the registers F 4 are initialised to 0. Alice then copies

(Falu] :u € Vy — {a}) into (Falu] : u € V4 — {a}). For the purpose of satisfying
Requirement 1(b), F4 are to be treated as A’s input register.

(continued on next page)

Figure 5.3: The protocol P,
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The state of entire system at this point is precisely

% Z ‘¢a—>b>a

beVp

where |¢,_,5) is the state at the corresponding point in the revised pro-
tocol P,y (see Figure 5.2). The rest of the protocol operates safely on
FA,FA and Fz. In fact, no unitary transform will now be applied to
registers Fy.

Step 3: Alice resumes the protocol P’. Note that Bob has already executed the
first step of P’ and sent the first message (which corresponds to message Mo of the
original protocol). Alice responds to this message as before.

While executing P’, the old input registers Fy are used. The new reg-
isters F'4 are not touched by any unitary transformation from now on.
At the end, however, when we try to decide if an error has been made,
we will measure all registers, and check if the answer ans’ agrees with
the answer ans(f4, f5), where f4 is the random variable obtained by
measuring the new input registers Ey.

Figure 5.4: The protocol P,
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Chapter 6

The set disjointness problem

6.1 Lower bound for set disjointness

In this chapter we prove a lower bound for the quantum communication complexity of set
disjointness. We first broadly mention the techniques we have used to arrive at the lower
bound.

Techniques used

The original lower bounds for set disjointness in the classical two-party communication
model are based on deep analyses of the communication matrix and can be said to be based
on the discrepancy method (see e.g. [KN97]). Razborov’s recent Q(y/n) lower bound [Raz02]
for the bounded error two-party quantum communication complexity of set disjointness
also uses the discrepancy method. The discrepancy method for quantum protocols was
formulated explicitly by Kremer [Kre95] (see also Klauck [Kla01] and Yao [Ya093]), but
Razborov’s proof extends it substantially by developing interesting and powerful tools
based on the spectral theory of matrices.

Recently however, Bar-Yossef et al. [BJKS02] proposed an information-theoretic ap-
proach for studying set disjointness-like problems in the classical setting. Using a refine-
ment of the notion of information cost of a communication protocol originally defined by
Chakrabarti, Shi, Wirth and Yao [CSWYO01], they showed that a linear lower bound for the
bounded error two-party randomised communication complexity of set disjointness follows
from an (1) lower bound on a certain information cost of a two-party communication
protocol computing the AND a A b of just two bits a,b! The information-theoretic ma-
chinery essentially allowed them to treat the set disjointness function like a direct sum of n
two-bit AND’s. Their work provided a compelling and beautiful illustration of information-
theoretic tools in the analysis of communication protocols. Interestingly, the idea of proving
lower bounds for set disjointness by treating it like a direct sum of n two-bit AND’s was
earlier employed in [KKNO95] in the setting of two-party nondeterministic classical com-
munication complexity; however, their approach was not information-theoretic and does
not seem to be suitable for bounded error classical randomised or quantum communication
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protocols.

We adapt their approach to the quantum setting. In order to bring out the contribu-
tion of this work more clearly, we will now informally describe the information-theoretic
argument underlying the proof of [BJKS02| and discuss how we adapt it to the quantum
setting. The argument has two parts: in the first part, using a direct-sum property for
information cost of a communication protocol one reduces the communication problem
DISJ to the communication problem AND of two bits (one with Alice and one with Bob);
in the second part, one shows that any communication protocol for AND of two bits needs
to have high information cost.

The information cost approach: The first part of the argument is based on the no-
tion of information cost of private coin randomised communication protocols, defined to
be the mutual information between the inputs (which are assumed to come from some
distribution) and the entire message transcript of the protocol. Bar-Yossef et al. [BJKS02]
examine the information cost of the protocol for several distributions. Let the number of
bits transmitted by the protocol be c¢. Then, the information cost is also bounded by ¢ for
each distribution.

At this point it will be convenient to view the inputs X4 and Xp of Alice and Bob as
elements of {0,1}™ and the set disjointness function DISJ as

\/ Xali] A Xgli].

=1

A typical distribution considered by Bar-Yossef et al. is defined as follows. For each
coordinate ¢, independently, one party is given the input 0 and the other party is given
a uniformly random bit. Using the sub-additivity property of mutual information, one
concludes that the sum over 4 of the mutual information between the transcript and X 4[]
is bounded by c; a similar statement holds for Bob’s inputs. It is then not hard to argue
using a standard averaging argument that there is an ¢ and a probability distribution D*
on (Xalj], Xglj] : j # i) such that the following conditions hold:

o X4lj], XBlk|,j # i,k # i are independent random variables under D*;
e For all j # 14, Xa[j] A Xg[j] = 0 (with probability 1);

o If X 4[i] is set to 0, X 7] is chosen uniformly at random from {0, 1} and (X 4[j], X[j] :
j # 1) are chosen according to D*, then the mutual information between the message
transcript and Xg[i] is at most 2¢/n; similarly, if Xp[i] is set to 0, X 4[¢] is chosen
uniformly at random from {0,1} and (Xa[j], Xg[j] : j # i) are chosen according
to D*, then the mutual information between the message transcript and X 4[7] is at
most 2¢/n.

From the first condition, by viewing (X4[j], Xg[j] : 7 # i) as private coins of the two
parties, we obtain from the protocol for DISJ a protocol that computes the AND of the
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two bits X 4[i] and Xp[i]. The stage is thus set for analysing the information cost of a
protocol computing the AND of two bits: a lower bound of € on this quantity translates to
a lower bound of 2(en) on the communication complexity of the set disjointness function.

In order to implement this programme in the quantum setting, one has to define a
notion of information cost for quantum protocols. It is not immediately clear how this
can be done, because quantum operations are notorious for destroying the states on which
they act; in particular, it is not reasonable to expect that the complete transcript of all
messages is part of the final global state of the algorithm. Even if the complete transcript
is available in the final global state of the algorithm, it may not contain any information
about the inputs of either party. For example if the parties are allowed prior entanglement,
then using quantum teleportation, one can implement any protocol such that the messages
are classical and uniformly random. So, the transcript will just be a uniformly random
string of length ¢ independent of the actual inputs!

The definition of information loss for quantum protocols: We address these dif-
ficulties as follows. Assume that the players’ inputs come from some classical probability
distribution. Without loss of generality, the players make a ‘safe’ copy of their (classical)
inputs before proceeding with the quantum protocol. Instead of considering the informa-
tion carried by a particular message, we examine the the context in which the message
is received i.e. we consider the von Neumann mutual information between the sender’s
input and all the qubits in the possession of the receiver at that time, including the qubits
of the message just received. The information loss (we use the term loss instead of cost)
of the protocol for the given input distribution is defined to be a certain weighted sum
of these mutual informations taken over all rounds. With this definition of information
loss, the arguments of [BJKS02] are easily carried over to the quantum setting. We can
then conclude that if the information loss of computing the AND of two bits is € then the
communication complexity of DISJ is Q(ne/k).

We have arrived at the second part of our programme, that is, to show non-trivial lower
bounds on the information loss of a quantum protocol computing the AND of two bits.
In their original argument, [BJKS02] showed a lower bound on the information cost of a
classical private coin protocol computing the AND of two bits via a direct argument using
Hellinger distances between certain probability distributions. Since we are working with
our different notion of information loss, this argument does not appear to be immediately
applicable to us; so instead of reviewing it, we will now directly describe our new argument
for showing a lower bound on the information loss of a quantum protocol computing the
AND of two bits. We consider two input distributions: in the first distribution, Alice has 0
and Bob has a uniformly random bit; in the second distribution, Bob has 0 and Alice has a
uniformly random bit. Suppose we are given that for these distributions at no stage do the
qubits of the receiver of a message contain more than e bits of information about the input
of the sender. We wish to show that if € is very small, then this leads to a contradiction.
Our argument can be understood at an intuitive level in the framework of round elimination
in communication protocols [MNSW98b, KNTZ01a, Sen03]. Suppose Alice sends the first
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message of the protocol. We know that when Bob’s input is 0 the state of his qubits after
receiving the first message is essentially the same whether Alice’s input is 0 or 1. So no
matter what her actual input is, Alice might as well send her first message assuming that
her input is 0. Using standard arguments (see below), we can eliminate the first message
of Alice and obtain a protocol with one fewer round of communication, increasing the error
probability of the protocol by a small amount. Now it is Bob’s turn. Our hypothesis says
that when Alice’s input is 0 the state of her qubits after receiving the first message from
Bob is essentially the same whether Bob’s input is 0 or 1. But the modified protocol so far
has proceeded as if Alice’s input is 0 (even though her actual input might be something
else). We can thus eliminate Bob’s first message as well. If € is small, then the increase in
error probability on account of this manoeuvre is also small. Proceeding in this manner
we eliminate all rounds. But it is obvious that if the parties exchange no messages they
cannot compute any non-trivial function unless one allows error probability greater than
or equal to 1/2. Since there are at most k& rounds of communication, this gives us a lower
bound of the form € > ¢(k). Using these ideas one can show an Q(n/k?) lower bound on
the two-party quantum communication complexity of the set disjointness function.
There are two aspects of our proof that require further comment.

Local transition: Recall the argument used above to eliminate Alice’s first message. We
know that when Bob’s input is 0, the state of his qubits after receiving the first message
is roughly the same whether Alice’s input is 0 or 1. However, this does not immediately
imply that the error probability of the modified protocol is not changed by much. The final
answer is not just a function of Bob’s state but the combined state of Alice and Bob. In
particular, even though Bob’s state is similar after the first round for the two inputs of Alice,
his work qubits might be entangled with Alice’s qubits differently in the two cases. This
problem arises often in round elimination arguments and by now standard solutions exist
for it by considering the fidelity between quantum states. This allows Alice to perform a
local transition [KN'TZ01a] on her work qubits, in order to restore them to the correct state
should she discover later that her actual input is 1 (recall that in the modified protocol,
Alice prepares her first message assuming that her input is always 0). We use a stronger
local transition lemma (Lemma 5.3) than the one in [KNTZ01a]. The stronger lemma is
crucial for getting an Q(n/k?) lower bound in Result 1.2; the local transition lemma of
[KNTZ01a] gives an Q(n/k*) lower bound.

A paradox?: In our notion of information loss of quantum protocols it is important that
the parties start in a pure global state. In fact, this notion is unsuited for classical private
coin randomised communication complexity. Consider the following classical private coin
protocol for computing the AND of two bits (a,b). Alice sends Bob a random bit r,
retaining a copy of r if and only if @ = 1. Bob sends Alice r @ b; if a = 1, Alice can recover b
using the copy of r she has and determine a A b. Now clearly, when Bob’s input is 0 he has
no information about Alice’s input at the end of the first round; also when Alice’s input is 0
she has no information about Bob’s input at the end of the second round because she does

90



6.1. Lower bound for set disjointness

not retain a copy of r in this case. So, according to our definition this protocol has zero
information loss for both the distributions considered above. Yet, the protocol computes
the AND of two bits correctly! Interestingly, no such quantum protocol starting with a
pure global state is possible.

Below we define some important information theoretic concepts needed in our proof.

6.1.1 Information cost

We recall the definition of the important notion of information cost of a communication
protocol from Bar-Yossef et al. [BJKS02].

Definition 6.1 (Information cost) Let Il be a private coin randomised protocol for a
function f: X xY — Z. Let Il(x,y) be the entire message transcript of the protocol on
input (z,y). Let u be a distribution on X xY, and let the input random variable (X,Y") have
distribution p. The information cost of IT under yu is defined to be [(XY : II(X,Y)). The
k-round d-error information complexity of f under the distribution p, denoted by ICfL’J(f),
is the minimum information cost of a k-round d-error protocol for f under pu. IC?m(f)
denotes the minimum information cost of a private coin simultaneous &-error protocol for
f under the uniform probability distribution on the inputs.

Remark: ICJ™(f) as defined above coincides with the definition of information cost of
a simultaneous message protocol in Chakrabarti et al. [CSWYO01].

Let p be a probability distribution on X x ). The probability distribution g™ on
X™ x Y™ is defined as

w1, Tm)s (Y1 - e Ym) = (e, y1) - (2o, y2) - - (T Ym)-

Suppose p is a product probability distribution on X x Y. It can be easily seen (see
e.g. [BJKS02]) that for any positive integers m, k, and real § > 0,

ICin 5(f™) = m - 1C 5(f).

Unfortunately for non-product distributions p, no such nice sub-additivity theorem is
known. To get over this shortcoming, Bar-Yossef et al. [BJKS02] introduced the notion of
conditional information cost of a protocol. Suppose the distribution p is expressed as a
convex combination

n= Z Kalld

deK
of product distributions p4, where K is some finite index set. Let k denote the probability
distribution on K defined by the numbers 4. Define the random variable D to be dis-
tributed according to k. Conditioned on D, pu is a product distribution on X x ). We
will call g a mixture of product distributions {p4}acx and say that x partitions u. The
probability distribution ™ on K™ is defined as

K™ (dy, - .., dm) 2 K(d1) - K(ds) - - &(dum).
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Then k™ partitions ™ in a natural way. The random variable D™ has distribution ™.
Conditioned on D™, u™ is a product distribution on X™ x Y™.

Definition 6.2 (Conditional information cost) Let Il be a private coin randomised
protocol for a function f : X xY — Z. Let ll(z,y) be the entire message transcript of
the protocol on input (z,y). Let p be a distribution on X x Y, and let the input random
variable (X,Y) have distribution u. Let p be a mizture of product distributions partitioned
by k. Let the random variable D be distributed according to k. The conditional information
cost of IT under (u, k) is defined to be

I(XY :TI(X,Y)) | D).

The k-round é-error conditional information complexity of f under (u,k), denoted by
IC';,(;(f | k), is the minimum conditional information cost of a k-round 0-error protocol

for f under (u, k).

The following facts follow easily from the results in Bar-Yossef et al. [BJKS02] and
Fact 2.1.

Fact 6.1 Let p be a probability distribution on X x Y. Let k partition p. For any f :
X x Y — Z, positive integers m, k, real d > 0,

Ik ,(f™ | &™) > m - ICE,(f | k) > m- (ICE,(f) = H(K)).

Fact 6.2 With the notation and assumptions of Fact 6.1,

C,’f,a(f) > Icﬁ,a(f | K).

The following lemma relates the t-party k-round d-error communication complexity
of set disjointness to the conditional information loss of t-party k-round d-error AND
function.

6.1.2 Conditional information loss

We now define the conditional information loss of a t-party quantum communication pro-
tocol with prior entanglement. For technical reasons, we need to work with a conditional
version of information loss instead of the unconditional version described in the introduc-
tion. A similar conditional version of information cost is used in [BJKS02] to prove their
lower bounds. But first, we need a couple of preliminary definitions.

Definition 6.3 (Embedding) Forx € X", j € [n|, and v € X, let embed(x, j,z) be the
element of X™ obtained by replacing x[j] by x, that is, embed(x, j, z)[/] 2 x[l] for £ # j,
and embed(x, 7, x)[J] 2.
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Definition 6.4 (Collapsing) Suppose F : X" — Z. We say that x € X" collapses F
to the function h : X — Z if for allu € X, j € [n], F(embed(x, j,u)) = h(u). We say
that a random variable X taking values in X™ collapses F' to h if it collapses F' to h with
probability 1.

Let D, Xi,...,X; be classical random variables taking values in some finite sets D,
Xy, ..., X; respectively. Let X 2 (X1,...,X;). We say that D partitions X, if for all
possible values d that D can take, X;,..., X, are independent conditioned on the event

D = d. The random variable (X, D)" is obtained by taking n independent copies of (X, D).
Thus, X" takes values in (X} x --- x X;)" which we identify with A" x --- x A in the
natural way. Suppose D partitions X, and (X, D) = (X, D)™; then it is easy to verify
that D partitions X. Let II be a t-party k-round d-error quantum protocol for computing
F: X x---xA& — Z. Suppose Xy,...,X; are the random variables corresponding to
the inputs of Py, ..., P,. Let P’/ denote the active player in round j. Let X7 denote the
input random variable of PJ. PJ denote the qubits all players except P? just after round
J is complete. Let k(j) denote the number of rounds of II in which the player P7 is active.

Definition 6.5 (Conditional information loss) In the notation above, the conditional
information loss of 11 under (X, D) is defined by

LY

“ k()

The t-party k-round d-error conditional information loss of F' under (X, D), denoted by
ILY*(F | (X, D)), is the infimum \L(IT | (X, D)) taken over all t-party k-round &-error
quantum protocols with prior entanglement I1 for F. [Note that § upper bounds the error
of II for all inputs in Xy X --- X X;. In particular, this error bound applies even to inputs
not in the support of X.J

IL(IT | (X, D)) i P | D).

]:

The following lemma is the first part of our proof as mentioned earlier.
Lemma 6.1 Let F': AT x --- x X" = Z. Let Xy,...,X; be classical random variables
taking values in X1, ..., X; respectively. Define

A
X:(Xl,...,Xt).

Suppose X 1is partitioned by a classical random variable D taking values in some set D.
Let
(X,D) 2 (X, D)".

Suppose X collapses F' to the function
h: X1 x-xX — Z.
Then,

2k
LG (h | (X, D)) < =
n

QY (F).
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Proof: Suppose Il is a t-party k-round d-error quantum protocol with prior entanglement
for F' with communication cost
A Atk
c= Qg (F).

Our goal is to show that there is a t-party k-round d-error quantum protocol with prior
entanglement for A having information loss at most fo under (X, D). While analysing II,
we will need to maintain that the global state of Py, ..., P; is pure at all times. However,
we will run II on random inputs drawn from certain product probability distributions. In
such a situation, we will adopt the following convention. We will assume that in addition
to the usual input registers IN;, P; has another set of registers IN;. When we require that
P;’s inputs be some random variable X;, we in fact, start with the following state in the

registers IN;IN;:
> VBIX)x),

xEXin
where
Dx 2 Pr[X; = x].

Then, we run the protocol II as before with input registers IN;. During this execution no
quantum gates are applied to registers IN;, they are not sent as messages and they are never
measured. From now on the classical random variable X; denotes the state of the registers
IN;, which stays unchanged throughout the protocol II because II is safe. In this revised
protocol IT') IN; is included amongst the qubits of P;. II' has the same communication cost
as II. II' is a d-error protocol for F with communication cost c¢. Consider the execution

of IT" on input X 2 (X1, ...,X;) conditioned on D = d; note that under this condition
Xi,...,X; are independent random variables. Let ¢(7) denote the total number of qubits
sent by the party P* in protocol II' (which is the same as the total number of qubits sent
by P* in protocol IT). Then we have, for all 1 <7 < k,

Y I(Xj]: P | D=d) <I((X': P') | D =d) < 2c(i).
7j=1
The first inequality above follows from Fact 2.4 because by our definition of (X, D),
(Xalj]:1<j<n)

are independent random variables when conditioned on D = d; the second inequality
follows from Fact 2.7.
Averaging over the possible values of D, we obtain:

Vi, 1 <i <k, Y I((X'[j]: P') | D) < 2¢(i).
j=1
Summing these inequalities with weight k/k(7) over all rounds ¢, we obtain

n

sz ((X'[5] : P') | D) < 2ck,

=1
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6.1. Lower bound for set disjointness

which implies:

3i1<j<n Z T 1K) P) | D) < % (6.1)
Fix a value of j so that the last 1nequa111:y holds. For d € D", let
A k
:;W ((X'[j] : P") | D = d) (6.2)
Then from (6.1),
ElI(D)] < 2%

We will now obtain a protocol for h by ‘embedding’ its input as the jth input of IT.
Using a straightforward averaging argument we first fix a value d € D" so that

Pr[D = d|I(embed(d, j,d
dEZD [ 1 ( A (d,j,d)) 63
= Ep[l(embed(d, j, D)) < 2.

Consider the following quantum protocol with prior entanglement 11, for computing
h(u1,-..,us). On input u; € X;, P; prepares her input registers as follows. In the registers
(IN;[€], IN;[£] : £ # j) P; places the superposition

> Vix)x),

xeé\f'f_l

where A

px S Pr[(Xi[f] 1 £ # j) =x | D =d];
register IN;[j] is set to |u;). Then, P,..., P run the protocol II'. Note that the registers
IN;[j],1 < i <t do not exist in IIj,.

We need to verify that protocol II; has two properties. First, that it is a d-error protocol
for h. For this we note that in II,, at all times, the state of the registers that were present
in the original protocol I (that is all registers except IN;) is identical to their state when
IT is run with input embed(X, j, (u1, ..., u;)) conditioned on the event D = d. Since X
collapses F' to h, we conclude that II;, computes h(ui,...,u;) with probability at least
1-—6.

Second, we need to verify that
(L, | (X, D)) < 2.
n

We expand the left hand side of (6.3) using definition (6.2) of I(d) and show that each
term in it is at least the corresponding term in IL(II | (X, D)). For example, consider the
term

I(X":P)|D=d), 1<i<k
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6.1. Lower bound for set disjointness

in the definition of IL(IT, | (X, D)). Note that the state of (X*,P?) in II; on input X
conditioned on D = d is identical to the state of (X‘[j],P?) in II' with registers INg[j], ¢
ranging over all parties except P traced out, when II' is run on input X conditioned on

A~

D = embed(d, j, d).
It follows from the monotonicity of mutual information that
I(X*:P) | D=d) < I(X[j] : P*) | D = embed(d, 5, d)).

We can thus conclude that ook
IL(IT, | (X, D)) < =
n

Let D be a random variable taking values in {1,...,t}, with Pr[D = d] 2 k(d)/k.
Let A
X1::Xt:{0,1}

Let X; be a random variable taking values in X; and X 2 (Xiy..., X3).
When D =d,
PI‘[Xd = 0] = PI'[Xd = 1] = 1/2
and
Pr[X; = 0] = 1,i # d.

It is clear that D partitions X. Note that X™ collapses DISJ to AND (here DISJ denotes
the promise t-party set disjointness problem and AND denotes the AND function on ¢
bits).

We now show a lower bound for the conditional information loss of AND under (X, D)
which is the second part of the proof.

Lemma 6.2 Let (X, D) be as above. Let 0 < € < 1/2. Then,

(1 — 2¢)?

ILEH(AND | (X, D)) > S

Proof: Let 6§ > 0. Let II be a t-party k-round e-error quantum protocol with prior
entanglement for AND with

n = IL(IT | (X, D)) < ILY(AND | (X, D)) + .
Consider the situation in IT just after the sth round of communication. For any x € {0, 1},
let |¢L) be the global state vector of the qubits of Py, ..., P, at this point in time, when
protocol II is started with input X = x. Define

s(i) 2 I(X*: P') | D = PY).
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6.1. Lower bound for set disjointness

Then,
5(3) = % (X Py | D).

Hence,

n=>y_s(i).
i=1
Let e; € {0,1}" denote the vector which has an 1 in the ith coordinate and 0 every-
where else. Let 0,1 € {0,1}' denote the all-zeroes and all-ones vectors respectively. To
keep our notation concise, for state vectors |¢) and [1) we write ||[¢) — [¢)||, instead of
@) (&] — [¥){(¥]]],- By Lemma 5.3, there is a ‘correction’ unitary transformation V* acting
on the qubits in the possession of P? just after round i such that

|vitsay - 16i )

L < \/85(1). (6.4)

Forany 1 < j <t, let W; denote the ‘correction’ unitary transformation of party P; in
the last round at or before round 7 when P; was active. Then,

Whi = V"

For any j # j' I/VjZ and W;} act on disjoint sets of qubits. Without loss of generality,
P? =P, and P! = P,. Define

b 2 [ Wiwi - Wiles) — 6]

Let U® denote the unitary transformation of protocol II that P; applies to the qubits in
her possession just after round ¢ — 1 in order to prepare the messages of round i. Let 4’
denote the last round before i when P, was active. Let U?» denote the product of the
unitary transformations applied by the parties in protocol IT after round i’ is complete and
till the end of round 4. Then,

|0%) = U*lék)

and

B = U™
For j # 1, U* and W} act on disjoint sets of qubits and

i _ il
W;=W;".

Also, Wi and U "3 act on disjoint sets of qubits. Using the unitary invariance and triangle
inequality of the trace distance, the fact that unitary transformations on disjoint sets of
qubits commute, and (6.4),

5 = |Wiwi---wilel) — |61,
< || WiWE- WU L)) — WiWE - WiUTIWE g ||, +
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6.1. Lower bound for set disjointness

| Wiws - - - WiU™Wilgg) — U'W;5 - Wileg ) |, +
|Uiws - wilel ) - Ullei |

= [16%) - wilehy|| + |wiv*is8) - Utlei )
+[|wi-- Wil = 1ov Y,

= |i6%) = wileb)|| + 1Wileh = e, + W5 Wity — 657,

< V/8s(i") + v/85(i) + & 1.

It is easy to check that d; = 0. Hence,

8 <> 24/8s(i).

t

Using concavity of the square root function, we get that
0k < \/32nk.

Using Fact 2.8, the fact that a local unitary transformation does not affect the density
matrix of the remote system and monotonicity of trace distance, we get that a correct
k-round e-error protocol for AND must have

5k Z 2 — 4e.
Hence,
(1 — 2¢)?
> 2
T=""8k

implying that | o2
IL4(AND | (x, D) > L2

for any # > 0. This completes the proof of the lemma. [ ]

-0

Remark: In fact, there are bounded error two-party k-round quantum protocols for the
AND of two bits with conditional information loss O(logk/k). Such protocols can be
obtained from the protocols of [BCW98, HAW02, AA03] for set disjointness on a universe
of size O(k?) by setting the first coordinate of Alice and Bob to the two input bits and
setting the rest of the coordinates to 0. Another such protocol with one qubit messages
can be obtained by adapting the ‘reflections in a plane’ visualisation (see e.g. [NCO00]) of
Grover’s algorithm on a universe of size O(k?).
The following is now immediate from Lemma 6.1 and Lemma 6.2.

Theorem 6.1 Any t-party k-round bounded error quantum protocol for the set disjointness
problem needs to have communication cost at least Q(n/k?).
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Chapter 7

Conclusions

In this thesis, we studied problems in communication complexity both in the classical and
the quantum models of computation. In the classical setting we studied the direct sum
problem. In the quantum setting we studied the index function problem, the set disjointness
problem and the pointer chasing problem. We have primarily used information theory to
derive our lower bounds. In this process we have also developed a new information theoretic
tool which we call the substate theorem. In this chapter we discuss our results briefly and
also mention some of the questions that arise naturally as an extension of our study.

7.1 The direct sum problem

In this work, we prove lower bounds for the direct sum problem for protocols with more
than one round of communication. We prove the following:

Result 7.1 Let m, k be positive integers, and €,6 > 0. Let f : X x Y — Z be a function.
Then,

2

RE™) 2 e (5 Chann D) —2).

The proof of this result works via a message compression result which is as follows:

Result 7.2 Let X and M be random variables (with some joint distribution), where X is
uniformly distributed over {0,1}" and their mutual information I(X : M) < a. Let [m] be
the range of M. Let Sy, z,y € {0,1}" be randomised predicates from [m] to [0,1]. Then,
there exists a random variable M' (correlated with X ) such that

(a) M' takes values in a set of size n - 20/,
(b) There exists A C {0,1}" of size at least % -2" such that for allz € A and y € {0, 1}",
| Pr[Sy(M') | X = x] = Pr[S; (M) | X = z]| <
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7.1. The direct sum problem

In other words, the above result states that if Alice’s message contains only a bits of
information about her input, she can compress it to O(a+logn) bits without changing the
error probability of the protocol significantly. A similar message compression argument
holds for Bob too. This gives us an alternative proof of the main result of Chakrabarti et
al. [CSWYO01], with better dependence on the parameters.

Our approach quickly generalises to two-party bounded error private coin multiple
round protocols, and allows us to prove a message compression result and a direct sum
lower bound for such protocols. Direct sum lower bounds for such protocols were not
known earlier. In addition, our message compression result and direct sum lower bound
for multiple round protocols hold for protocols computing relations too.

A quantum analogue? One might ask if a similar compression of messages is possible
in the quantum setting. That is, for z € {0,1}", instead of distributions P, we have
density matrices p, so that the expected quantum relative entropy Ex[S(p.||p)] < a, where

p 2 Ex [pz]. Also, we are given measurements (POVM elements) M7, 2,y € {0,1}". Then,

we wish to replace p, by pl, so that there is a subspace of dimension n - 20(a/¢) that contains
the support of each p; also, there is a set A C {0,1}", |A| > % - 2™ such that for each

(z,y) € Ax {0, 1}",[Tr Myp, —Tr Mjp,| <e.

Unfortunately the answer is in the negative. We prove the following strong negative result
about compressibility of quantum information:

Result 7.3 For sufficiently large constant a, there erist density matrices pl,, x € {0,1}"
such that there is no subspace of dimension less than 27" that contains the supports of
most of the pl,.

This strong negative result seems to suggest that new techniques (not based on information
cost) may be required to tackle the direct sum problem for quantum communication.

7.1.1 Open problems

Ideally for the direct sum problem, one would like to prove a result which is independent of
the number of rounds in the communication protocol. One possible approach for this is to
improve the existing sampling argument so that the error does not grow with the rounds.
This will make the final result independent of the number of rounds.

Also in our result we are showing a lower bound for the randomised communication
complexity of the m-fold function f™ in terms of the distributional complexity of the
function f. Can be improved to obtain a lower bound for the randomised communication
complexity of f™ in terms of the ranomized communication complexity of f7

In the wake of the negative result about quantum compressibility, one needs to come
up with a different approach to prove some direct sum result in this case.

100



7.2. Substate theorem

7.2 Substate theorem

We prove a fundamental theorem about relative entropy of quantum states, which roughly
states that if the relative entropy, of two quantum states p and o is at most ¢, then p/29(°)
‘sits inside’ 0. We have made crucial use of the substate theorem to arrive at our results
for the index function problem and the pointer chasing problem. More formally the result
is as follows:

Result 7.4 Consider two finite dimensional Hilbert spaces H and I, where dim(K) >
dim(H). Let C* denote the two dimensional complex Hilbert space. Let p,o be density
matrices in H. Let v > 1 be any real number. Let |¢) be a purification of p in H® K.
Then there exist pure states |¢),|0) € H® K (depending on r) and |¢) € H® K ® C* such
that |¢) is a purification of o and

) (| = @) {@lll, < 2/v/r,

where
A [Jr—1 T

&)= [6)[0) +4/1 =

—1
ok = 10)[1) and k2 85(plo) + 14.

2"

7.2.1 Open problems

One of the important theorems used in proving the substate theorem is the observational
divergence lifting theorem. This relates the observational divergence of two states to the
observational divergence of the parent states of which these are sub states. A similar lifting
result, known as the Local transition theorem, is known for another metric of distance
between two states, namely the trace distance. It will be interesting to see if some lifting
result can be shown for relative entropy between two states.

In the substate theorem, the dependence on r (the trace distance term) is different in
the classical version and the quantum version. It will be interesting to see if the dependence
in the quantum version can be made similar to the one in the classical case or whether the
dependence is tight. In case the dependence has to be inverse square root in the quantum
case then it will suggest an inherent difference between classical information and quantum
information.

7.3 The index function problem

We prove the following about the index function problem:

Result 7.5 (informal statement) If there is a protocol for the index function problem where
B leaks only b bits of information about his index i, then A must send Q(n/2°®) bits.

Result 7.6 (informal statement) If there is a protocol for the index function problem where
B leaks only b bits of information about his input i, then A must leak Q(n/2°®) bits of
information about her input x. (Note that this implies Result 7.5.)
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Corollary (informal statement) For the index function problem, one of the players
must leak Q(logn) bits of information about his input.

General result and other problems: The index function problem is just one of several
problems where a statement like the above Corollary can be proved using our technique. In
fact, it follows easily that if the communication matrix of the function has VC-dimension
at least k, then one of the players must leak at least {2(log k) bits of information about his
input. In particular, this implies an Q(logn) loss in privacy for the set disjointness and
inner product modulo 2 problems.

7.3.1 Open problems

Our technique gives information loss tradeoff for Alice and Bob for some problems where
VC-dimension is large. It will be interesting to obtain new techniques to prove information
loss for problems where VC-dimension is not large. Also it will be interesting to find other
applications of the substate theorem.

7.4 The pointer chasing problem

In the two-party quantum communication complexity model we consider two versions of
the pointer chasing problem, namely the full pointer version and the bit version, and give
lower bounds on the amount of communication required. We show the following for the
full version.

Result 7.7 For any constant k, the bounded error quantum communication complexity of
the pointer jumping problem Py, (full pointer version) is Q(nlog® n).

The information theoretic tool that we developed namely the substate theorem plays a
very crucial role in this proof. For the bit version of the problem we show the following:

Result 7.8 In any bounded error quantum protocol for the pointer chasing problem PP,
Alice and Bob must exchange Q({%) qubits.

7.4.1 Open problems

For the full pointer version of the pointer chasing problem, we have shown tight lower
bound matching the upper bound well. Whereas in the bit version of the problem, there
is still a gap between the upper bound (O(3})) and the lower bound (Q(7%)). It will be
interesting to fill this gap. Also our lower bounds hold for protocols which do not use any
prior entanglement Can they be extended to hold for protocols with prior entanglement as

well?
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7.5 The set disjointness problem

We show the following for the communication complexity of set disjointness-like functions.

Result 7.9 The t-party k-round bounded error quantum communication complexity of a
set disjointness-like function F is Q(s,(fr)/k?).

In fact, Result 7.9 follows from the following result via easy reductions.

Result 1.2° The t-party k-round bounded error quantum communication complexity of
the promise set disjointness problem is Q(n/k*). This lower bound also holds for Nisan’s
approzimate set disjointness problem [Nis02].

In particular this implies that for two-party quantum protocols with an unbounded
number of rounds, we get a lower bound of Q(n'/?) for the set disjointness problem.

In a related work (not included in this thesis), we get the following lower bound for the
Lo promise problem.

Result 7.10 The two-party k-round quantum communication complexity of the Lo, promise
problem is Q(n/(k3m*+1)).

7.5.1 Open problems

For the two-party quantum communication complexity of set disjointness, the upper and
lower bound have been made quite close. There is a small gap remaining still and we
believe that the lower bound can be improved to match the upper bound. Our proof of
the lower bound, essentially has two parts. We believe that the first part can be improved
where we relate the communication complexity of set disjointness with the information loss
of the AND function. If the lower bound is improved to match the upper bound then it
will give another proof of the ©2(y/n) lower bound of the general set disjointness problem,
independent of the number of rounds.

Another interesting problem that can be considered is the asymmetric version of the
set disjointness problem in the context of quantum communication complexity. Let us say
that Bob is allowed to communicate only k& qubits to Alice. How many qubits then Alice
must communicate for them to solve the set disjointness problem? Our result implies that
Alice must communicate at least (75 — k) qubits. We believe that this can be improved
quite a bit possibly to something like Q(n — poly(k)).
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