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ABSTRACT
Web search queries reveal extensive information about users’
personal lives to the search engines and Internet eavesdrop-
pers. Obfuscating search queries through adding dummy
queries is a practical and user-centric protection mechanism
to hide users’ search intentions and interests. Despite few
such obfuscation methods and tools, there is no generic
quantitative methodology for evaluating users’ web-search
privacy. In this paper, we provide such a methodology. We
formalize adversary’s background knowledge and attacks,
the users’ privacy objectives, and the algorithms to eval-
uate effectiveness of query obfuscation mechanisms. We
build upon machine-learning algorithms to learn the link-
ability between user queries. This encompasses the adver-
sary’s knowledge about the obfuscation mechanism and the
users’ web-search behavior. Then, we quantify privacy of
users with respect to linkage attacks. Our generic attack can
run against users for which the adversary does not have any
background knowledge, as well as for the cases where some
prior queries from the target users are already observed. We
quantify privacy at the query level (the link between user’s
queries) and the semantic level (user’s topics of interest). We
design a generic tool that can be used for evaluating generic
obfuscation mechanisms, and users with different web search
behavior. To illustrate our approach in practice, we analyze
and compare privacy of users for two example obfuscation
mechanisms on a set of real web-search logs.
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1. INTRODUCTION
Users search the web to obtain information or find web-

sites. Through this, they leave a trail of their interests and
intents. This information can be used by search engines and
eavesdroppers to build a profile of users and to infer sensitive
personal information about them [35, 22].

Privacy in web search can be protected in different ways.
In a system-centric solution, we can design a search engine
using private information retrieval, such that users can ob-
tain the results to their searches without revealing their
queries or their search activities to the search engine [20,
24, 11]. The benefit of this approach is that no informa-
tion about users’ search activities is revealed to the service
provider or any eavesdropper. This solution, however, can-
not protect privacy of users with respect to the existing pop-
ular search engines. In a network-centric solution, users can
make use of anonymous communications to hide their identi-
ties with respect to the search engines, in order to make their
queries unlinkable [31, 14]. This technique can prevent an
adversary from constructing a profile for each user to some
extent. Features extracted from the user’s web browser can
be used however to fingerprint the user and link her queries
[16]. In a user-centric approach, users can conceal their real
queries by issuing interleaving fake queries [1, 12, 21]. The
challenge here is to generate fake queries that cannot be dis-
tinguished from real queries, as simple randomly generated
queries can be easily filtered out from the set of observed
queries from a user [9, 12, 28]. Note that there is a possi-
bility of combining these approaches for designing a hybrid
protection mechanism.

In this paper, we focus on evaluating user-centric web
search query obfuscation methods. Despite the fact that
a number of obfuscation mechanisms such as [1, 32, 26, 30,
37, 21] have been proposed so far, and there exists simple
attacks to show their limitations [9, 12, 28], there is no com-
mon methodology and generic quantitative framework for
measuring privacy of users for different obfuscation mecha-
nisms. In this paper, we propose such a framework.

We construct a generic model for the users’ web-search
behavior. This determines the relation between queries of
each user, in general. We model this using a similarity score
function between query pairs that predicts whether any two
queries could belong to the same user or not. We assume
that adversary might have access to a dataset of real queries.
We extract a variety of features from each query about its
different dimensions including time, structure, content, and
landing web pages. We then make use of gradient tree boost-
ing regression algorithms to learn users’ web-search behav-
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Figure 1: Overview of our framework for quantifying web-search privacy.

ior in the form of linkage functions [18, 19]. We also use
our knowledge on the obfuscation mechanism in modeling
this function. In addition to this generic model, depending
on the evaluation’s settings, we might also assume that the
adversary has access to some history of the target user’s web
search behavior. This enables the adversary to construct a
specific model for the target user.

We quantify web-search privacy of users against linkage
attacks, where the attacker’s goal is to find the link between
queries issued by the target user and separate real queries
from the fake ones. To this end, the attacker makes use of his
user behavior and obfuscation model that are compressed in
the form of linkage functions. In our framework, we rely on
the results of the linkage attack to compute a user’s privacy
with respect to different objectives (i.e., privacy metrics).
For example, privacy can be quantified at the query level
and at the semantic level, depending on whether the user’s
objective is to hide the (linkability) structure of her queries
or to conceal her topics of interest. The randomness of the
user’s behavior also contributes to the user’s privacy against
linkage attacks. Thus, to evaluate the privacy gain of using
an obfuscation mechanism, we subtract the effect of user’s
randomness and compute the relative privacy of users.

We run our methodology on queries from the AOL dataset
[27]. We consider two representative obfuscation mecha-
nisms that either make use of bag of words or real user query
logs to generate fake queries. We then evaluate and compare
users’s privacy with respect to different metrics. The results
show that our attack can easily break privacy of majority of
user, especially in inferring their topics of interest.

The main contributions of this paper are therefore:

• We propose a generic quantitative framework using
which we can model attacks against web query obfus-
cation mechanisms as well as privacy metrics to cap-
ture the users’ privacy objectives.

• We design the linkage functions that can model the
web-search behavior of users in addition to that of the
target user. The linkage function also captures the re-
lation between fake and real queries, hence also models
the obfuscation mechanism.

• We implement a linkage attack that splits the fake
queries from the user’s queries. By comparing the
attack’s result with the user’s real set of queries, we
quantify privacy in multiple dimensions, e.g., query
trace structure and semantics.

The rest of the paper is organized as follows. In Sec-
tion 2, we present the overall framework that we propose for
quantifying web-search privacy. In Section 3, we present the
dataset of web search queries that we are using throughout
the paper. We also seek to understand the behavior of users
with respect to their web search, and we extract features
from their web queries that reflect the users’ behavior. In
Section 4, we build upon our user model and we present our
methodology for quantifying privacy of users against link-
age attacks. In Section 5, we use our quantification method
to evaluate privacy of users (in our dataset) with respect
to different obfuscation mechanisms. In Section 6, we sur-
vey the related work and put them in perspective with our
contribution.

2. PRIVACY FRAMEWORK
In this section, we introduce our framework for quanti-

fying user’s web-search privacy. As shown in Figure 1, the
framework is composed of the following main components:
(i) user’s search behavior, (ii) obfuscation mechanisms, (iii)
adversary knowledge, (iv) linkage attack, and (v) privacy
metrics. We now provide high level details of each of these
components and introduce the required notation.

2.1 User’s Search Behavior



Users issue queries to the web search engines to seek their
information needs. In response, the search engine retrieves
a result page consisting of a ranked list of web pages. The
user interacts with the search result page by clicking and
browsing the relevant documents, or by further refining the
search query to fulfill the information needs. This interac-
tion of the user with the search engine leaves a trace of her
web search activity as a sequence of search query events. We
model each such query event of a user along with its con-
textual information as e : 〈u, t, q, r, c〉, where u is the user
identity (e.g., her username, IP address, cookie identifier,
or any pseudonym that links the user’s queries together but
does not necessarily reveal her true identity), t is the time at
which the query is issued, q is the user’s query string which is
composed of a sequence of terms, r is the search result page
returned by the search engine containing ranked lists of web
pages, and c is the set of pages that are clicked by the user
so as to seek the required information. The web-search trace
of the target user U , given by a series of web search query
events from the user U , is denoted as SU : {e1, e2, . . . , en}.

2.2 Obfuscation Mechanisms
User-centric obfuscation mechanisms aim to protect the

privacy of a user by interleaving a set of fake query events
with the real queries of the users. Let SF be the set of query
events associated with the fake queries that are used by the
obfuscation mechanism for protecting the privacy of user U .
An obfuscation mechanism might generate the fake trace SF

by observing the behavior of target user U , or the fake trace
can be generated independently. The fake queries could also
be generated by getting information from different sources.
Another key parameter of the obfuscation mechanisms is
the way interleaving of fake and real queries is done. For
example, the obfuscation mechanism may send fake queries
at regular intervals or send a burst of fake queries when a
real query is issued by user. In Section 6, we provide a
survey of the various existing obfuscation mechanisms and
their characteristics.

In particular, we evaluate the following two types of ob-
fuscation mechanisms in this paper:

• Mechanisms that generate fake queries by sampling
from a bag of text. One example of such a mecha-
nism is TrackMeNot (TMN) [1, 21] that mainly uses
some RSS feeds for generating fake queries, and refines
its queries by observing the search results of its own
issued queries in the past. We choose TMN due to its
popularity and open availability.

• Mechanisms that make use of real queries from a set of
other users to generate fake queries for the target user.
We consider a specific variant of such a mechanism that
chooses one random user and uses all her queries for
this purpose.

As a result of the obfuscation, the sequence of events com-
ing from user U appears as SO : {e1, e2, . . . , em}, obtained
by interleaving SU and SF . Hence, the search engine or any
eavesdropper observes SO from the user U , where all the
events in SO have the same identity U thus appearing as if
they are issued by the target user.

2.3 Adversary’s Knowledge
The goal of the adversary is to separate the fake queries

from real ones, in order to extract accurate personal infor-

mation about the user. We quantify the privacy of users
by evaluating the effectiveness of the employed obfuscation
mechanism against such attacks from the adversary. We
assume the following about the prior knowledge of the at-
tacker:

• Obfuscation mechanism: As a privacy evaluator,
our objective is to assess the robustness of particular
obfuscation mechanisms against strong attacks. Hence,
we assume knowing the obfuscation mechanism or be-
ing able to observe its behavior prior performing the
evaluation attack. Apart from knowing the exact mech-
anism, the adversary might additionally be aware of
the parameters of how the fake queries are generated,
and how the interleaving is done. Alternatively, if the
adversary does not know such exact details about the
obfuscation mechanism, we assume that he can infer
the behavior of the mechanism by observing its output
in an offline training phase.

• Log history of users’ search activities: We further
assume that the adversary has access to some log his-
tory of web search activities for a set of users (exclud-
ing target user), denoted by HG. From this dataset,
the adversary can build a generic model for the users’
web-search behavior and can learn the models needed
for linkage attacks (as discussed further below).

• Log history of the target user: The adversary
might additionally have access to some history of the
target user U ’s query events, given by HU . This can
additionally enable the adversary to build a more spe-
cific model for the target user, thus further empower-
ing him to effectively predict the user’s queries that
she issues over time or the topics that she is interested
in.

2.4 Linkage Function and Attack
The objective of the linkage attack is to partition the set

of events in SO and determine which of the query events
are associated with the target user. By exploiting the ad-
versary’s knowledge about the obfuscation mechanism and
the log histories, the key idea is to learn a linkage function
L(ei, ej) that quantifies the similarity of any two events ei,
ej and uses it to determine whether they belong to the same
target user or not.1 The learning is done by extracting dif-
ferent contextual and semantic features from the available
logs of the queries (and additionally from the fake auto-
generated queries depending upon the type of obfuscation
mechanism used) [36, 34]. These features are then used to
learn (i) how query events of a generic user as well as the
target user are correlated, and (ii) what feature value ranges
represent the behavior of the target user. By using machine
learning techniques to learn the linkage function, the overall
framework easily adapts to new types of obfuscation mech-
anisms, to different data sets as well as different levels of
prior knowledge of the adversary. The details of this learn-
ing procedure as well as the different features extracted are
discussed in Section 3.2 and Section 4.

1Note that in this paper we limit the study on tuples of
two events, however more complex structures (e.g. cliques
of three or more queries) might improve the attacker’s accu-
racy. Nevertheless, the quantification methodology remains
the same.



We use the linkage function L as the basis for the linkage
attacks. Given a set of query events SO, the adversary first
computes the pairwise similarity L(ei, ej) between any two
events ei, ej ∈ SO. These pairwise similarities then allow
the adversary to cluster or partition the events SO into a set
of k clusters. Thus, the output of the linkage attack is a set
of clusters, given by C(SO, L, k) = {S1, S2, . . . , Sk}.

In case the adversary has access to the target user’s his-
tory HU , this information could further be used to label
these clusters or learn more specific linkage functions. In
this paper, we do not elaborate on this last step.

2.5 Privacy Metric
We quantify the privacy of users given the output of the

linkage attack under various types of privacy sensitivities
that the user might have. In general, we measure privacy in
terms of the adversary’s error in correctly constructing the
user’s profile.2 This reflects the privacy risk of issuing web
queries using a particular obfuscation mechanism.

2.5.1 Query Privacy
Let us consider that the user’s objective is to hide the

relation between her queries, so that the adversary could
not infer the relation between her different interests (dimen-
sions of her search profile). We quantify this by measuring
the structural distance between the clusters generated by the
linkage attack and the set of the user’s real queries. Consider
running the linkage attack by setting k = 2. A perfect parti-
tion by the adversary would result in C(SO, L, 2) = {S1, S2}
where S1 = SU and S2 = SF , thus completely separating the
real queries of the target user from the fake queries intro-
duced by the obfuscation mechanism.

In this case, we quantify privacy as to what extent the
obfuscation function leads to the deformation of the struc-
ture of the queries when partitioned by the linkage attack.
This is measured by computing how many pairs of query
events from the target user end up in different clusters (i.e.
the false negatives of the attack). Similarly, we measure the
false positives of the attack by computing how many pairs of
query events from the target user and fake events end up in
the same cluster. These errors reflect different privacy gains
of the user.

2.5.2 Semantic Privacy
As another objective, assume that the user wants to pro-

tect the privacy at a higher semantic level (instead of query
level discussed above). Assume that we can map a set of
query events to a semantic profile of interests (for example,
quantifying that a user is a businessman or a technical per-
son, captured through some histogram over a set of semantic
topics). By constructing such a semantic profile for the sets
SU , S1 and S2, we measure the effectiveness of the obfusca-
tion mechanism by quantifying the differences between the
semantic profiles of SU compared to that of the two clusters
S1 and S2. The higher the distance is, the less semantic in-
formation about the user is leaked to the adversary. Similar
approach could be applied for other higher level aspects of
the user profile, for example, temporal aspects of the user
search activity. The semantic privacy metric reflects how
much information about the user’s profile is in adversary’s
estimate, i.e., the mutual information between user’s profile

2This metric has also been used in other domains, e.g., in
location privacy [33].

AOL Dataset

Total number of users 657,426
Total number of queries 21,011,340

Our Sampled Dataset

Total number of users 100
Total number of queries 73,984
Average number of queries per user 828.62 (±133.54)

Our TMN Dataset

Total number of users 100
Total number of queries 90,851
Average number of queries per user 908.51 (±394.81)

Table 1: Query dataset statistics

and the estimated profile. This is similar to the information-
theoretic mutual information metric, with the difference that
we do not need to estimate the probability distribution over
the profiles (which is very difficult if not impossible [9]).

2.5.3 Relative Privacy
We quantify privacy with respect to other objectives in

a similar manner. One important remark here is that the
above two metrics quantify what we call as “absolute” pri-
vacy obtained from the obfuscation mechanism. In fact,
there is an inherent randomness in the browsing behavior
of each user itself without any obfuscation. It is important
to capture the additional relative value of privacy and ran-
domness added by the obfuscation mechanism. We call this
the “relative” privacy added by the obfuscation mechanism
and is quantified as follows for a given metric. Consider an
adversary that applies a linkage attack on SO even though
there was no obfuscation applied (i.e. SO = SU ) to obtain
partition C(SU , L, k). Now, comparing the privacy metrics
on the output of linkage attacks C(SO, L, k) and C(SU , L, k)
allows us to capture the “relative” privacy offered by the ob-
fuscation for a given metric. More precisely, we compare SO

and SU by computing the false negative (positive) metric as
the fraction of query pairs that are (are not) in the same par-
tition in SU but are not (are) in the same partitions in SO.
This captures the relative error introduced to the clustering
attack due to obfuscation, and it allows to compare different
obfuscation mechanisms in a fair manner by removing the
effect of the user’s profile on her privacy.

3. USER SEARCH BEHAVIOUR
In this section, we model the web search behaviour of users

in terms of the content they search for and the contextual
information associated to their web searches. We first de-
scribe the web-search query dataset that we used for our
experiments. Then, we explain how we model a query event
based on its features.

3.1 Dataset
The most extensive, freely accessible, real world web search

query dataset is the AOL dataset [27] from 2006. This
dataset contains about 21 million queries from nearly 650,000
users during a three month period. However, only about 850
users issue more than 500 queries over these three months.
To have a more realistic dataset, that reflects the behaviour



Feature Description

Behavioural features

TimeQuery Timestamp

DayWeek Weekday number

TimeDay Hour of day

NumClicks Number of landing pages clicked

Semantic features

TFQuery Frequency of terms in the query

TFLandingPage Frequency of terms in landing pages

NumQueryTerms Number of terms in the query

NumQueryChar Number of characters in the query

TFQueryAdult Frequency of adult terms in the query

TFLandingPageAdult Frequency of adult terms in the land-
ing pages

NumSpellingErrors Number of misspelled terms

TopicODP Set of ODP categories of the top 8
result pages

CitiesQuery Cities mentioned in the query

CountriesQuery Countries mentioned in the query

TFURL Keywords in URLs of the top 8 result
pages

QueryTermPopularity Frequency of the query terms in AOL
dataset

Table 2: Features extracted from the query events

of today’s Internet users, we have chosen 100 highly active
users from which we have between 400 to 1100 queries (800
to 1000 for most of the users). These users on average issue
about 8 queries per day. Table 1 presents some statistics
about these datasets. Note that while our analysis relies on
a much smaller set of users than the original AOL dataset,
we show in the Appendix that 100 users are representative
enough to estimate the overall distribution of the attack per-
formance, and hence to quantitatively compare the effective-
ness of different obfuscation mechanisms.

Every query is associated with a unique user identifier. In
addition to the query terms, the dataset contains the exact
time at which the user submitted the query and possibly the
link of the webpage clicked by the user on the search result
page, referred to as the landing page. As the landing pages
might not exist anymore due to the dynamic nature of the
web, we simulated the AOL queries on Google search engine
and populated the dataset with up-to-date content regarding
the landing pages. We note that this approach has some
practical limitations. For technical reasons, our web crawler
failed to retrieve some landing pages for which we could not
get the page full content. In our dataset, we ignore the
queries associated with such landing pages. Therefore, we
only consider queries where we have the full set of features.

In order to gather realistic TMN data, we developed a
Firefox plugin which takes real user queries from 100 users
of the AOL dataset and issues them to the Google search
engine, as a real user would do. In parallel, we have been
running TMN in the browser and recorded the generated
obfuscation queries. In order to simulate the three months
period of the AOL dataset in a reasonable amount of time,
we ran TMN during about one week and then scaled up
the timestamps of the queries in order to match the three
months period. The number of fake TMN queries are se-
lected such that they are approximately equal to the number
of user’s real queries. Table 1 presents some statistics about
the TMN dataset.

Query comparison Description

Behavioural feature similarities

D Time Difference of timestamps

S WeekWeekend Whether both in weekend or weekday

S SameDaytime Same 2 hour window of a day

D NumberClicks Difference of clicked landing pages

Semantic feature similarities

S QueryTerms JaccardC of the query terms

S LandPagTerms1 JaccardC of landing pages

S LandPagTerms2 TFIDF of landing pages

S LandPagTerms3 TFIDF of landing pages symmetric

D QueryTermLen Difference of query terms len

D QueryCharacterLen Difference of query characters len

S AdultTerms1 JaccardC of query adult terms

S AdultTerms2 Both queries have adult terms

S AdultTerms3 Queries adult terms bool difference

S LandPagAdultTerms JaccardC of landing page adult terms

D SpellingErrors Difference of spelling errors

S SpellingError1 Both queries have spelling error

S SpellingError2 Queries spelling error bool difference

S Level2Cat Same ODP level 2 category

S Level3Cat Same ODP level 3 category

D TreeDistance Average ODP tree distance

S City Queries have same city

S Country Queries have same country

S Location1 Both queries have location terms

S Location2 Queries location info bool difference

S UrlTerms JaccardC of top 8 landing page URLs

D QueryTermWeight Difference in query term weights

D EditDistance Levenshtein distance of queries

Table 3: (Similarity/Difference) Relations between
queries

3.2 Features
We extracted 16 features from the queries as listed in Ta-

ble 2. The features can be grouped into semantic features
and behavioural features [36]. For instance, features such as
the time of query, day of week or time of day are features
describing the behaviour of the user. Moreover, the number
of clicks per query characterizes how many times usually a
user clicks on a link on the result page(s).

For the semantic features, we extract some features that
are used in Natural Language Processing (NLP). We com-
pute the term-frequency and also the topics associated with
the result pages obtained according to the Open Directory
Project (ODP), an openly available hierarchical ontology [2].
When processing the terms in the query and the result pages,
we stem the terms by applying the Lancaster stemmer [3].

We use ODP for categorising queries into different seman-
tic categories/topics [10]. The ODP dataset contains about
4.2 million web-sites. The categories are organized within
a tree, having the root as common top category. There are
about 600,000 categories as the leaves in the ODP dataset.
We categorize a query into one or multiple ODP categories,
in the following way. Given a query, we retrieve the top 8
landing pages. For each landing page URL, we search the ex-
act URL in the ODP dataset (e.g., www.domain.com/abc).
If we do not find any match, we extract the domain of the
URL and search for the categories associated with the do-
main in the ODP dataset (e.g. www.domain.com). There
might be multiple categories associated with a URL. Having
a total of 73,984 unique queries across 100 users, we found



Feature relation Importance

D Time 100

D QueryTermWeight 24

S UrlTerms - Jaccard 22

D EditDistance 20

S LandPagTerms2 17

S LandPagTerms1 16

S LandPagTerms3 15

D QueryCharacterLen 13

S QueryTerms 11

D QueryTermLen 8

D TreeDistance 7

D NumberClicks 5

S SameDaytime 4

D SpellingErrors 4

S LandPagAdultTerms 4

S SpellingError1 1

Table 4: Relative importance of the features in link-
age function LUSR, i.e. linkage function learned
for attack against an obfuscation mechanism using
queries from another user.

Feature relation Importance

D QueryTermWeight 100

D Time 56

D EditDistance 32

D TreeDistance 31

S LandPagTerms3 26

S LandPagTerms1 20

S LandPagTerms2 19

D NumberClicks 18

D QueryTermLen 14

S UrlTerms - Jaccard 12

D QueryCharacterLen 10

D SpellingErrors 7

S SpellingError1 6

S Level2Cat 4

S SpellingError2 4

S LandPagAdultTerms 4

Table 5: Relative importance of the features in link-
age function LTMN , i.e. linkage function learned
for the attack against an obfuscation using auto-
generated queries (TMN).

at least one ODP category for 73,391 queries, accounting for
99.2% of the queries.

The queries may contain sensible and identifying informa-
tion about the users. This includes the geographic informa-
tion such as the name of a city or country, or whether the
queries contain particular terms such as adult terms. We ex-
tract location information from the queries by searching the
query terms in a city/country dataset [4]. If the query only
contains city information, we match the city to the country
as well. We also retrieve a list of adult terms and tagged each
query with its respective adult terms, if existing. Moreover,
since the language of most queries is English, we count the
number of misspelled words per query using a dictionary.

Another piece of information that we extract from the
queries is the popularity of the query terms with respect
to the queries that other users search. We compute how
trendy/popular each term is by counting its frequency in the
whole AOL dataset. Then we compute the overall popularity
of a query by summing these frequencies.

3.3 Query similarities
Features extracted about each query event represent the

information about a single web-search action by the user
independently from her other actions. In this section, we
seek to find the relation between multiple web-searches. To
this end we compare the features of pairs of query events by
computing the distance or the similarity between them [36].
We compare the query features in Table 2 and we derive 27
relations between them. Again, we group these relational
features into semantic and behavioural. Table 3 lists these
relations and their brief descriptions.

The behavioural relations capture e.g., the time difference
between two queries or whether they are issued on the same
day of the week or hour of the day. Two queries can be
associated with different intentions of the user if they are is-
sued during a weekday or the weekend. The same applies to
different hours of the day. In addition, the number of clicks
on the search result URLs (landing pages) might reflect the
interest of the user in the topic or her overall behaviour.

In the case of semantic features, we compute the relation
between a pair of queries with respect to the query terms,
and the content and topics of the landing pages. We make
use of Levenshtein edit distance [25] to compute the dif-
ference between the terms in two queries.3 This distance
should usually be small between queries that are issued im-
mediately after each other, as users repeat or modify their
queries to narrow down the search results. We also use the
Jaccard coefficient [5] (JaccardC) to compute the similarity
between the vectors of term frequencies in a query or in a
document. This approximately reflects what fraction of the
terms are common between two queries or documents.

In order to compute the distance between two landing
pages, we also make use of the standard information re-
trieval techniques to compare the relative importance of the
terms in a document to another. We compute the term-
frequency/inverse-document-frequency (TFIDF) metric [29].
This requires us to have a representative document frequency
database. Google provides an extensive dataset of unigrams
from about 8 million books [6]. By preprocessing the database
(e.g. filtering non-alpha terms), we extracted 3,113,114 terms
with their associated document frequency. The TFIDF met-
ric associates more importance to the terms that are specific
to the document that is analyzed, rather than the terms that
appear frequently in all documents.

With these different metrics, we capture various different
aspects of the relation between two queries or two landing-
pages. We also compute how different two queries are in
terms of the topics associated to their search results. The
ODP ontology enables us to derive such measures. Every
category in the ontology has a path to the root. Having
calculated the ODP categories of two queries, one relation
metric we consider is if the queries share a common level 2
or 3 ODP category. Having the path from the root to the
leaf category, we also calculate the tree distance from the
leaf category associated to one query to that of the other
query. Note that a query might be associated to several ODP
categories. In this case, we calculate the average distance
between them.

3The Levenshtein edit distance is a metric which counts the
number of changes that needs to be performed (insertion,
subtitution, deletion of characters) between two strings un-
til they are equal. Consequently, two equal strings have a
Levenshtein distance of zero.



4. LINKAGE ANALYSIS
In this section, we discuss the methodology of the linkage

attacks. We build upon the adversary’s prior knowledge,
namely (1) the users’ search behaviour model and (2) the
obfuscation mechanism. The key idea is to learn a linkage
function that predicts the relation between two queries; more
precisely whether they are issued by the same target user
or not. We use machine learning techniques to learn this
linkage function which generalizes our framework for any
new obfuscation mechanisms or other datasets. We use this
linkage function as the basis for the linkage attack where we
run a clustering algorithm to partition the set of observed
queries. We quantify the error of the linkage attack which
reflects the privacy level of the attacked user.

4.1 Linkage Function
The objective of the linkage attack is to identify which ob-

served queries belong to the target user and which of them
are fake (i.e. inserted by the obfuscation mechanism). Recall
that the obfuscation mechanism can introduce fake queries
by auto-generating them from a bag-of-words or by sampling
them from other real users. Irrespective of the type of ob-
fuscation, the key is to have a function that predicts if two
observed queries are from the same user, i.e., they are link-
able. To construct such a linkage function, we build upon
the users’ web search behaviour and their inter-similarities
and dissimilarities with respect to the fake queries. In the
following, we describe our methodology for learning the link-
age function.

4.1.1 Training Data and Linkage Features
We assume that the adversary has access to HG, historic

logs of web search activities for a set of users. For the case
of obfuscation using queries from another user, for any pair
of users ua, ub present in HG, we can consider ua being
target user whose search activity is obfuscated by using the
query events from ub. For the case of obfuscation by auto-
generated queries from bag-of-words (TMN), we assume that
the adversary has access to additional sets of these auto-
generated queries HF . In this case, for any user ua present
in HG, we can consider ua as target user whose search activ-
ity is obfuscated by using the query events from HF . Conse-
quently, irrespective of the type of obfuscation mechanism,
we can generate a labeled pairwise list of query events ei, ej .
Hereby, we set the linkage value to 1 if the queries are issued
from the target user ua, and 0 if one query is issued by the
target user ua while the other is added by the obfuscation
mechanism. We denote this assigned linkage label by yi,j .

Given this dataset consisting of pairwise lists of query
events ei, ej along with the assigned label yij with value
of 1 or 0, we extract the features that are listed in Table 2
for each of the query events in this data. We follow to find
the relation between (the features of) any two queries and
their predictive power with respect to the assigned label yi,j .
Informed by these per query features, we designed a set of
pairwise features that can capture the similarity or dissimi-
larity between two query events. We use the list of features
(functions) in Table 3 to compute the relation between each
pair of features of two given queries, as discussed in Sec-
tion 3.

Let lfi,j be the similarity between two query events ei and
ej with respect to feature f . We can compute this similarity
for every feature f given in Table 3. For all the pairs of

queries ei, ej in our training dataset, we compute the vector

of feature similarities link(lfi,j : ∀f) and label this feature
vector with label yi,j . Given this training data, we learn
the linkage function, denoted by L(ei, ej) that gives a score
on whether the two queries could have been issued from the
same user.

4.1.2 Learning the Linkage Function
While we could apply simple heuristics on how to best

combine these different similarity scores, we decided to take
advantage of machine learning based regression analysis to
automatically learn the weight of different features. More
precisely, our goal is to construct the linkage function that
can later take as input the set of feature similarities link(lfi,j :
∀f), for some pair of query events ei and ej and outputs the
linkage score.

In general, there might not be any linear relation be-
tween the features’ similarities and the linkage between two
queries. In fact, depending on the (dis)similarity of two
queries with respect to one feature, the importance of the
other features to determine the linkage of queries differs. For
example, the size of the intersection set of terms used in two
queries is of great importance when the two queries are is-
sued within a small time window. This is because the user
is narrowing down her search using almost the same search
terms. However, the similarity between the topics of re-
trieved documents is very important even when two queries
are distant in time. This is because the user is interested
in few topics that she searches about over time. Thus, the
regression function must learn the complex relation between
different features in order to predict the linkage value. To
this end, we make use of the Gradient Boosted Regression
Trees (GBRT) technique [19, 18]. This gradient boosting
algorithm produces an ensemble of small predictors as deci-
sion trees that all together form a strong prediction model.
Gradient tree boosting methods for regression and classi-
fication have various advantages including their robustness
against noisy data and interpretability of the learnt model
(e.g., a ranked list of feature importance) [36, 34].

The linkage function is learned as a stochastic decision
tree, so it captures the importance of different feature simi-
larities in linking queries. For our example obfuscations, we
generate the appropriate training data and learn the corre-
sponding linkage functions to be used for the attack. Let
LUSR and LTMN denote the linkage functions learned for
obfuscation with queries from another user and with auto-
generated queries from bag-of-words, respectively. Table 4
and Table 5 present the sorted list of top feature similari-
ties and their normalized importance for these linkage func-
tions.Those that appear on top are more important in the
sense that knowing their values provide a stronger signal in
computing the linkage value, as per the training data.

4.1.3 Aggregation over multiple Linkage Functions
The framework of using the machine learned linkage func-

tion gives us a lot of flexibility to further increase the robust-
ness of the attack. In fact, the adversary can learn multiple
of these linkage functions by varying the parameters, using
different data sets or even different algorithms. This further
enables the adversary to operate even when he has limited
knowledge of the parameters of obfuscation mechanism.

In our setting, we consider learning a set of such linkage
functions from a given dataset, by generating the training



data from HG for various different target users ua. Let us
consider that the adversary has learned a set of r different
linkage functions denoted by {L1, L2, . . . , Lr}. Given these
linkage functions, we can consider different ways of aggre-
gating their output to generate the final link score. For
example, one can compute some aggregate statistics (e.g.
median or mean) of the linkage score outputted by this set
of functions to use as the final linkage score for a pair of
queries for the clustering attack on it. On the other hand,
one can compute the result of clustering for every linkage
function separately, and then link together two queries if
majority of the clustering solutions put these queries into
the same cluster.

The specific aggregation scheme that we use in our ex-
periments is using the median of the link scores outputted
by Lj ∀ j ∈ [1 . . . r]. We use median as compared to other
statistics such as mean, as it is more robust to outlier values.
Further, we discuss in Section 5 how using such an aggre-
gation based linkage function can increase the robustness of
the linkage attack.

4.2 Linkage Attack
Given the linkage function L(ei, ej) learned by the adver-

sary, we run a linkage attack on the set SO. The goal is
to separate the query events of the target user and those
added by the obfuscation mechanism. Therefore, we com-
pute all the features of all query events in SO and for each
pair of queries ei, ej ∈ SO, we compute the pairwise simi-
larity L(ei, ej) between them. Having computed Lei,ej for
all ei, ej ∈ SO, we have a complete weighted graph where
query pairs with higher weight on their connecting edges
have a higher tendency to link together. We build upon this
inferred weights for the graph for the linkage attack which
aims to link the queries of the user together. Moreover, we
split the set of queries into multiple clusters. Our objective
is to maximize the intra-cluster similarities (i.e., between
queries within each cluster) and minimize the inter-cluster
similarities (i.e., between queries in different clusters). We
make use of the CLUTO clustering toolkit for the implemen-
tation of the attack [7, 36]. Using CLUTO, we run k-means
clustering optimizing the following objective function:

min
k∑

i=1

n2

i

∑
q∈Si,q

′∈SO
L(q, q′)

∑
q,q′∈Si

L(q, q′)
(1)

The output of the linkage attack is a set of clusters, given
by C(SO, L, k) = {S1, S2, . . . , Sk}. This output is then used
to quantify the privacy of users for various different metrics,
as discussed in Section 2.

5. EVALUATION
In this section, we use our quantitative methodology to

evaluate the privacy of a user with respect to two example
obfuscation methods that we discussed in Section 2: (TMN)
method that generates fake queries from a bag of text, and
(USR) method that generates fake queries by reusing all
queries of another real user.

5.1 Setup
As described in Section 3.2, we use a dataset that con-

tains queries of 100 AOL users that we protect using both
TMN and USR obfuscation mechanisms. We simulate the
web-search activities of each of the target users using our

Firefox plug-in, and we generate their corresponding TMN
fake traces. Regarding the USR obfuscation method, we se-
lect any of the 100 user traces to be used as the fake trace.
We run the experiments by adding USR fake traces 20 times,
each time selecting the fake trace at random from the 100
available traces. We evaluate the user’s privacy by averaging
it over these 20 cases.

To construct the adversary’s background knowledge, we
consider that the adversary can run the obfuscation mech-
anism and generate fake traces for selected real traces. We
assume that the attacker does not necessarily need to know
the details of the obfuscation mechanism, but tries to infer
it. Further, we define the query history that is available to
the attacker. In our experiment, we assume that the adver-
sary does not have access to the target user’s search history,
i.e., HU = ∅. However, we assume that attacker has ac-
cess to some queries of the AOL users other than the target
user. In our experiment, we choose the first 130 queries of
the 100 users. He also knows the TMN fake traces that are
generated for other users. From these datasets, we learn the
linkage functions.

As discussed in Section 4, the adversary does not know
a priori which set of query traces from his history set HG

will result in a better accuracy on a target user. In addition,
learning a single linkage function from all query traces in HG

might not necessarily result in the best accuracy. To this
end, we construct 60 linkage functions (LTMN

1 , · · · , LTMN
60 )

from different sets of TMN traces, and the same number
of linkage functions from different sets of the AOL traces
(LUSR

1 , · · · , LUSR
60 ).

For each target user and obfuscation we run the linkage at-
tack using all the linkage functions learned from other users
(i.e., those Lis that are not learned from the target user in
our dataset). Then, we aggregate the linkage function as
described in Section 4 by computing their median value for
each pair of queries. A comparison between the clustering
error of adversary, using the median aggregation, and that
of each individual linkage attack in our dataset shows that
in 61% of the cases the aggregate linkage function performs
better than 2/3 of the individual linkage functions and re-
sults in a lower error for the attacker.

To compute the query structure privacy and semantic pri-
vacy, we run the linkage attack to split SO into 2 clusters.
However, for computing the query structure relative privacy,
we run the attack with 10 clusters to better capture the
randomness of user’s web-search behavior reflected in her
queries. The concentration of queries in few clusters shows
the user’s profile in terms of a distinct combination of query
features e.g., different topics of interest.

5.2 Results
Figure 2 shows the absolute as well as the relative user

privacy with respect to their query structure privacy. The
x-axis shows the privacy value in terms of the normalized
false positive and false negative errors. The y-axis in all
the plots is the cumulative fraction of user and shows the
fraction of users who all gain at least the privacy level on
the x-axis.

By observing the query structure privacy (left part of fig-
ure 2), we can see that TMN offers a better privacy protec-
tion than the USR obfuscation method, and this superiority
is almost at the same level across the whole set of users. As
we described in section 2.5 however, we also need to quantify



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

F
ra

ct
io

n 
of

 U
se

rs

Query Structure Privacy − False Positive

 

 

USR
TMN

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

F
ra

ct
io

n 
of

 U
se

rs

Query Structure Relative Privacy − False Positive

 

 

USR
TMN

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

F
ra

ct
io

n 
of

 U
se

rs

Query Structure Privacy − False Negative

 

 

USR
TMN

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

F
ra

ct
io

n 
of

 U
se

rs

Query Structure Relative Privacy − False Negative

 

 

USR
TMN

Figure 2: Empirical CDF of the target user’s query structure privacy. The normalized false positive and false
negative errors reflect the privacy user as to what extent the reconstructed clusters by the attacker differ
from that of the user.

the privacy offered by the obfuscation mechanism after re-
moving the inherent randomness of the user. This is done in
the query structure relative privacy evaluation (right part
of figure 2). Here, still TMN offers a better relative pri-
vacy than the USR obfuscation. Yet, the gap between them
constantly increases as we cover a higher fraction of users,
reflecting the superior effectiveness of TMN versus USR re-
gardless of the user’s behavior.

Figure 3 shows the semantic privacy of users. We com-
pute a semantic profile as the average over the topic weights
associated to the search result pages of the queries obtained
from the level 2 categories of ODP. This include categories
on “health, sports, news, business, shopping, recreation, sci-
ence, ...”. We then compute the distance between the se-
mantic profile of SU with that of S1 and S2 separately. As
discussed in Section 4, S1 and S2 are retrieved from the
clustering attack on SO. We use the cosine distance as a
comparison metric between two semantic profiles. The pri-
vacy is 1 if the two profiles have no common topics, and is 0
if they have exactly the same weight on each of the topics.
The attacker will later label one of the two clusters as to be-
long to the target user. By taking the min privacy resulted
from these two clusters, we quantify the user’s privacy in
the worst-case scenario. In figure 3, we see that TMN offers
a better overall privacy level than the USR obfuscation. On
the average-case however (where we compute the mean of

privacy with respect to cluster 1 and 2), the USR privacy
is better for about 90% of the users. This shows the ef-
fects of user-specific background knowledge of adversary on
the user’s privacy. If the adversary does not have any such
knowledge, any of the two clusters is not that superior to
the other one as being the cluster associated with the user.
However, if he has access to HU , he can find the cluster
with higher similarity to the user’s web-search log history to
further break her privacy.

The USR based obfuscation uses fake queries which are
sampled from real users, yet it is the TMN based obfusca-
tion that offers better privacy across different metrics based
on the results above. This is due to the (e.g., temporal
and semantic) correlation between the fake queries gener-
ated using USR, across the whole query trace. In fact, one
should not confuse the problem of identifying whether a set
of queries are generated from a human or a machine (pass-
ing the Turing test) with the problem of linking together
the queries that are generated from a human. In this paper,
we are attacking the latter problem. The former problem
becomes solvable only if we have specific knowledge about
the behavior of the target user [8, 28], which is not our as-
sumption here.

Given these remarks, we could design obfuscation tech-
niques that take the best of both worlds. For example,
a hybrid TMN-USR based obfuscation scheme could first
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Figure 3: Empirical CDF of the target users’ seman-
tic privacy. The privacy metric is the cosine dis-
tance between a target user’s true (weighted) topics
of interest and the clusters constructed through the
linkage attack.

take the queries from another real user, but then injects the
queries and simulate the click behavior for these queries in an
automated fashion, similar to what TMN does. This breaks
the overall correlation between the fake queries, and make
it more difficult to split them from the user’s real queries.

6. RELATED WORK
A number of user-centric web search query obfuscation

methods have been proposed in the literature. Theses so-
lutions rely on the underlying idea of generating and inter-
leaving dummy queries together with the queries of the user.
The dummy queries are either sent as individual queries in-
terleaved with the user’s queries, or each user’s query is mod-
ified by adding some dummy terms.

TrackMeNot (TMN) [1] consists of a Firefox plugin that
issues dummy queries from predefined RSS feeds at random
intervals. GooPIR [15] is a standalone application which
can be used to issue queries to Google. Contrary to TMN,
a real user query is extended with dummy terms and issued
in a single search request. The search results are re-ranked

locally based on the original search query. PRivAcy model
for the Web (PRAW) [32] [17] builds an internal user pro-
file from queries and corresponding responses. PRAW aims
to issue queries which are not far from the actual user in-
terests. Plausibly Deniable Search (PDS) [26] aims at pro-
viding k-anonymity and puts an emphasis on the fact that
subsequent search queries should be related. When the user
issues a query, PDS searches for a synonym query in its in-
ternal datasets and replaces the real query with a similar
one. Optimized Query Forgery for Private Information Re-
trieval (OQF-PIR) [30] is designed to achieve perfect user
profile obfuscation by making the user profile equal to the
average population profile. The difference between the ac-
tual profile and the average population profile is calculated
with the Kullback-Leiber divergence. Similar to OQF-PIR,
Noise Injection for Search Privacy Protection (NISPP) [37]
tries to find the optimal dummy query distribution among
a finite number of categories. However, NISPP employs the
mutual information as a metric between the observed and
the real user profile. There are also some mechanisms that
rely on third parties to protect user’s privacy, for example,
by enableing them to share queries among themselves [11].

There is no common quantitative framework and privacy
metric which offer the possibility to comparing different ob-
fuscation mechanisms. Some obfuscation solutions use in-
formation theoretic metrics to compare the observed profile
and the real user profile, while other obfuscation mechanisms
(such as TMN [21]) do not employ any metric. Few eval-
uation methods are proposed to quantify user-centric web
search query obfuscation mechanisms. In [9], the authors
perform a qualitative analysis by investigating the specifici-
ties of the mentioned obfuscation solutions and elaborated
at least one countermeasure on how each obfuscation mech-
anism can be defeated. This study helps us to understand
the limitations of the proposed obfuscation mechanisms, but
does not allow us to quantitatively reason which one of the
solutions is better than the other. In [8], the authors anal-
ysed TMN dummy queries by clustering queries and labeling
them according to their similarity with the set of recently
issued queries by the user. However, the clustering algo-
rithm computes the similarity between queries irrespective
to the obfuscation mechanism. So, fake queries that are
similar to user queries can easily fall into the same cluster.
Furthermore, [12] presents two features that can help differ-
entiating TMN from real user queries. Another study [28]
of TMN presents that simple supervised learning classifiers
with few features can identify TMN queries reliably when
having access to recent user search history. This work also
proposes a clustering attack. However, it cannot distinguish
user and TMN queries, due to focusing on the similarity be-
tween queries rather than their linkability (as we learn and
use in this paper).

Our proposed linkage function does consider all differen-
tiating features and learns their importance automatically.
So, for example, the distance in time between queries influ-
ence our decision making on linking queries by looking at
the value of other features rather than ignoring the queries.
Our generic framework complements the existing work by
proposing a systematic and quantitative approach which
does not focus on any particular obfuscation mechanism,
and can evaluate privacy of user even if adversary does not
have any specific model on the target user.



Another related area of research which solves a similar
problem is the protection of the privacy of web query logs.
A survey of different obfuscation techniques for search query
logs is presented [13]. In [23], the authors propose to solve
the problem of releasing web query logs using differential
privacy.

7. CONCLUSIONS
Having a systematic methodology to reason quantitatively

about users’ privacy is a necessary step towards designing
effective obfuscation mechanisms. In the context of web-
search privacy, notwithstanding many contributions on pro-
tecting users’ web-search privacy and few specific attacks on
particular obfuscation mechanisms, the lack of a generic for-
mal framework for specifying protection mechanisms and for
evaluating privacy is evident. In this paper, we have raised
the questions of “what is web-search privacy? and how can
it be quantified, given an adversary model and a protection
mechanism?” and proposed a quantitative framework to an-
swer these questions. In this framework, we have modeled
various types of adversary’s knowledge as well as the user’s
privacy sensitivities that leads to the definition of privacy
metrics. To model the obfuscation mechanisms and adver-
sary’s knowledge about the user, we have designed a func-
tion we have called the linkage function. This is the main
building block of our quantification framework and helps us
to reason similar to an adversary and to distinguish pairs
of queries from a user from pairs of queries that have fake
information. We have constructed this function in a way
that does not need, yet it can incorporate, knowledge about
web-search behavior of the target user. We have used this
to reason how much information (whether at the query level
or semantic level) about the user is still leaked through the
obfuscation process. We have applied our methodology on
real datasets and compared two example obfuscation mech-
anisms. As the follow-up of this work, we want to design
web-search obfuscation mechanisms that anticipate the pos-
sibility of linkage attacks. This strategy will lead to robust
protection mechanisms.
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[11] J. Castelĺı-Roca, A. Viejo, and
J. Herrera-Joancomart́ı. Preserving user’s privacy in
web search engines. Comput. Commun.,
32(13-14):1541–1551, Aug. 2009.

[12] R. Chow and P. Golle. Faking contextual data for fun,
profit, and privacy. In Proceedings of the 8th ACM
workshop on Privacy in the electronic society, pages
105–108. ACM, 2009.

[13] A. Cooper. A survey of query log privacy-enhancing
techniques from a policy perspective. ACM
Transactions on the Web (TWEB), 2(4):19, 2008.

[14] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
The second-generation onion router. In Proceedings of
the 13th Conference on USENIX Security Symposium
- Volume 13, SSYM’04, pages 21–21, Berkeley, CA,
USA, 2004. USENIX Association.

[15] J. Domingo-Ferrer, A. Solanas, and J. Castellà-Roca.
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APPENDIX
The number of users that we use to learn the linkage func-
tion is a parameter in our evaluation. Here, we study how
the privacy gain of using an obfuscation mechanism is af-
fected by varying the number of users (from which we learn
the linkage function). To this end, we focus on the relative
privacy metric as it is the only metric that removes the ef-
fect of the target queries on the quantified privacy and only
reflects the privacy gain of obfuscation. We construct the
linkage function from different sets of users, of size 20 to
100, and quantify the relative privacy of TMN and USR.
Each set of users includes the users in the smaller sets. For
each of these cases, we can plot the empirical CDF for the
users’ privacy (as in Figure 2). However, to compare these
plots, we adhere to some statistics (5, 50, and 95 percentiles)
of these distributions. Figure 4 shows these statistics about
privacy of users versus the number of users that are used
for learning the linkage function. As the plot illustrates,
the privacy values do not fluctuate as we change the set of
users. Additionally, we observe that we do not gain in the
accuracy of the privacy metric by increasing the number of
users beyond 100. So, this is a reasonable size for the linkage
function learning set that we use in our evaluation.


