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Abstract— Camouflaging user’s actual location with fakes is a
prevalent obfuscation technique for protecting location privacy.
We show that the protection mechanisms based on the existing
(ad hoc) techniques for generating fake locations are easily
broken by inference attacks. They are also detrimental to many
utility functions, as they fail to credibly imitate the mobility
of living people. This paper introduces a systematic approach
to synthesizing plausible location traces. We propose metrics
that capture both geographic and semantic features of real
location traces. Based on these statistical metrics, we design a
privacy-preserving generative model to synthesize location traces
which are plausible to be trajectories of some individuals with
consistent lifestyles and meaningful mobilities. Using a state-
of-the-art quantitative framework, we show that our synthetic
traces can significantly paralyze location inference attacks. We
also show that these fake traces have many useful statistical
features in common with real traces, thus can be used in
many geo-data analysis tasks. We guarantee that the process
of generating synthetic traces itself is privacy preserving and
ensures plausible deniability. Thus, although the crafted traces
statistically resemble human mobility, they do not leak significant
information about any particular individual whose data is used
in the synthesis process.

I. INTRODUCTION

It is preferable not to travel with a dead man.

Henri Michaux

A popular method to protect the privacy of a mobile user,
who queries a location-based service (LBS), is to hide her
true query among fake queries. Users keep the obtained
information to their real queries and discard the responses
to all their fake queries. The existing techniques to generate
fake locations [10], [23], [24], [26], [45], [49], [56], are based
on very simple heuristics such as i.i.d. location sampling and
sampling locations from a random walk on a grid or on the
road network or between points of interest. The generated
location traces using these types of techniques fail to capture
the essential semantic and even some basic geographic features
of the mobility of a living human who has a consistent lifestyle
and meaningful mobility. Thus, as we quantitatively show, they
poorly protect users’ privacy against location inference attacks
that can easily filter out the trajectories of the jumping dead.

In order to be plausible, synthetic traces need to statistically
resemble real traces, thus themselves should be generated in a
privacy-preserving manner. Consider the most naive protection
scheme where location samples from the trajectory of Alice
(a real person who perhaps is not even using the LBS) are
used to mask locations of Bob (a LBS user). Clearly this is
too intrusive with respect to the privacy of Alice, although it

confuses the attacker about Bob’s truly visited locations. The
obfuscation techniques that compose an area of fake locations
around the user’s true location, e.g., [30], [39], [52], are
inappropriate for similar reasons: they have a strong statistical
correlation with the user’s true trace and do not introduce
much error to location inference attacks. Thus, they are less
privacy preserving than even, for example, i.i.d generated fake
locations [45].

In this paper, we present and evaluate the first formal
and systematic methodology to generate fake yet semantically
real privacy-preserving location traces. In this approach, we
propose two mobility metrics that capture how realistic a
synthetic location trace is with respect to the geographic and
semantic dimensions of human mobility. We then construct
a probabilistic generative model that produces synthetic yet
plausible traces according to these metrics. We build our gen-
erative model upon a dataset of real location traces as seeds.
Thus, the model itself needs to be privacy-preserving. To this
end, we design privacy tests to control and limit information
leakage about the seed dataset. We then use state-of-the-art
location inference attacks to evaluate the effectiveness of our
fake traces in preserving the privacy of LBS users. On a set
of real location traces, we show that the attacker’s probability
of error [46] in estimating the true location of users over
time is 0.9972 when using our method, i.e., we achieve close
to maximum privacy. By comparison, the attacker’s error is
0.2958, 0.3066, 0.3802, and 0.7486 when using existing i.i.d.
sampling and random walk methods.

Our scheme is based on the fact that mobility patterns of
different individuals are semantically similar, regardless of
which geographic locations they visit. These common features
of human mobility stem from their similar lifestyles, e.g.,
traversing between home, workplace, friends’ place, favorite
shops and recreational places, and occasional new locations.
These mobility patterns share a similar structure that reflect
the general behavior of a population (at a high level [48]).
We model the mobility of each individual in two dimensions:
geographic and semantic. In addition to the common mobility
patterns (i.e., how people move in a city), the geographic
features are mostly specific to each individual (e.g., what
everyone refers to as her “home” is located in a geographically
distinct place), whereas the semantic features are mostly
generic and representative of overall human mobility behavior
(e.g., most people have a “home” where they stay overnight).
Thus, the semantic representations of human mobilities are
very similar, especially within a culture group with similar life



styles. We extract these common semantic features as well as
the aggregate geographic features from real mobility datasets,
as seed. Using this, we probabilistically generate synthetic
traces which are geographically probable and semantically
similar to real traces. This results in a set of traces for
nonexistent individuals with meaningful lives and consistent
mobility patterns as any real individual in the seed dataset.

We preserve the privacy of seed traces. Our first step is
a random and independent sampling of the seeds, which
is shown to be very effective in boosting the privacy of
individuals in a database [16]. We generate synthetic traces
from sampled seed traces. We then accept a synthetic trace
only if (1) it is geographically dissimilar to seeds and (2) the
same synthetic trace could have been generated from k ≥ 1
non-sampled alternatives. This ensures plausible deniability.
This is intrinsically similar to the notions of crowd blending
privacy [16], zero knowledge privacy [17], and outlier privacy
[31]. Our privacy guarantees protect the privacy of seed traces
against the following threats: inference attacks (to learn which
locations the seed contributors have visited), and membership
inclusion attack (to learn if a particular individual with certain
semantic habits has been in the seed dataset).

The application of our generated synthetic traces goes be-
yond protecting the privacy of mobile users in location-based
services. Our generated traces can also be used for a variety of
geo-data analysis tasks such as modeling human mobility [28],
map inference [29], points of interest extraction [59], semantic
annotation of locations [55], and location optimization for
opening new shops [22]. We list six features of traces that
contribute to these applications and show that our synthetic
traces exhibit a similar performance to what is achieved from
real traces on these tasks. For example, out of 400 locations,
the accuracy of synthetic traces in extracting the top-35 points
of interest is 96.7% compared to real traces. This is 88.5% and
100% respectively for the top-30 and top-40 points of interest.

Novelty. We design, implement as a tool, and evaluate with
real data the first formal privacy-preserving generative model
to synthesize plausible location traces. Our privacy guarantees
ensure plausible deniability for individuals whose trace is
used by our algorithm. In a LBS scenario, we show that our
fake traces can bring near maximum location privacy (against
state-of-the-art inference attacks) for the users with minimum
overhead (i.e., the number of fake locations needed to be sent
to the LBS server along with the true location). We also show
that these traces do not perturb the semantic profile of the user
in location-based recommender systems. In the dataset release
scenario, where only synthetic traces are released for analysis,
we show that useful features are preserved for multiple geo-
data analysis tasks. We design privacy tests to ensure that the
synthetic traces do not leak more information about the real
traces from which they are generated than alternative traces.

II. RELATED WORK

Synthetic (also called fake or dummy) information can
protect privacy and security in many different systems such as
web search [18], [20], anonymous communications [5], [12],

authentication systems [21], and statistical analysis [33], [42].
In all these scenarios, the main challenge and the still open
problem is to generate context-dependent fake information that
resembles genuine user-produced data and also provides an
acceptable level of utility while enhancing privacy of users.

In location-based services, location obfuscation is a preva-
lent non-cryptographic technique to protect location privacy. It
does not require changing the infrastructure, as it can also be
done entirely on the user’s side either by altering (perturbing)
the location coordinates to be reported or by sending fake
location reports interleaved or along with the true locations.

Many location perturbation techniques are based on adding
some noise to the user’s location coordinates or reducing its
granularity, e.g., [3], [4], [19], [47]. The downside of these
techniques is that they reduce the users’ experienced LBS
service quality. This is because the server provides contextual
information related to the queried location and not the true
location of the user. So, users have to trade service quality
for privacy. Optimal solutions for location perturbation are
proposed [7], [47] which show the high cost of this technique.

Hiding the user’s true location among fake locations is a
promising yet not systematically-approached method to pro-
tecting location privacy. There are few simple techniques pro-
posed so far: adding independently selected locations drawn
from the population’s location distribution [45], generating
dummy locations from a random walk on a grid [24], [56],
constructing fake driving trips by building the path between
two random locations on the map given the more probable
paths traveled by drivers [26], adding noise to the paths
generated by road trip planner algorithms [10], or generating
the path between points of interests [49] and pausing at
those points [23]. All these solutions lack a formal model for
human mobility and do not consider the semantics associated
with location traces. Thus, the generated traces can be easily
distinguished from real trajectories, as we show in this paper.

To address potential misunderstandings, we contrast our
work with anonymization, and releasing aggregate statistics.
(1) Anonymization consists in removing identifiers of individ-
uals in the data, and publishing only the resulting (sanitized)
dataset. While this preserves utility, it does not provide much
privacy protection. Indeed, many researchers have shown that
anonymous traces are easily re-identifiable [32], [50], [58].
(2) Releasing privacy-preserving aggregate statistics has been
proposed in many contexts. In particular, there has been a lot of
recent work on releasing differentially-private histograms for
various types of data [1], [2], [54]. These are totally unsuitable
to be used in the LBS scenario and, in general, in applications
which require full location traces. For example, to obtain a
full location trace from a private histogram, one way is to
repeatedly and independently sample locations from it. This
results in an unlikely trace which include “jumps” between lo-
cations regardless of their distance and mobility constraints. In
particular, [1] considers the problem of releasing differentially-
private location histograms at various time intervals. Also,
[9] releases variable length n-grams with differential privacy
guarantee, which cannot produce full location traces.
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In summary, the existing approaches do not evaluate how
plausible and privacy-preserving their synthesized traces are.
They are only based on simple heuristics about human mobil-
ity. Hence, they do not properly preserve geographic features
of it, and completely ignore its semantic features. As a result,
their produced traces are not suitable in many scenarios.
They also lack privacy guarantees (and fail) against inference
attacks. This paper fixes these shortcomings and enables us to
reason about and generate plausible synthetic location traces.

There are also several notable related works which appear
similar to this work but have subtle and important differences.
An example is DP-WHERE [36] which uses Call Detail
Records (CDRs) databases to produce differentially-private
synthetic databases with a distribution close to real CDRs.
However, CDRs are not equivalent to full location trajectories
because the location is only known at the time when a call
is made. Another example, is wPINQ [40] which achieves
differential privacy by calibrating down the weight of some
data records. wPINQ further proposes a way of generating
synthetic datasets using Markov chain Monte Carlo methods.
The techniques used, scenarios, and utility evaluation prohibit
a direct comparison with our work: wPINQ focuses on graphs
given noisy measurements about the number of triangles,
whereas we consider the problem of generating plausible full
location trajectories.

Finally, Dwork et al. [15] introduce a class of mechanisms
called Propose-Test-Release (PTR) which first picks a bound
on the sensitivity (of a statistic of interest) and then (privately)
tests whether noise calibrated to this candidate bound is
sufficient to ensure differential privacy. If so, then a noised
output is released, otherwise no output is produced. There are
two major differences between PTR and our work. First, we
aim to generate synthetic location traces, whereas [15] seeks
privacy-preserving ways to estimate robust statistics such as
discovering the median of a dataset without prior knowledge
of the scale of the data. Second, the PTR framework performs
a test of the sensitivity of a statistic before deciding to release
a noised output, whereas our privacy tests are there to test the
synthetic traces generated themselves before deciding whether
to release them.

III. OUR SCHEME

In this section, we present a sketch of, and describe the
main intuition behind our scheme for generating fake traces.
We assume that time and space are discrete, so a location
trace is represented as a sequence of visited locations over
time. In our scheme, we synthesize a trace through a multiple
step process. We transform a (geographic) seed trace into the
semantic space and probabilistically transform it back to the
geographic space. Thus, the sampled trace is geographically
and semantically plausible. Figure 1 illustrates our scheme.

A. Subsampling the Seeds

We generate synthetic location traces by using a set of real
traces, from which we randomly subsample a set which we
refer to as the seed dataset. We refer to the set of traces

A trace is a sequence of locations 
visited over time

Real Location Traces
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   From the similarity between 
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a similarity graph and cluster it

Location Semantic 
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Aggregate Mobility 
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Fig. 1: Sketch of the proposed scheme.

that are not sampled as the alternative dataset. The reason for
subsampling becomes more clear when we explain our privacy
guarantees. Put simply, to guarantee plausible deniability, we
ensure that there are k alternative traces that could have
produced a similar synthetic trace generated from a seed.

B. Computing the Semantic Similarity

Our goal here is to compute the semantic similarity between
locations. To this end, we start with modeling mobility of seed
locations. For each trace (i.e., sequence of locations visited
in the trace) in the seed dataset, we compute a probabilis-
tic mobility model that represents the visiting probability to
each location and transition probability among the locations
(see Section IV-A). The mobility model encompasses the
spatiotemporal behavior of each individual across different
locations. Time, duration, and probability of visiting a location,
as well as the probable previous and subsequent locations are
computable from the mobility model.

We analyze and discover the semantic relation between
different locations in a consistent manner by considering all
locations together. To this end, we propose a semantic similar-
ity metric (see Section IV-D). Intuitively, we assign a higher
similarity value to a pair of locations if multiple individuals
have similar spatiotemporal activities in them. We find the
optimal way to map the visited locations in a pair of traces
such that the mapping maximizes the statistical similarity
between their mobility models. The semantic similarity metric
is therefore the statistical similarity between mobility models
under the optimal semantic mapping between locations. This
means that if we were to translate the locations visited by two
individuals according to the discovered best mapping, they
would follow the same mobility model when their semantic
similarity is high (i.e., have similar life styles). For example,
consider Alice and Bob spending all day at their respective
work locations wA and wB , and all night at their respective
home locations hA and hB . Obviously, their mobility models
are semantically very similar, although it might be the case that
hA 6= hB and wA 6= wB . In this example, the best semantic
mapping between locations will be wA ↔ wB and hA ↔ hB .
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That said, the semantic similarity metric we propose goes
beyond simply finding the best mapping for home and work.
Indeed, the best mapping is over all locations, so it may be
that Alice’s favorite bar is mapped to Bob’s favorite nightclub,
if Alice and Bob visit those places in a similar way.

For each pair of mobility models of traces in the seed
dataset, we compute their semantic similarity as well as
the best semantic mapping between their locations. Note
that the semantic similarity is quantifying the similarity of
two mobility models, not that of two location traces. This
incorporates the similarity between statistical information in
the traces rather than their exact sequence of locations. We
then aggregate all the location matchings across all seed trace
pairs, with weights based on the semantic similarity between
mobility models, and construct a location semantic graph,
where the nodes are locations and the weight of the edges
is the average semantic similarity between the locations over
the dataset.

C. Forming Location Semantic Classes

The location semantic graph enables us to infer which
locations have similar meanings (or purpose) for different
people. The locations that have higher semantic similarity
can be grouped together to represent one location semantic
class. We run a clustering algorithm on the location semantic
graph to partition locations into distinct classes. Regardless
of their geographic positions, the locations that fall into the
same class are visited in the same way by different people.
In other words, their visit probability, time of visit, and the
probabilities of transition from/to them to/from other locations
with the same type is similar. Thus, we can consider them
as being semantically equivalent. So, using the notations of
our previous example, wA and wB should belong to the
same cluster that can represent “workplace” locations, and hA
and hB should be grouped into another cluster representing
residential or “home” locations.

D. Synthesizing a Trace

We use the location semantic classes as the basis to generate
synthetic traces. In addition to being semantically realistic, the
fake traces must be geographically consistent with the general
mobility of individuals in the considered area. For example,
the speed of moving between locations and the duration time
of staying in a location depend on the time of the day or
the probabilities of different paths that cross those locations.
To capture these patterns, we compute an aggregate mobility
model from the traces in the seed dataset by averaging their
corresponding mobility models.

The goal is to synthesize traces that are semantically similar
to real traces. To this end, our algorithm starts with a seed trace
and converts it to a probabilistically generated semantically
similar synthetic trace which is consistent with the aggregate
mobility model. We first transform the geographic seed trace
into the semantic domain, then we use the transformed seman-
tic trace to sample from the domain of all geographic traces
that could have been transformed to the same semantic trace.

The transformation and sampling procedures, which are at the
heart of this step, are done as follows.

In the transformation process, we replace the geographic
locations in the seed with the locations that are in the
same semantic class. This semantic trace is a sequence of
location sets. For sampling a synthetic trace, we address the
following problem. We want to construct a trace that follows
the aggregate mobility model under the constraint that its
locations over time are a subset of locations of the seed
semantic trace. Hence, both the synthetic trace and the seed
trace can be transformed to the same semantic trace. This
makes the synthetic trace semantically plausible. We add some
randomness to the locations in the semantic trace to increase
the flexibility of our algorithm. Many methods can be used to
sample the fake trace that satisfies our constraints. We make
use of dynamic programming algorithms that construct the
traces efficiently (see Section V).

We can repeatedly generate synthetic traces from each
seed trace in the dataset, each of which having a probability
according to the aggregate mobility model. After generating
each trace, however, we need to make sure that it is not
geographically similar to the seed trace. This is because we
do not want to leak information about the real seed trace. To
this end, we add a test to compute the geographic similarity
between the seed trace and the fake trace to reject the sample
traces that are more similar than a threshold to the seed trace.
Thus, we make sure that the semantically similar synthetic
traces are indeed geographically dissimilar to the traces in our
dataset, hence do not leak information about visited locations
in the real traces. We also ensure that the semantics of a
synthetic trace do not leak about a seed trace more than what
they leak about alternative traces (which are not among the
seeds and our algorithm is independent of). To this end, we
run the plausible deniability privacy test (see Section V).

IV. MOBILITY SIMILARITY METRICS

In this section, we present a probabilistic model for mobility,
and propose two metrics to analyze the geographic and seman-
tic similarity between two mobility models. Table I presents
the list of notations that we use in this paper.

A. Mobility Model

We model the user mobility as a time-dependent first-order
Markov chain on the set of regions (locations). As users
have different activities and mobility patterns during different
periods of time, we assume that time is partitioned into time
periods, e.g., morning - afternoon - evening - night. So, the
mobility profile 〈p(u), π(u)〉 of a given user u is a transition
probability matrix of the Markov chain associated with the
user’s mobility (from a region to another), and the user’s
visiting probability distribution over the regions, respectively.
Note that these probabilities are dependent on each other, and
together they constitute the joint probability of two regions
that are subsequently visited by the user. The entry pr

′

r,τ,τ ′(u)
of p(u) is the probability that user u will move to region r′ in
the next time instant (which will be in time period τ ′), given
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R Set of locations
R Number of locations
r A location
r Random variable associated with a location
T Number of time periods
τ A time period

p(u) Transition probability matrix of user u
π(u) Visiting probability vector of user u

〈p(u), π(u)〉 Mobility profile of user u
pxy(u) Probability of x given y according to u’s mobility model
d(·) A distance function (between locations)

Md(p, q) Mallows distance between probability distributions
p and q based on a distance function d(·)

σ A permutation function
simG(u, v) Geographic similarity between mobility of u and v
simS(u, v) Semantic similarity between mobility of u and v

σv
u Optimal semantic mapping between locations of u and v
S Set of real traces used as seeds to generate synthetic traces
A Set of alternative real traces used in plausible deniability test
〈p̄, π̄〉 Aggregate mobility model
C A partition on R, representing location semantic classes.

Ci is the set of locations in class (partition) i
F A set of fake locations generated from S

TABLE I: Table of notations

that she is now (in time period τ ) in region r. The entry πrτ (u)
is the probability that user u is in region r in time period τ .
We can compute π(u) from traces or directly from p(u) (in
some circumstances). Let the random variable At

u represent
the actual location of user u at time t, and τ t be the time
period associated with At

u. So, the mobility profile of a given
user u consists of the following probabilities:

pr
′

r,τ,τ ′(u) = Pr{At+1
u = r′ |At

u = r; τ t+1 = τ ′, τ t = τ},
πrτ (u) = Pr{At

u = r; τ t = τ} (1)

This Markovian model can predict the location of an in-
dividual to a great extent, as it takes both location and time
aspects into account. It can become even more precise, by
increasing its order, or by enriching its state. Our framework
can incorporate new dimensions similar to the way we model
the time periods. To learn the probabilities of the mobility
profile (1), from location traces, we can use maximum like-
lihood estimation (if the traces are complete) or make use of
algorithms such as Gibbs sampling (if the traces have missing
locations or are noisy) [46].

B. Mobility Similarity Metrics

We propose two metrics to compare the mobility of two
users and compute their similarities: geographic and semantic
similarity. In this subsection, we describe the intuition behind
these metrics, and in the following subsections, we formally
define and provide the algorithms to compute them.

The geographic similarity metric captures the correlation
between location traces that are generated by two mobility
profiles. It reflects if two users visit similar locations over
time with similar probabilities and if they move between those
locations also with similar probabilities. Using this metric, for
example, two individuals who live in the same region A and
their workplace is in the same region B potentially have very

similar mobilities, as they spend their work hours in B and
most of their evenings in A.

The geographic similarity between the mobility models
of two random individuals is usually low. However, if we
ignore their exact visited locations, they tend to share similar
patterns for visiting locations with similar semantics (locations
therein they have similar activities). Consider the semantic
dimension of locations as a coloring of them on the map.
Besides the geographic correlation between location traces,
we can compute their correlation at the semantic level too
(by reducing the set of locations to colors and computing
the similarity of colored traces). This is the intuition behind
our semantic similarity metric. In this case, if the pair of
locations that two individuals visit over time have the same
semantic, their mobility models are also semantically similar
(even if they do not intersect geographically). For example,
if we transform trace X by replacing its locations with their
corresponding semantically similar locations in trace Y, the
transformed trace becomes statistically similar to Y. So, two
traces are semantically similar if their locations can be mapped
(translated) to each other in this way.

C. Geographic Similarity Metric

We define this similarity metric based on the Earth Mover’s
Distance (EMD) for probability distributions. The EMD is
widely used in a range of applications [43], [44], and can
be understood by thinking of the two distributions as piles of
dirt where it represents the minimum amount of work needed
to turn one pile of dirt (i.e., one distribution) into the other;
the cost of moving dirt being proportional to both the amount
of dirt and the distance to the destination. The special case
of EMD for probability distributions has been shown to be
equivalent to the Mallows distance [27].

Let X and Y be discrete random variables with probability
distributions p and q, such that Pr{X = xi} = pi and
Pr{Y = yi} = qi, respectively, for i = 1, 2, . . . , n. We also
have

∑
i pi = 1 and

∑
i qi = 1.

Definition 1. (From [27]) Let d(·) be an arbitrary distance
function between X and Y. The Mallows distance Md(p, q)
is defined as the minimum expected distance between X and
Y with respect to d(·) and to any joint distribution function
f for (X,Y) such that p and q are the marginal distributions
of X and Y, respectively.

Md(p, q)=min
f
{Ef [d(X,Y)] : (X,Y)∼f,X∼p,Y∼q} , (2)

where the expectation, minimized under f , is

Ef [d(X,Y )] =

n∑
i=1

n∑
j=1

fij d(xi, yj). (3)

In addition to the two constraints
∑n
i=1

∑n
j=1 fij = 1 and

fij ≥ 0, for all i, j, the joint probability distribution function
f must also satisfy

∑n
i=1 fij = qj and

∑n
j=1 fij = pi.

Note that, for given p and q, the minimum f is easily
computed by expressing the optimization problem as a linear
program.
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Using the previous definition, we define the geographic
similarity metric based on the Mallows distance.

Definition 2. Let d(·) be an arbitrary distance function. The
dissimilarity between two mobility profiles 〈p(u), π(u)〉 and
〈p(v), π(v)〉 (belonging to individuals u and v), is defined as
the expected Mallows distance of the next random locations
r′ and r′′ according to the mobility profiles of u and v,
respectively. More formally, it is

E(u)[Md(p
r′

r,τ,τ ′(u), pr
′′

r,τ,τ ′(v))], (4)

where pr
′

r,τ,τ ′(u) and pr
′′

r,τ,τ ′(v) denote the conditional prob-
ability distributions of the next location, given the current
location and the current and next time periods. The Mallows
function is computed over random variables r′ and r′′, and
the expectation is computed over random variable r and time
periods τ and τ ′.

We define the geographic similarity between mobility pat-
terns of u and v as

simG(u, v) = 1−
E[Md(p

r′

r,τ,τ ′(u), pr
′′

r,τ,τ ′(v))]

zg
, (5)

where zg is a normalization constant equal to the maximum
value of (the expectation of) the Mallows distance given d(·),
ensuring that the geographic similarity always lie in [0, 1].

We compute the geographic dissimilarity using the law of
total expectation. This also clarifies its meaning by showing
more directly the role of the random variables.

E[Md(p
r′

r,τ,τ ′(u), pr
′′

r,τ,τ ′(v))]

=
∑
r,τ,τ ′

Md(p
r′

r,τ,τ ′(u), pr
′′

r,τ,τ ′(v)) · pr,τ,τ
′
(u). (6)

This is simply the average, for each time and location, of
the EMD between the distributions of the next location of u
and v. So, for each current location (and time), we use the
EMD to compute the dissimilarity between the distributions
representing the next locations of users u and v, respectively.
The current location is taken according to user u’s mobility
profile, making this definition asymmetric.

For a particular distance function d(·), the Mallows distance
definition can be expanded and previous expressions can be
further simplified. This is the case for d(i, j) = 1i 6=j , for
which Md(p, q), for arbitrary probability distributions p and
q, has closed form 1−

∑
i min {pi, qi}.

Using the dissimilarity metric, we can compute the geo-
graphic similarity between the mobility profiles 〈p(u), π(u)〉
and 〈p(v), π(v)〉, for any distance function (e.g., hamming dis-
tance, Euclidean distance). For example, considering hamming
distance d(r, r′) = 1r 6=r′ , the geographic similarity is:∑

r,r′,τ,τ ′

pτ
′

r,τ (u)πr,τ (u) min{pr
′

r,τ,τ ′(u), pr
′

r,τ,τ ′(v)}. (7)

We emphasize that this definition leads to an asymmetrical
similarity measure, i.e., the similarity of u to v need not be the
same as the similarity of v to u. In principle, this metric can

also be computed using measures other than EMD. For exam-
ple, one can use Kullback-Leibler divergence measure [11] to
compute the difference between two probability distributions,
ignoring the distance between the locations. We emphasize that
we use EMD, in our geographic similarity metric, as we also
want to include the distance function d(·) between locations
in computing the difference between two mobility models.

Consider now the computation of the geographic similarity.
For the case, d(r, r′) = 1r 6=r′ , the computation according
to closed-form of (7) takes O(T 2 · R2) operations, where
T is the number of time periods and R is the number of
locations (regions). For arbitrary d(·) with no closed-form
expressions, the geographic similarity is obtained through
T 2 ·R EMD computations. Each of these EMD computations
involves minimizing the Mallows distance, that is equivalent
to solving the linear program given by (2).

D. Semantic Similarity Metric

The semantic similarity metric builds upon the basic as-
sumption that for two individuals u and v there exists an
(unknown) semantics mapping σ of locations R onto itself
(i.e. a permutation) such that R for u, and σ−1(R) for v
semantically match. It is important to note that assuming such
a mapping does not commit us to trying to learn it based on
modeling location semantics directly. Instead, we define the
hidden semantic similarity between u and v as the maximum
geographic similarity taken over all possible mappings σ. We
define semantic similarity metric as follows.

Definition 3. Let σ be the mapping of locations of u to
locations of v. Let r, r′, and r′′ be random variables for
locations, and τ and τ ′ be two time periods. We define the
semantic dissimilarity between u and v for moving in the
sequence of time periods {τ, τ ′} as

Dvu({τ, τ ′}) = min
σ

E
[
Md(p

r′

r,τ,τ ′(u), p
σ(r′′)
σ(r),τ,τ ′(v))

]
, (8)

where the Mallows distance Md(·) is computed over the
random variable r′ and the expectation is computed over the
random variable r given time periods τ and τ ′.

Now, we define the semantic similarity between u and v
over any sequences of time periods as

simS(u, v) = 1− E [Dvu({τ, τ ′})]
zs

, (9)

where zs is a normalization constant equal to the maximum
value of (the expectation of) the Mallows distance given d(·),
ensuring that the semantic similarity always lie in [0, 1].

What we compute in (8) is the minimum geographic mo-
bility dissimilarity between u and v where the locations of v
are relabeled and mapped to locations of u according to the
permutation function σvu (which is the σ that minimizes 8). The
intuition is the following. Consider two individuals u and v
are at r and σ(r), respectively, at time period τ . The Mallows
distance Md computes how dissimilar their movement will
be to the next location which are represented with random
variables r′ for u and σ(r′′) for v. If, according to a mapping,

6



the way that they move between these locations is similar,
they behave similarly with respect to those locations. If this
is true across different time periods and location pairs, their
mobilities are similar. So, the semantic similarity between two
individuals is determined by σvu.

We compute this metric at two different levels of accuracy of
the mobility model. If we only consider the visiting probability
π part of each individual’s mobility profile, we compute simS

as follows: Let us consider the hamming distance function
d(r, r′) = 1r 6=σ−1(r′). In this case, we can compute the
semantic similarity metric as

1−
∑
τ

Pr{τ} max
σ

∑
r

min{πrτ (u), πσ(r)
τ (v)}. (10)

Note that the computation of (10) requires finding the
mapping σ which maximizes the inner term for each time
period τ . Since there are R! possible candidates for the
maximum mapping σ, a brute-force approach is inefficient.
However, the problem’s structure resembles that of a linear
assignment. Focusing on the inner sum, we see that each term
(each r) can be associated with R values of σ(r) independently
of the other components of σ. To recast the problem as
a linear assignment, we construct a bipartite graph where
the nodes represent R and σ(R), and each edge represents
the association (through σ) of r with σ(r). The maximum
weight assignment of the constructed bipartite graph gives the
permutation σ. The running time of this procedure is O(T ·R3)
using the Hungarian algorithm [37].

In the case where we consider the more accurate mobility
profile 〈p, π〉, it can be computed as follows:

1−
∑
τ,τ ′

max
σ

∑
r,r′

πr,τ (u)pτ
′

r,τ (u) min{pr
′

r,τ,τ ′(u), p
σ(r′)
σ(r),τ,τ ′(u)} .

(11)
It is not known whether there is an efficient algorithm

to compute the semantic similarity according to (11). The
difficulty comes from having to consider assignments of pairs:
(r, r′) to (σ(r), σ(r′)), which makes this computation look
similar to the Quadratic Assignment Problem (QAP) [38],
known to be NP-Hard and APX-Hard. But, (11) can be ap-
proximated using e.g., the Metropolis-Hastings algorithm [35]
which we use in the case of considering both visiting and
transition probabilities (see [34] for details), or Simulated
Annealing [8].

V. SYNTHESIZING LOCATION TRACES

In this section, we present the details of our algorithms for
generating synthetic traces. See also Figure 2. Note that the
processes of generating and using fake traces are completely
separate. When a set of traces is synthesized, they can be used
in different scenarios accordingly.

A. Transforming Traces into Semantic Domain

We sample a dataset S from some real traces. We use traces
in S as seeds to generate synthetic traces. Each seed trace
in the dataset comes from a different individual. Generating
a fake trace starts by transforming a real trace (taken as

SemanticSimilarity(u, v)

Compute mobility models 〈p(u), π(u)〉 and 〈p(v), π(v)〉
Compute optimal mapping σv

u from (8)
Compute semantic similarity simS(u, v) from (9)
Return simS(u, v), σv

u

SemanticClustering(R,S, κ)

Initiate weighted graph G with locations R as vertices
Forall u, v ∈ S, u 6= v:

Let svu, σ
v
u ← SemanticSimilarity(u, v)

Forall locations r, r′ ∈ R such that r′ = σv
u(r):

Let edge weight wG(r, r′)← wG(r, r′) + svu
Let C ← K-Means(G, κ)

Return C

PrivacyTest(fake, seed,A, δs, δi, δd)

Let geographic similarity sim← simG(fake, seed)
Let intersection between fake and seed int← |intersection(fake, seed)|
Let pl← TRUE if

∃a1, · · · , ak ∈ A s.t. ∀i, |simS(seed, fake)− simS(ai, fake)| ≤ δd
Return TRUE if int ≤ δi and sim ≤ δs and pl

Synthesizer(R,S,A, all parameters)

Let aggregate mobility model 〈p̄, π̄〉 be average of 〈p(u), π(u)〉 over all u ∈ S
Let C ← SemanticClustering(R,S, κ)
Forall seed ∈ S:

Let C′ ← C
Update C′ by removing locations in any partition with probability parc
Let semantic seed semseed← seed
Update semseed by replacing locations r in it with C′i where r ∈ C′i
Update semseed by removing the location r = seed(t) from time t

with probability parl
Update semseed by merging locations that are located with time distance

∆t with probability parm∆t

Let fake← HMMDecode(semseed, 〈p̄, π̄〉)
If PrivacyTest(fake, seed,A, δs, δi, δd)

Let F ← F ∪ fake
Return F

Fig. 2: Trace synthesis algorithm. We present it simplified for the
case with a single time period. If C is a semantic clustering, then
Ci represents the set of locations belonging to the cluster i. The
procedure HMMDecode is described in Section V-B.

seed) to a semantic trace. To this end, we require to know
the semantic coordinates of the seed trace. We compute the
semantic similarity between all locations in R, and create a
location semantic graph G〈R, E, w〉 such that the vertices are
in R and the weight wG(r, r′) on the edge between locations
r and r′ is the weighted sum of the number of pairs of users
u and v for whom r and r′ are semantically mapped (i.e.,
r = σvu(r′)), weighted according to their similarity. Then, we
create the equivalent semantic classes C by running a clus-
tering algorithm on this graph. We make use of the k-means
clustering algorithm, and we choose the number of clusters
such that it optimizes the clustering objective. We present the
sketch of this algorithm in Figure 2 – SemanticClustering().

We then convert the seed location trace seed into its
corresponding semantic trace semseed by simply replacing
each location in the trace with all its semantically equivalent
locations (according to the semantic classes C). Figure 3
depicts an example of such a semantic seed. Intuitively, this
composite trace encompasses all possible geographic traces
that are semantically similar to the original seed trace. To be
more flexible with respect to the traces that we can generate,
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we add some randomness to the semantic seed trace. In the
transformation process of the seed trace into the semantic
trace, we sub-sample locations from the semantic classes as
opposed to using them all. We also remove each location in
a cluster with probability parc. The result is a new cluster
C′. We allow locations of different classes to merge into each
other around time instants where the user moves from one
class to the other. We add a location from one time instant to
another with a ∆t gap with a geometric probability parm∆t.

B. Sampling a Trace from the Semantic Domain

Any random walk on the semantic seed trace that travels
through the available locations at each time instant is a valid
location trace that is semantically similar to the seed trace.
However, the synthetic traces we want to generate also need
to be geographically consistent with the general mobility of
people in the considered area. We cast the problem of sampling
such traces as a decoding problem in Hidden Markov Models
(HMMs) [41]. The symbols are locations, the observables
are the semantic classes (which are the set of semantically
equivalent locations in the same class), and the transition
probability matrix follows the aggregate mobility model.

We construct the aggregate mobility model by averaging
over the mobility models of all traces in dataset S, as well as
giving a small probability to the possible movements between
locations according to their distance and connectivity. More
precisely, we compute the aggregate transition probability p̄r

′

r

as z−1
r ·

∑
u∈S p

r′

r (u) + ε · max(1, d(r, r′))
−2, where ε is a

small constant, and zr is the normalizing factor. We compute
the aggregate visiting probability π̄r as the average of πr(u).1

By decoding the semantic trace into geographic traces, we
generate traces that are plausible according to aggregate mo-
bility models, i.e., there could be an individual who could have
made that trace. Among existing HMM decoding algorithms,
we use the Viterbi algorithm [51] that finds

arg max
fake

Pr{fake|semseed(t), 〈p̄, π̄〉}

assuming that fake(t) can only choose from locations in
semseed(t). Finding the most likely fake trace is equivalent
to finding the shortest path in an edge-weighted directed graph
where each location at time instant t is linked to all locations
at the subsequent time in the semantic seed trace.

By using this encoding technique, we make sure that the
sampled trace is consistent with the generic mobility and has
a significant probability of (geographically) being a real trace.
However, the Viterbi algorithm produces a single trace (which
is the most likely one). To generate multiple fake traces per
seed, we add randomness to the trace reconstruction of Viterbi.
We modify the Viterbi algorithm, which originally, at each step
(time instant) selects the most probable location in the path;

1We use the aggregate mobility model instead of that of a specific user
to avoid constraining the reconstructed geographic trace to follow the user’s
profile too closely. For example, this means that the produced traces may visit
locations which are never visited in the seed trace. This allows for greater
utility because the input traces only cover a very small subset of the set of
geographically meaningful traces.

semantic classes:

f t t z x x pseed:

f t t z x x p

d d d d w w b

y y y y a a l

g g

semantic seed:

f t t z x x p

d d d d w w b

y y y y a a l

g g

synthetic trace:

d b

w x

Fig. 3: A sketch of generating a fake trace from a seed. Each location
is represented by an English letter in a box. The semantic class
associated with each location is represented by a different color. The
semantic seed trace is a trace that includes the locations in the seed
along with other locations in the same cluster at each time instant.
Here, locations are clustered as {y, d, f, t, z}, {g, a, w, x}, {l, b, p}.
To generate a fake trace, we first probabilistically remove the seed lo-
cation and probabilistically merge subsequent classes. In our example,
f, z, p are removed, and w, d, b, x are merged into their neighboring
visited clusters. We then run a decoder to generate a probable trace
given the possibility of choosing from all available locations at each
time instant. The fake trace, shown with connected dashed boxes,
will be approved if it passes the privacy tests.

we add some randomness to the probabilities such that the
algorithm does not deterministically select the most probable
location. More precisely, we slightly perturb the probabilities
in such a way that Viterbi selects randomly among a set of
locations that are close in probability to the most probable
location. We implement this idea by choosing a parameter
parv and multiplying all the probabilities of moving from one
location to the next with a random number between 1 and
parv , which slightly randomizes our trace decoding.

Each generated trace is tested against our privacy test
(Sections V-D and V-E). If it passes, we compute its likelihood
based on the aggregate mobility model. At a later stage, we
can randomly select fake traces to use based on this likelihood.
Appendix A contains a brief discussion of the computational
efficiency of the generation algorithm.

C. Threat Model

There are two types of privacy threats that we need to
consider, which should not be confused with each other as
they apply to different settings. The first threat is against the
individuals whose traces are sampled and used as seeds in our
algorithm. This is of more concern in the scenario of synthetic
dataset release. In this scenario, the adversary knows that all
traces are synthetic. Yet, he wants to extract geographic or
semantic information about the seed traces, or find the identity
of the individuals behind them. This is the threat that we are
concerned about, in this section, in the process of generating
synthetic traces. We define two privacy requirements to defeat
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this threat: statistical dissimilarity and plausible deniability. At
the last step of synthesizing traces, we run a PrivacyTest()
to enforce these two privacy requirements on each synthetic
trace that is to be released.

The second type of attack is not perpetrated on the synthetic
traces themselves. It is rather implemented against the queries
received from LBS users that use the fake traces to hide
their true locations. We do not need to address such threat
here. However, we evaluate the effectiveness of our synthetic
traces against location inference attacks in preserving location
privacy of LBS users later in Section VII.

D. Privacy Requirement: Statistical Dissimilarity
A synthetic trace and its seed are statistically dependent,

otherwise we cannot achieve utility. This is at the core of
the privacy and utility tradeoff in any privacy-preserving
sanitization algorithm. The goal is to guarantee some statistical
privacy while preserving utility.

In our case, we guarantee a statistical dissimilarity between
synthetic trace and its seed. To this end, two types of distance
functions can be considered: (i) a distance between two
probability distributions that model the synthetic trace and its
seed. And, (ii) a distance between the two traces themselves.

As for the statistical distance (i), because there is a notion of
(Euclidean) distance between locations that form a trace, we
use Earth Mover’s Distance between two probability distribu-
tions that represent the mobility models behind the two traces.
This is exactly what we compute as geographic similarity
metric. So, for all seeds s and all synthetic traces f generated
from s, we ensure that the statistical similarity between f and
s is bounded by δs.

simG(f, s) ≤ δs (12)

As for the trace distance (ii) between f and s, we use the
intersection between the two. In this case, for all seeds s and
all synthetic traces f generated from s, we ensure that the size
of their intersection set is bounded by δi.

|intersection(f, s)| ≤ δi (13)

We reject any synthetic trace that fails to satisfy either of
the above conditions. Thus, we ensure a minimum statistical
dissimilarity between a seed and its fake trace.

Intuitively, these tests prevent the leakage of privacy-
sensitive locations. To understand why, consider Alice, a seed
contributor, and the locations she visits daily, such as her home
and workplace. In a released synthesized trace (from Alice’s
seed) these locations will not be visited. This is enforced
by (12). But, what about atypical behaviors? Suppose Alice
spends her morning at a women’s health clinic (something
out of the ordinary for her). (13) enforces that the women’s
health clinic will also not be visited in the released synthesized
trace. However, locations visited that morning are likely to
include health-related services locations (e.g., hospitals), since
these may belong to the same semantic cluster. Could this
information (i.e., that Alice visited a health-related location)
be leaked? No, this is prevented by plausible deniability
(Section V-E).

E. Privacy Requirement: Plausible Deniability

Enforcing a minimum statistical dissimilarity between a fake
f and its seed s would limit the information leakage of f
about s. In other words, this ensures a minimum error in
reconstructing s by observing f . However, this is not enough
to guarantee the location privacy of the individual associated
with s due to the semantic similarity between s and f . Note
that, due to utility requirements, our algorithm synthesizes
traces f that are semantically very similar to s. Although,
because of the randomness of our decoding algorithm, this
semantic similarity varies, but it is mostly small. The threat
is that an adversary, who has some background information
about the individual associated with s, might be able to infer
the inclusion of that individual’s record in the seed dataset by
observing f .2

The membership inclusion attack would work if s is by far
the only real trace from which we could have generated f ,
i.e., when s is an outlier. To defeat such attacks, we introduce
plausible deniability as a privacy requirement. To guarantee
plausible deniability, we make use of the alternative real
dataset A which is disjoint with the seed dataset S. Concretely,
the generated fakes (and their corresponding seeds) need to
satisfy the following definition.

Definition 4. A synthetic trace f (generated from seed s ∈ S)
satisfies (k, δ)-plausible deniability if there are at least k ≥ 1
alternative traces a ∈ A such that:

|simS(s, f)− simS(a, f)| ≤ δ . (14)

In other words, for any fake f generated from seed s,
we want to guarantee that we can find at least k alternative
traces a ∈ A for which (14) holds for δ = δd. Specifically,
the privacy test rejects all synthetic traces that do not satisfy
(k, δd)-plausible deniability.

If condition (14) holds for a synthetic trace, then its seed is
not the only real trace that could have generated it, and it is
plausible that the same synthetic trace is generated from some
other real traces (those that are even outside the seed dataset
and have no contribution to generation of the synthetic trace).
Thus, the inclusion of a particular trace in the seed dataset is
plausibly deniable.

Intuitively, this safeguards the privacy of semantic outliers
(i.e., seed contributors with atypical semantic behavior). To
understand why, consider Alice, a seed contributor, who works
the night shift, whereas most contributors work during the day.
(14) enforces that Alice’s synthetic trace can only be released
if there exist k other semantically similar traces in A (i.e.,
only if at least k other alternative dataset contributors work
during the night in a manner similar to Alice). Therefore, an
adversary trying to run a membership inclusion attack will
be thwarted even if he has the knowledge that Alice works
during the night. Note that, as we select the alternatives from

2However, this does not imply that the adversary can accurately reconstruct
s, especially if f satisfies the statistical dissimilarity requirements (12),(13).
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outside the seed dataset, this holds even if Alice is the only
seed dataset contributor who works during the night.

F. Discussion: Plausible Deniability as a New Privacy Notion

In this paper, we present plausible deniability as a new
notion of privacy for data synthesis. In this section, we further
discuss this notion and compare it with similar definitions in
the literature. As said before, plausible deniability implies that
a synthetic trace could have been generated from alternative
location traces other than its own seed. This means that the
information that is learned from observing a fake trace could
have also been learned if the same fake trace was generated
from other traces.

Note that we generate utility-preserving traces and release
them only if they satisfy plausible-deniability privacy require-
ments. Other sanitization techniques in the literature, based on
e.g., differential privacy [14] and crowd-blending privacy [16],
enforce privacy in the process of sanitizing data. This makes
it very challenging to design utility-preserving mechanisms
under the constraints of privacy requirements.

To better understand the implications of plausible deniability
on privacy, let us consider the cases where an adversary
observes a synthetic trace generated from a seed trace that
exhibits some rare characteristics, due to the particular lifestyle
of the person who produced that trace. To avoid leaking about
its seed, either (1) the synthetic trace must be semantically far
enough from its seed so that it is equally close to alternative
real traces, or else (2) there must already be alternative traces
with similar rare characteristics. If neither of the two is true,
the synthetic trace will not be released. This is similar to the
notion of suppressing the sanitized data from outliers [16].
In fact, the overlap between the set of possible synthetic
traces that can be generated from different real traces is the
acceptable area for releasing synthetic data.

Plausible deniability, in spirit, is similar to some other
notions of privacy. In crowd blending privacy [16] and its
followup outlier privacy [31], the space from which data
records are drawn is publicly split into partitions. Then, only
the partitions that contain a minimum number of data points
can produce sanitized data. The rest of data records, called
outliers, need to perturbed with magnified noise, which would
not lead to higher utility than simply suppressing them. The
authors show that if crowd blending privacy is combined with
subsampling of data records, it can achieve zero knowledge
privacy [17] which is stronger that differential privacy [14].

Plausible deniability can also be guaranteed by differentially
private mechanisms. Although it is possible, in theory, to gen-
erate fake traces in a differential private way, we do not know
methods to do this efficiently due to the high-dimensionality of
location traces. Specifically, this is practically infeasible given
the existing mechanisms such as the Exponential Mechanism
that require to assign a score to each possible trace given the
input dataset.

Lastly, the plausible deniability privacy test, which requires
each synthetic trace to be δd-indistinguishable from at least k
alternative traces, should not be confused with k-anonymity.

(a) Visited Locations. The size of locations
are proportional to their total visits.

(b) Visited locations colored according to
their semantic clustering (20 clusters).

Fig. 4: 400 locations visited around Lausanne and nearby towns by
the 30 users. Some users commute between two towns whereas the
majority of them live and work in the same city of Lausanne (the
area with higher concentration).

Unlike our notion of privacy, k-anonymity is a syntactic metric,
achieved by suppressing or generalizing data, which does not
prevent attribute disclosure. It has also been shown to be
severely vulnerable to inference attacks when used to protect
location privacy [46].

VI. EVALUATION SETUP

In this section, we run our algorithms on a set of real
location traces and evaluate the resulting utility and privacy
in two scenarios: sharing locations with LBS, and releasing
synthetic location datasets.

A. Dataset

The dataset we use for the evaluation is collected through
the Nokia Lausanne Data Collection Campaign (see [25]). We
prepare the dataset for our needs in two phases, filling gaps
in the traces and discretizing the time and location.

The raw dataset contains combination of events of three
types: GPS coordinates, WLAN and GSM identifiers. We
construct valid traces (out of partial traces) by filling gaps. We
interpolate along the path of consecutive GPS points, using the
WLAN and GSM information.

We then extract two days of traces for each user, such
that each trace (of one day) contains a sequence of 72
locations (i.e., one location is reported every 20 minutes).
Some locations are visited very rarely only by very few users.
Thus, we reduce the number of locations from 1491 to 400
by clustering close-by locations together. We use a hierarchical
clustering algorithm for this purpose, and place the locations
that are geographically close or have very few visits in one
cluster. The geographical distribution of visits of all users over
the locations in the considered area is shown in Figure 4(a).

From all traces, we then sub-sample 30 user traces. The 1st
day of traces for these users is used as seed dataset S , whereas
the 2nd day of traces will be used as baseline (testing set)
during the evaluation. Using the seed dataset, we compute
the mobility profiles of all 30 users, and then the semantic
location graph by calculating a similarity score for each pair
of locations, averaged across all users. After clustering this
semantic location graph, we obtained 20 location clusters. We
choose this number of clusters as it provides optimal clustering
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Fig. 5: Normalized histogram of (a) the geographic similarity and (b)
semantic similarity between all distinct pairs of 30 users in the seed
dataset. (a) Mobility models of different individuals is geographically
very specific to themselves, i.e., they are unique. This is well reflected
in the skewed distribution of geographic similarity towards very small
values. (b) As hypothesized in this paper, majority of individuals have
high semantic similarities between their mobility models.

i.e., it maximizes the ratio of inter-cluster similarity over intra-
cluster similarity. This clustering is illustrated in Figure 4(b),
where each location is drawn with the color of the cluster it
belongs to. The figure allows us to distinguish some patterns,
for example locations at the center of cities are mostly in blue,
while many locations representing roads and highways are
colored in red. Also notice that the semantic clustering does
not seem to depend on the geographical distance of locations.

To illustrate our geographic and semantic similarity metrics,
we compute those metrics pairwise over all 30 users.3 The
result is shown in Figures 5. The first histogram shows that
the 30 users are not strongly geographically similar to each
other, except for a few pairs of users. This is expected given the
range of locations they explore overall, as seen in Figure 4(a).
On the other hand, the distribution of the semantic similarity
across all distinct pairs of users has a larger variance, and a
large number of users are highly similar.

B. Tool: Synthetic Trace Generator

We build a tool [6] to generate fake traces on top of the
open-source Location Privacy Meter (LPM) [46]. To exploit
LPM’s modularity we split our algorithm into modules. To
implement the time-dependent sub-sampling of clusters and
merging around transitions, and the transformation of users’
actual traces into semantic traces, we use the location obfus-
cation mechanism feature of the tool. The reconstruction of
geographically valid synthetic traces from the semantic traces
is done using the Viterbi algorithm. To cluster the semantic
location graph, we employ the CLUTO toolkit [53].

C. Simulation Setup

Recall that from the input dataset, we sub-sampled 30 user
traces (day 1) that we use for the seed dataset S. As for
the parameters of the GenerateFake() algorithm, we set
the location-removal probability parc to 0.25, and we set
the location merging probability parm to 0.75. We set the
probability parl of removing the true location visited in the

3We exclude the geometric/semantic similarity of a user with herself, as it’s 1.0.

seed to 1.0. We set the randomization multiplication factor for
Viterbi randomization parv to 4.

We set very tight values for the privacy parameters. Specif-
ically, we set δi, the maximum intersection between fake and
seed, to 0. So, we do not tolerate any intersection between
fake and seed. We set the geographic similarity threshold δs
to 0.1, and the differential semantic similarity threshold δd
also to 0.1. See Figure 5 to see comparatively how restrictive
these thresholds are. Last, we set k the number of required
alternatives to pass the plausible deniability to 1.

For each of the 30 seed traces, we generated about 500
fake traces. We then select and use these traces according to
the scenario evaluated. For example, for the LBS scenario,
we sampled traces (for each user) according to the synthetic
traces likelihoods (see Section V), out of the pool of traces
that passed the privacy test.

D. Evaluation Metrics

In the following two sections we evaluate the use of
synthetic traces in two popular scenarios: using fake locations
along with real locations when accessing location-based ser-
vices (Section VII), and releasing synthetic location datasets
to be used for various geo-data analysis tasks (Section VIII).
In both scenarios, we evaluate our fake traces with respect
to two metrics: privacy and utility. Our privacy guarantees
apply to both scenarios. However, there are some differences
in terms of the adversary model between different scenarios.
Therefore, there are additional considerations regarding the
privacy of users in location-based services, e.g., their privacy
against inference attacks, that we discuss in the corresponding
section. The utility metric is also dependent on the application
(scenario), hence is measured differently in each case.

Note that the generative power of our model (and similarly
any statistical or machine learning model) depends on the
available (training) data. Yet, similar to a machine learning
algorithm, we do not require a “minimum” number of data
records to start working. However, the quality of the input
dataset does not impact data privacy, as privacy is guaranteed
in the phase when we are generating traces (and not in the
phase when model is trained), by running our privacy tests.
So, the output is privacy preserving regardless of the size of
the input and quality of the model.

VII. EVALUATION: LOCATION-BASED SERVICES

In this section, we consider the use of fakes in accessing
location-based services (LBS). Specifically, we compare our
proposed technique with all existing fake generation methods.
Concretely, we evaluate the utility and privacy according to
well-established metrics for this scenario. In particular, we
measure how well our fakes perform against state-of-the-art
inference attacks. Note that the fakes used here have already
passed our privacy tests with tight constraints, but as explained
in Section V-C, we still need to test their effectiveness in
protecting privacy of LBS users against inference attacks.
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A. Setup

In this setting, a user shares her current location with a
location-based service. The service provider, in return, pro-
vides contextual information about the shared locations (e.g.,
list of nearby restaurants, current traffic information on the
road). The user makes such queries over time whenever she
wishes to obtain contextual information.

In order to protect her location privacy, i.e., hiding her
location at the time of access to the LBS and also preventing
the inference of the full trajectory, the user’s device sends a
number of fake locations along with her true location. For
example, if two fake locations are used, then every time the
user makes a query, the device sends locations x, y, z to the
service provider. Out of {x, y, z}, one location is the user’s
actual (i.e., true) location and the other two are fakes. The
service provider does not know which of x, y, z is the true
location, but may be able to filter out fake locations over time
(i.e., over multiple queries over time), if the fake locations are
not believable (i.e., plausible). This is why it is crucial to use
synthetic traces as opposed to independent fake locations.

The fake locations are obtained as followed. First, we
generate a collection of synthetic traces. The users can select
from these traces and store them in their devices. Then, when
a user makes an LBS query, say at time t, she picks the ith

fake location (reported to the LBS) as the location which is
visited at time t in fake trace i. Note that the processes of
generating and using the synthetic traces are independent.

We emphasize that all existing fake location generation
methods (i.e., [10], [23], [24], [26], [45], [49], [56]) work this
way; but the techniques differ in how the fake locations are
generated. Existing fake locations generation methods can be
classified into four categories, which are the following.

Uniform IID ([45]): Generate each fake location indepen-
dently and identically distributed from the uniform probability
distribution. So, the fake trace is a sequence of uncorrelated
fake locations.

Aggregate Mobility IID ([45]): Generate each fake location
independently and identically distributed from the aggregate
mobility probability distribution π̄. Again, the fake trace is a
sequence of uncorrelated fake locations.

Random Walk on Aggregate Mobility ([10], [24], [26], [56]):
Generate a fake trace by doing a random walk on the set of
locations following the probability distribution p̄.

Random Walk on User’s Mobility ([23], [49]4): Do a
random walk on the set of locations following the probability
distribution p(u) to generate a fake trace.

For Uniform IID and Aggregate Mobility IID, we evaluate
exactly the method described in [45]. For the other two we
evaluate a representative method in each case. In addition to
this, we evaluate our proposed technique, which only differs

4[23], [49] make fakes dependent on the user’s location over time (used to
establish the position of dummies). We make this probabilistic and so assume
usage of the user’s mobility profile instead. This leads to overestimating the
privacy gain of the original algorithm.

from these in that the fake traces are generated using the
method described in Section V. In all cases when a user makes
use of a location-based service, both a query for her real
location and queries for the fake locations are sent to the LBS.
Because of this, the user’s device must, upon receiving the
responses from the service provider, filter out the information
which are not related to her true query.

Using a Uniform IID mechanism may seem too simplistic
and unfair, but we point out that the related work [45] evaluates
this technique so we provide it as a point of comparison.

B. Privacy Metric
The adversary (e.g., the service provider) who observes the

LBS queries made by the user’s device wants to find the
true sequence of locations visited by the user. To do this,
the adversary runs an inference attack which (if successful)
results in filtering out the fake locations. For this, he makes use
of the aggregate mobility model 〈p̄, π̄〉 and uses state-of-the
art location inference attack [46]. The attack is a localization
attack which consists in finding the user’s (true) location at
each time, given the observation (i.e., the sequence of locations
queried to the LBS). This is a well-known inference problem
for Hidden Markov models which can be solved efficiently
using dynamic programming.

The metric to quantify the privacy is the probability of
error of inference attack on guessing the correct location. This
is the metric predominantly used in the literature, in works
such as [45], [46]. To put it simply, this metric consists in
calculating the fraction of true locations that are missed by
the adversary. For example, if the user queries LBS on three
different occasions, but the adversary only correctly infers the
true location once (i.e., the inference attack correctly filters
out the fake locations) then the user’s location privacy is 2/3.

C. Utility Metric
With all synthetic generation techniques (i.e., ours and [10],

[23], [24], [26], [45], [49], [56]), the user’s real location will
always be among the locations queried to the LBS. Therefore,
as identified by related work, there is no utility loss in terms
of quality of service degradation. That is, the user will always
obtain an accurate response to her query (after filtering out
responses corresponding to fake location queries).

Therefore, we measure the utility loss as the bandwidth
overhead. This is the metric used in the literature on fake
generation techniques (e.g., [56], [24], [23]). The bandwidth
overhead is calculated as the number of locations (i.e., real +
fakes) sent to the LBS provider for each user query.

Beyond traditional location-based services, some service
providers (e.g., Google Now) profile the user’s interest over
time based on the type of locations she visits. This is to provide
recommendations or reminders. In such cases, queries that are
sent to the server can “pollute” the user’s profile, hence reduce
the predictability power of the service provider to provide
useful recommendations. To further evaluate utility for such
location-based recommender services, we calculate the number
of (distinct) semantic clusters among the locations sent by the
user at each time. We call this metric: profile pollution.
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Fig. 6: Location privacy versus utility loss for different fake gener-
ating algorithms. The privacy is measured as probability of error of
adversary in guessing the correct location of users ([45], [46]). We
plot the median location privacy across all LBS users. A user makes,
on average, an LBS query every 40 minutes. We evaluate the use of
1, 5, 10 fake traces, hence three dots for each algorithm. (We repeated
the experiment 20 times and took the average: 4 times with a different
selection of fake traces, and for each of such selection, 5 times
to eliminate the randomness.) The utility loss is (a) the bandwidth
overhead ([56], [24]), i.e., number of distinct locations that are sent
to the server; and (b) the profile pollution, i.e., the number of distinct
semantic classes exposed for each LBS access.

D. Results

Figure 6 shows the tradeoff between location privacy and
utility for various methods of generating fake traces. We evalu-
ate the utility loss in terms of two metrics: bandwidth overhead
(Figure 6a) which is predominantly used in the literature, and
also the profile pollution (Figure 6b). We evaluate the privacy
for three different number of fake traces: 1, 5, 10. Although the
number of fake traces are the same, across different algorithms,
the average number of distinct locations sent to the LBS is not
the same. This is because of the potential overlap between fake
traces available to the user. Methods such as Uniform IID, Agg
Mobility IID, and RW Agg Mobility have a high randomness
in selecting fake traces from all possible locations. Thus, the
chance of overlap is small. Our method and the RW User
Profile method have both lower bandwidth overhead.

Results show that our method clearly outperforms all the
existing techniques, especially the random strategies. For the
case of RW User Profile method, the privacy level against the
tracking attack gets closer to what we achieve (which is almost
maximum), due to the fact that the fake traces generated by
RW User Profile are semantically very similar to the user’s
locations, and hence creates high confusion, hence error, for
the adversary. However, it is very important to note that the
RW User Profile is never a privacy-preserving fake injection
method as the adversary can easily de-anonymize the user, no
matter if he makes mistakes on exactly tracking the user at
each access time (as shown here).

Overall, the plot shows that our method is the strongest
fake generating algorithm. Note that the absolute privacy levels
changes if the adversary knowledge changes. But, what we are
interested in is the relative gain of our method to others.

VIII. EVALUATION: SYNTHETIC DATA RELEASE

In this scenario, the synthetic traces form a location dataset
that is meant to be used for various geo-data analysis tasks

in place of real location traces. We emphasize that the seed
traces and the alternative dataset are not released. Only the
generated synthetic traces are supposed to be released.

A. Setup

We generate a large number of fake traces out of which we
ultimately select: 10 datasets each containing 30 traces. This
is done in order to have each fake dataset of the same size
and format as the seed dataset, so that we can compare the
suitability of using one of those fake dataset instead of the
seed dataset for various geo-data analysis tasks.

B. Privacy

The location privacy of those individuals who contributed
to the seed dataset is already guaranteed by our use of the
privacy test. However, we must make sure that we are able
to generate traces which pass the privacy test with acceptably
tight constraints. Therefore, this is what we evaluate here. Out
of all fake traces generated from our 30 seed traces, on average
80% of them could pass the geographic and intersection
privacy tests with tight constraints (δi = 0, and δs = 0.1), so
it is not difficult to synthesize traces that satisfy such privacy
guarantees. Regarding the plausible deniability part of the test,
the question is whether we are able to find enough real traces
in alternative dataset A.

In Figure 7, we show the difference between semantic
similarity of a synthetic trace and its seed with the semantic
similarity of the same synthetic trace and any location trace in
our alternative dataset. The histogram shows that the majority
of fake traces have very low distinguishability to alternative
traces, in the semantic domain. This is due to the high
semantic similarity between real traces (Figure 5b). Therefore,
we conclude that it is not difficult to find potential alternative
traces for a synthetic trace. Recall that we set δd to 0.1 to
obtain a high level of plausible deniability.

C. Utility

Because we release a set of synthetic traces to be used
instead of a real location dataset, to evaluate utility we must
take into account how the released traces are to be used.
Specifically, we must determine to what extent the key features
and statistics, which are relevant for the considered applica-
tions, are preserved. Clearly, we cannot expect all statistics
(of real traces) to be preserved (in the synthetic dataset)
since some may conflict our privacy goal. Specifically, certain
geographic features are expected not to be preserved, e.g., if
a location is primarily visited by a single user in a seed, it is
unlikely that that location is visited with similar frequency in
a synthetic trace. This is because if such a synthetic trace were
generated from that seed, the privacy test would reject it. An
example of property that we do not preserve is the relationship
in the mobility of input traces, e.g., individuals commuting to
work together. Indeed, if two individuals carpool to work, the
corresponding synthetic traces will not exhibit analogous co-
traveling behavior (because each synthetic trace is generated
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Fig. 9: Q-Q plot for comparing two dis-
tributions: semantic similarity among all
real seed traces, and semantic similarity
among all fake traces. The plot shows a
very strong correlation between two dis-
tributions.

independently). However, their common semantic features are
preserved.

That said, from the literature, we identified the following
prominent geo-data analysis tasks to evaluate utility of syn-
thetic traces.

(1) Points of Interests (PoIs) extraction. The goal is to dis-
cover locations that are frequently visited and are prominently
of interest to the public. PoIs can be used to provide travel
recommendations. In particular, [59] proposes techniques to
mine the top n interesting locations in a given region. A key
feature to preserve is the distribution of visits among locations,
specifically the most visited (i.e., popular) locations.

(2) Semantic annotation / labeling of locations. The goal is
to automatically assign labels to locations according to their
semantics (e.g., restaurant, bar, shopping mall). For exam-
ple, [55] proposes an SVM classifier to assign multiple labels
to location-based social network check-ins. In contrast, [13]
proposes to do automatic labeling of locations into 10 semantic
categories using smartphone recorded GPS, WiFi, and cell-
tower data. In all cases, the distribution of visitors (and unique
visitors) per location are key features of the input data. In
addition, [13], [55] use users’ temporal behavioral data, such
as the amount of time a user spends in a location.

(3) Map inference. [29] evaluates the two main approaches
to infer road maps from a large scale GPS traces: using
the sample coordinates themselves, or using the transitions
between samples. A related task is the discovery of semantic
regions in a city [57]. In both cases, key features of the
input data include the distribution of visited locations, and
transitions, particularly the popular ones.

(4) Modeling human mobility. [28] proposes to learn a multi-
layer spatial density model from social network check-ins.
In this case, temporal features of location data are largely
overlooked. Rather the focus is on features such as the spatial
location distribution in aggregate and at individual level.

(5) Determining optimal locations for retail stores. The goal
is to find ideal geographic placement for a retail store, or a new

business. In particular, [22] proposes to mine online location-
based services to evaluate the retail quality of a geographic
area. Specifically, the focus is on a combination of mobility
features such as popularity of an area, and semantic features
such as visits to semantically similar venues (e.g., coffee shops
of the same franchise) or transitions between venues.

Based on the input features that those geo-data analysis
tasks require, we identified six statistics that need to be
preserved to guarantee that such tasks can reasonably be
performed on a set of synthetic traces instead of a real dataset.
In order to experimentally evaluate to what extent these
statistics are preserved, we must use appropriate baselines.
We use the value of the statistic on the testing (day 2) dataset,
which consists of location traces of the same users as the seed
(day 1) dataset, as the baseline. When appropriate, we also
use uniformly random location traces as a baseline.

The corresponding useful features are the following.

(a) Distribution of the number of visits. Tasks such as (2)
and (3) exploit the fact that some locations are more frequently
visited than others. In fact, [13] explicitly mention “how often
places are visited” as a major feature.

In order to evaluate this, we do the following. For each
dataset, we compute the spatial allocation, i.e., for each
location (from least to most popular, for that dataset), we
calculate the number of visits spent in that location across all
traces in the dataset. We then normalize this quantity to obtain
a probability distribution over locations (sorted by popularity),
i.e., for each location we have the probability of a random visit
to that location. From these distributions, we compute the KL-
divergence of the real (seed, i.e., day 1) dataset to each of
our synthetic datasets, and to a variety of baselines.5 The KL-
divergence is a natural way to compare distributions: it returns
a non-negative real number, where a larger value means a
greater distance between the two distributions. Note that some
related work such as [9] has used the relative error of counting

5We set zero probabilities to 0.1, before normalizing, for the sake of computing KL-
divergence (that requires nonzero probabilities). This is required because there may be
locations which are visited in the synthetics but not in the real traces, or vice-versa.
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Real Synthetic Uniform Single
KL-divergence 0.037 0.384 ± 0.043 1.191 4.666

Relative error [9] 0.144 0.370 ± 0.010 1.621 0.542

TABLE II: KL-divergence and relative error of the location visiting
probabilities of the real (seed, day 1) datasets against the 10 fake
datasets, and various baselines. “Real” is the testing (day 2) portion
of the real dataset (see Section VI-C); “Uniform” is the uniform
distribution over all locations; and “Single” is the distribution where
all users always visit the same location.

queries as a metric instead of the KL-divergence. Therefore,
we additionally calculate the relative error by interpreting the
number of visits to each location as the answer to a counting
query. That is, if the number of visits to location x is n1 for
dataset 1 and n2 for dataset 2, then we calculate the relative
error as |n1−n2|

max (n1,0.001·N) , where N is the total number of visits
to any location (the same for all the datasets) [9]. We report
the average relative error over all locations. The results of both
metrics are shown in Table II. The results suggest that a lot of
information is preserved in this case: while the error for the
fakes is greater than that for the real (testing, day 2) dataset,
the error is significantly lower than the other baselines.

(b) Distribution of number of visits for top 50 locations.
For most tasks, features of the most popular locations (i.e.,
the most frequently visited locations) are the most important
ones to preserve. In particular, this is consistent with the results
provided in [13] for automatic labeling.

To evaluate this, we use the same procedure as for fea-
ture (a), except we only consider the top 50 locations, and
plot the distribution instead of calculating the KL-divergence.
Figure 10 shows the results for this case, which plots a
histogram where the distributions for different datasets are
overlayed (with some transparency). The error (of the synthetic
dataset) for this case (i.e., top 50) is significantly lower than
that for the entire distribution. This strongly indicates that
the information about the popular locations (i.e., the most
important ones) is largely preserved.

(c) Top n coverage of locations. For tasks such as (1), (3),
and (5), it may not be sufficient to ensure that the distribution
of visits is preserved. Indeed, it may be required to ensure that
if a location is in the top n most frequently visited locations in
the real dataset, it is also in the top n most frequently visited
locations in the released (synthetic) dataset.

Therefore, we measure across two datasets (e.g., one real
and one synthetic), how many locations in their respective top-
n they have in common, for various values of n.

Specifically, we take the n most frequently visited locations
of the real (seed, day 1) dataset. For each of the other datasets,
we then compute how many top n locations (from the seed
dataset) are also in the top n most frequently visited locations
of that dataset. For the synthetic datasets and the uniform
baseline, we report the relative coverage as the ratio of the
coverage of that dataset and of the testing (day 2) dataset.
That is, if the coverage of the real (testing, day 2) dataset
is y (of the top n locs of the seed dataset), and the average
coverage of the fake datasets is x, then we report the relative

Fig. 10: Distribution of visiting probability for top-50 locations in
the real (seeds) datasets against the synthetic datasets. We overlay
(with some transparency) the histograms of the three datasets (i.e.,
seeds day 1, in black; real day 2, in red; synthetics, in yellow). The
difference in distribution between two datasets is the area where the
two corresponding histograms’ bars do not overlap. For example,
the lightest yellow region is where the synthetics’ histogram is non-
overlapping with the other two histograms; the darker yellows are
areas where the synthetics’ histogram overlaps with one (or both) of
the real datasets’ histograms. The majority of the colored area is a
region where all three datasets overlap, indicating that the synthetics
highly preserve the distribution of the top-50 most popular locations.
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Fig. 11: Relative coverage of top n (most frequently visited) loca-
tions. The coverage is reported relative to the real (testing, day 2)
dataset. Uniform visiting of all locations (400 in total) is used as
comparative baseline.

coverage as min (xy , 1.0). The results are shown in Figure 11.
The relative coverage of the synthetic traces is typically in the
61% to 100% range, whereas for the uniform baseline it is in
the 11% to 24% range, indicating a high-level of preservation.

(d) Users’ time allocation. For semantic labeling (2) and
other tasks, the users’ temporal behavior cannot be ignored.
Indeed both [13], [55] use the amount of the time spent per
location for each user as a major feature.

In order to evaluate this, we do the following: for each
dataset and each user, we calculate the time spent at each
location, among the locations visited. That is, we calculate, for
the three most popular locations of that user, what proportion
of the time is spent in each. We perform this calculation
across all 30 users and normalize the result. We compare this
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Real (day 2) Synthetics Uniform Random
1st 0.0189 0.0125 ± 0.0022 0.1652 0.6794
2nd 0.0026 0.0092 ± 0.0031 0.0778 0.5360
3rd 0.0114 0.0089 ± 0.0036 0.0779 0.5092

TABLE III: KL-divergence of the users’ time allocation distribution
among the three most popular locations (of each user) of the real
(seed, day 1) datasets against synthetic datasets, and baselines.

Fig. 12: Distribution of the proportion of time spent in the most
popular location (of each user) of the real datasets against synthetic
datasets. The information is presented as an area plot, where the
distribution for each dataset is plotted as surface of a different color
(i.e., seeds day 1, in blue; real day 2, in red; synthetics, in yellow).
The areas are overlayed on top of one another. Therefore, the distance
between the distribution of two datasets is represented by their non-
overlapping area. For example, the yellow and orange regions repre-
sent areas where the synthetics’ distribution is either non-overlapping
(yellow) or overlaps with the real day 2 dataset’s distribution, but
not with seeds (day 1) dataset. The majority of the colored area is a
region where the real and synthetics distributions overlap (i.e., purple
region). This indicates a high-level of preservation.

distribution for the real and synthetic datasets. Table III shows
the KL-divergence of the real (seed, day 1) dataset to the
synthetic datasets and baselines: real (testing, day 2) dataset;
uniform time allocation (each user spends 1/k proportion of
time at each of the k locations); random time allocation (each
user spends a uniformly random proportion of time at the
location). To visualize those results further, Figure 12 shows
the distribution across all 30 users (for each dataset) for the
most popular location (only). The statistic is highly preserved
in the synthetic traces; sometimes the synthetics’ distribution
is closer to that of the real (seed, day 1) dataset, than the
distribution of the real (testing, day 2) dataset is.

(e) Spatiotemporal mobility features. When constructing
mobility models from location data (4), the overall geographic
and temporal behavior of users’ mobility is used.

To evaluate this, we compare the basic mobility statistics
obtained from the real and synthetic datasets. We compute
the aggregate mobility model for each synthetic dataset, and
compare its geographic similarity with the real (seeds, day 1)
dataset. More precisely, for a synthetic dataset F , we compute
〈p̄F , π̄F 〉 and compute its similarity to 〈p̄, π̄〉. The statistical
similarity of p̄F with p̄ over all synthetic datasets is

[0.8061 (average), 0.8073 (median), 0.0060 (std)],

and the results for the statistical similarity of π̄F with π̄ is

[0.7856 (average), 0.7867 (median), 0.0152 (std)].

Both these results show a strong correlation between aver-
age/aggregate mobility information of real and fake datasets.

(f) Semantic mobility features. In contrast to other appli-
cations, identifying areas for new businesses, i.e., task (5)
explicitly takes into account semantic features of the input
location data. Specifically, it takes into account visits to
semantically similar venues and transitions between different
types of venues. Consequently, it is meaningful to measure
the extent to which semantic features of a real dataset are
preserved in a released fake dataset.

To evaluate this, we proceed in two steps. We first compute
the semantic similarity of each synthetic trace with its own
seed trace to check if the semantic features of the original
traces are indeed preserved. Figure 8 illustrates the distribution
of this value over all fake traces. Clearly, the distribution is
biased towards higher similarity values. So, the fake traces
considerably preserve the semantic features of the real traces.

In the second step, we look at whether the set of synthetic
traces preserves the inner similarity between the set of traces.
In Figure 9, we present the correlation between two distri-
butions: semantic similarity among real traces, and semantic
similarity among synthetic traces. The Q-Q plot shows a
significant correlation between these two distributions; they
are strongly linearly related. This reflects that in addition to
maintaining the information about each seed, we also preserve
the statistical relation among the traces.

Overall, the statistics we have identified are largely pre-
served in the synthetic datasets. Thus, we conclude that our
technique is suitable for the aforementioned geo-data analysis
tasks and those that rely primarily on similar features.

IX. CONCLUSIONS

This is the first paper to systematically generate plausi-
ble synthetic location traces based on quantitative metrics.
We propose statistical dissimilarity and plausible deniability
as privacy requirements for synthesizing location traces. By
enforcing these requirements, synthetic traces would not leak
information about real traces from which they are generated
more than what they have in common with any random real
trace. Through extensive privacy and utility evaluations, we
show the application of our mechanism in two mainstream
scenarios: protecting the location privacy of users in LBSs, and
geo-data analysis on synthetic location data. Our synthesized
traces can be of extreme help in protecting location privacy of
LBS users with very low utility cost. We show that inference
attacks cannot identify the true location of mobile users if
our fake traces are used as protection. We also quantitatively
show that our method is superior to all existing methods
of generating fake traces. Our synthetic traces also preserve
useful features of real traces and can be useful in five popular
geo-data analysis tasks.
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APPENDIX

A. Computational Efficiency

The fake generation process, which results in a pool of
fake traces having passed the privacy test, is run offline on
powerful machines, before the user’s device retrieves and uses
such fakes. Therefore, this computational burden is not placed
on the user’s device. Nevertheless, the generation process is
reasonably efficient. For example, with the experimental setup
described in Section VI, we could generate one fake trace in
less than 2 minutes, per CPU-core, using a regular laptop.
Using a powerful machine, we generated thousands of fakes
in a few hours. Also note that the computation of both the
aggregate mobility and the semantic clustering needs to be
done only once for each input set of real traces. The former’s
computation time is O(SL + (RT )2) where S = |S| is the
number of seed traces, L is the length (i.e., number of events)
of each seed trace. The latter is dominated by S(S − 1)
semantic similarity computations (e.g., each taking O(TR3) in
the zeroth-order case) and one clustering operation. Excluding
the final clustering, this step is embarrassingly parallel: the
semantic similarity for any two users u, v can be computed
independently. Also, if a few input traces are added, both the
aggregate statistics and the semantic clustering can be updated
and do not need to be recomputed from scratch. Once the
semantic clustering has been computed, an arbitrarily large
number of fakes for each seed can be generated. This process is
also embarrassingly parallel, since each fake can be generated
independently of other fakes for that seed, and other seeds.
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