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Privacy Risks in Machine Learning

Direct Leakage

training inference

phase
X
X
— —
input
Training Set p— training ——» y @
. [ prediction
\ f ) f(x; W)

How to prevent this leakage? Secure multi-party computation,
homomorphic encryption, trusted hardware, ...
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Privacy Risks in Machine Learning

What is leakage? Inferring information about members of X,
beyond what can be learned about its underlying distribution
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Indirect Leakage

[Shokri, Stronati, Song, Shmatikov] Membership Inference Attacks against Machine Learning Models, SP'17

[Nasr, Shokri, Houmansadr] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-
box Inference Attacks against Centralized and Federated Learning, SP’19
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How to Quantify the Leakage?

* Indistinguishability game: Can an adversary distinguish
between two models that are trained on two neighboring
datasets (only one includes data point x)?
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* Membership inference: Given a model, can an adversary

infer whether data point x is part of its training set?
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[Shokri, Stronati, Song, Shmatikov] Membership Inference Attacks against Machine Learning Models, SP*17
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Tool: ML Privacy Meter
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ML Privacy Meter is a Python library (m1 privacy meter)
that enables quantifying the privacy risks of machine learning :
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models. https://github.com/privacytrustlab/ml_privacy_meter Eh:::
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Privacy Risks in Machine Learning

What is leakage? Inferring information about members of X,
beyond what can be learned about its underlying distribution
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How to mitigate this risk? parameters predictions

Differential privacy Indirect Leakage

[Shokri, Stronati, Song, Shmatikov] Membership Inference Attacks against Machine Learning Models, SP'17

[Nasr, Shokri, Houmansadr] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-
box Inference Attacks against Centralized and Federated Learning, SP’19
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Differential Privacy

e A randomized algorithm &f satisfies (¢, 6)-DP, if for any two
neighboring datasets D, D', and all sets §

Pr[/(D) € S| < e“Pr[d (D) € S]+ 0

[Dwork, McSherry, Nissim, Smith] Calibrating Noise to Sensitivity in Private Data Analysis, TCC 2006
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Renyi Ditferential Privacy

e A randomized algorithm &f satisfies (a, €)-Renyi DP, for a > 1,
it for any two neighboring datasets D, D',

R(A(D)| (D)) <€

* R (P||Q) is the a-Renyi divergence of P with respect to O

R(PIQ) = ——1log E <@>
’ a-1 "0 |\Q@/
| log 1/5
o (a,¢)-RDP is (€A —,0)-DP for any 6
a— 1

» Composition of (a, €;)-RDP and (a, €,)-RDP is (a, €; + €,)-RDP

[Mironov] Rényi differential privacy. CSF 2017
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Learning with Differential Privacy

>

One iteration: Partitioning, or

n/b mini-batches sampling with replacement
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Leakage of one update
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Learning with Differential Privacy

Sampling with
replacement
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Leakage of one update
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Learning with Differential Privacy

Partitioning

>

Reveal parameters only

at the end of an iteration
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Leakage of one update Prlvacy LOSS (Composition)
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Observation 1:

This analysis accounts for privacy loss
of all iterations,

even if the only observables are the
model parameters at the final iteration K
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Observation 2:

Privacy loss increases with a linear rate

> Baseline

S

£ 80

= PAI

5

3 60| PAS

=

Q i

2 40 &

O

~

S 20| All Iterations Contribute Equally

= to the Total Privacy Loss
0 2 4 6 8 10

lterations: K (passes over the whole data)



Reza Shokri — 2021

Differential Privacy Dynamics

* Assume that adversary observes the model parameters at
iteration K, and the state of the algorithm is private
throughout the training

* How does privacy loss change over time?

« What is the difference between R (A (D) | A _(D"))
and R (A (D) | A (D)) for various K?

17
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Noisy Gradient Descent

Input: Dataset D = (x1,X2, - , Xy ), loss function /¢, learn-
ing rate n, noise variance o2, initial parameter vector 8.

1: for k=0,1,--- , K —1 do
2: g(@k; D) — Z?:l V@(Qk, Xi)
32 k1 =0k — Lg(0k; D) + /2n02N (0, 14)

4. Output O
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Dynamics of RDP in Noisy GD

* Noisy GD is a discrete-time stochastic process

* Coupled stochastic processes: Let D, D' be two neighboring
datasets. Let {0, };5¢ and {©, };~¢ be the sequence of
probability distributions over training iterations on D, D',

respectively. We assume 0, = ©, are initial parameter
distributions.

* Renyi divergence R (O | Ox) retlects the privacy loss at
iteration K
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Dynamics of RDP in Noisy GD

* We trace the changes in privacy loss of this discrete-time

stochastic process, with a continuous-time stochastic process,

which matches the probability distributions at each iteration
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RDP for Noisy GD

Theorem ( RDP for Noisy GD ) The noisy GD algorithm

with loss function ((0;X), learning rate 1, and noise vari-

ance o2, satisfies (o, €) Rényi differential privacy with

aSg
>
= 3o?n2(1 - 1)’

E

(1 . e—Xr]K/Q)

)

If

1) Gy ~ N (0, %Hd),

2) loss function £(0;x) is A-strongly convex and (-smooth,
and total gradient g(0;D) = ) . .p VE(0;%;) has a
finite sensitivity S,,

3) update step-size n < %
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|l ower Bound on RDP

Theorem 5 (Lower Bound on Rény1 DP for Noisy GD). There
exist two neighboring datasets D, D’ € X™, a start distribution
po, and a B-smooth loss function £(0;X) which has a total
gradient g(0; D) with finite sensitivity S,, such that for some
constants a1, a9 > 0, and for for any K € N, the Rényi privacy
loss of Anoisy-cp on D, D’ with step-size 1 and noise variance
o is lower-bounded by

a1¢ _as
e (B0 Oh) > ooy (1= 77K,
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Tightness Analysis
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