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AbstractNWe quantitatively investigate how machine learning  part of the modelOs training dataset or not. We investigate this
models leak information about the individual data records on question in the most difPcult setting, where the adversaryOs
which they were trained. We focus on the basic membership access to the model is limited tblack-box queries that

inference attack: given a data record and black-box _access to t th del®d tout . . o mar
a model, determine if the record was in the model®s training "€UM theé MOCAEILS output on a given input. In summary,

dataset. To perform membership inference against a target model, We quantify membership .informatilon leakage through the
we make adversarial use of machine learning and train our own prediction outputs of machine learning models.

inference model to recognize differences in the target model®s To answer the membership inference question, we turn
predictions on the inputs that it trained on versus the inputs machine learning against itself and train attack model

that it did not train on. ; . . ~ .
We empirically evaluate our inference techniques on classi- whose purpose is to distinguish the target modelOs behavior

bcation models trained by commercial Omachine leaming as a©N the training inputs from its behavior on the inputs that it
serviceO providers such as Google and Amazon. Using realisticdid not encounter during training. In other words, we turn the
datasets and classiPcation tasks, including a hospital dischargemembership inference problem into a classibcation problem.
e oo o e e o b e b AUECKING Dlaccbox mocdels such a5 those buit by cor-
infe’rence attacks. We then investigate the factors that inBuencg mercial Orr_1a_chme learning as a serv_lceO providers requires
this leakage and evaluate mitigation strategies. more sophistication than attacking white-box models whose
structure and parameters are known to the adversary. To
construct our attack models, we inventedtmdow training
technique. First, we create multiple Oshadow modelsO that
Machine learning is the foundation of popular Interneimitate the behavior of the target model, but for which we
services such as image and speech recognition and natural karew the training datasets and thus the ground truth about
guage translation. Many companies also use machine learningmbership in these datasets. We then train the attack model
internally, to improve marketing and advertising, recommersh the labeled inputs and outputs of the shadow models.
products and services to users, or better understand the date developed several effective methods to generate training
generated by their operations. In all of these scenarios, a@@ata for the shadow models. The brst method uses black-box
tivities of individual usersNtheir purchases and preferenceaccess to the target model to synthesize this data. The second
health data, online and off3ine transactions, photos they takesthod uses statistics about the population from which the
commands they speak into their mobile phones, locations theygetOs training dataset was drawn. The third method assumes
travel toNare used as the training data. that the adversary has access to a potentially noisy version
Internet giants such as Google and Amazon are alreacly the targetOs training dataset. The Prst method does not
offering Omachine learning as a service.O Any customeragsume any prior knowledge about the distribution of the target
possession of a dataset and a data classiPcation task can upteadelOs training data, while the second and third methods
this dataset to the service and pay it to construct a modellow the attacker to query the target model onhcebefore
The service then makes the model available to the custoniaferring whether a given record was in its training dataset.
typically as a black-box API. For example, a mobile-app maker Our inference techniques are generic and not based on any
can use such a service to analyze usersO activities and gparicular dataset or model type. We evaluate them against
the resulting model inside the app to promote in-app purchasesural networks, as well as black-box models trained using
to users when they are most likely to respond. Some machimgnazon ML and Google Prediction API. All of our experi-
learning services also let data owners expose their modelsmients on AmazonQOs and GoogleOs platforms were done without
external users for querying or even sell them. knowing the learning algorithms used by these services, nor

Our contributions. \We focus on the fundamental questioh® architecture of the resulting models, since Amazon and
known asmembership inference given a machine learning Google donOt reveal this information to the customers. For our

model and a record. determine whether this record was useg¥aluation, we use realistic classibcation tasks and standard
model-training procedures on concrete datasets of images,

*This research was performed while the author was at Cornell Tech. retail purchases, location traces, and hospital inpatient stays. In
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addition to demonstrating that membership inference attadkstween the data and the labels and construct a model that can
are successful, we quantify how their success relates to tieneralize to data records beyond the training set [19]. Model-
classibcation tasks and the standard metrics of overbtting.training algorithms aim to minimize the modelOs prediction er-
Inferring information about the modelOs training datager on the training dataset and thus may overbt to this dataset,
should not be confused with techniques such as model producing models that perform better on the training inputs
version that use a modelOs output on a hidden input to irtfean on the inputs drawn from the same population but not
something about this input [17] or to extract features thased during the training. Manmggularizationtechniques have
characterize one of the modelOs classes [16]. As explaibedn proposed to prevent models from becoming overbtted
in [27] and Section IX, model inversion does not produce &o their training datasets while minimizing their prediction
actual member of the modelOs training dataset, nor, giveereor [19].
record, does it infer whether this record was in the training Supervised training is often used for classibcation and other
dataset. By contrast, the membership inference problem wediction tasks. For example, a retailer may train a model
study in this paper is essentially the same as the well-knowhat predicts a customerOs shopping style in order to offer her
problem of identifying the presence of an individualOs data is@itable incentives, while a medical researcher may train a
mixed pool given some statistics about the pool [3], [15], [21inodel to predict which treatment is most likely to succeed
[29]. In our case, however, the goal is to infer membershigiven a patientOs clinical symptoms or genetic makeup.

given a black-box API to a model of unknown structure, &gy, cpine learning as a service. Major Internet companies
opposed to explicit statistics. now offer machine learning as a service on their cloud
Our experimental results show that models created USiBRtforms. Examples include Google Prediction ARmazon
machine-learning-as-a-service platforms can leak a lot of ifr;chine Learning (Amazon ML3,Microsoft Azure Machine
formation about their training datasets. For multi-class Claﬁéarning (Azure ML) and BigML?
sibcation models traineg on 10,000—reco~rd retail transactionThese platforms provide simple APIs for uploading the data
datasets using GoogleOs and AmazonOs services in defghlt,, raining and querying models, thus making machine
conbgurations, our membership |_nference ac'h|eves medf@ﬁrning technologies available to any customer. For example,
accuracy of94% apd 74%, respectlv.ely.l Even if we make 4 developer may create an app that gathers data from users,
no prior ass_u_mptlons about the dlstr|but|on_ of the targghioads it into the cloud platform to train a model (or update
modelOs training data and use fully synthetic data for Qi qyisting model with new data), and then uses the model®s
shadow models, the accuracy of membership inference agalislyictions inside the app to improve its features or better

Google—tra}ined models i90%. Our results for the Texasinteract with the users. Some platforms even envision data
hospital discharge dataset (over 70% accuracy) indicate t%ﬁders training a model and then sharing it with others
membership inference can present a risk to health-care dataﬁxﬁjgugh the platformOs API for probt.

if these datasets are useq to train m"f‘Chi”e learning mOd_eIthe details of the models and the training algorithms are
;C\l/lnd Eccer?_s FO thehrgsultmg mor?.elri IS open to the pUbIIl](fdden from the data owners. The type of the model may be
?/I\/ﬂ z_rs P In suc atasets 'Sh Ighly I.':,en.;ltlve. K chosen by the service adaptively, depending on the data and
e discuss the root causes that make these attacks poﬁéﬁwaps accuracy on validation subsets. Service providers do

k?lel and quantitatively compare mitigation strategies sugh 5t warn customers about the consequences of overpbtting and
limiting the modelOs predictions to tépclasses, decreasing rovide little or no control over regularization. For example,

the precision of the prediction vector, increasing its entrop oogle Prediction API hides all details, while Amazon ML

orlusmg regulanzr?tlon whlledtrammg the modzl. io ﬁrfgvides only a very limited set of pre-debned options (L1- or
n summary, this paper demonstrates and quantibes [hg, ., regularization). The models cannot be downloaded

problem of machine learning models leaking informatiognd are accessed only through the serviceDs API. Service
about their training datasets. To create our attack models, viders derive revenue mainly by charging customers for

developed a new shadow learning technique that works Wil e through this API. Therefore, we treat Omachine learn-

minimal knowledge about the target model and its trainiq g as a serviceO as a black box. All inference attacks we

.dataset..FmgIIy, we quantify how the Igakage of memberS'hﬂf%mons,trate in this paper are performed entirely through the
information is related to model overbtting. services® standard APIs

Il. MACHINE LEARNING BACKGROUND
] ] ) IIl. PRIVACY IN MACHINE LEARNING
Machine learning algorithms help us better understand and

analyze complex data. When the model is created usingBefore dealing with inference attacks, we need to debne
unsupervisedraining, the objective is to extract useful feature¥hat privacy means in the context of machine learning or,
from the unlabeled data and build a model that explains its o
hidden structure. When the model is created usingervised — .htps://cloud.google.com/prediction
training, which is the focus of this paper, the training recordszhttps://aws'.amazon'Comlmmh'ne'Iearnlng

L ) ! https://studio.azureml.net
(as inputs of the model) are assigned labels or scores (a&tps:/bigml.com

outputs of the model). The goal is to learn the relationshipShttps://cloud.google.com/prediction/docs/gallery



alternatively, what it means for a machine learning model ttetermine the appropriate medicine dosage or to discover the
breach privacy. genetic basis of the disease) can reveal that the patient has this
disease.

We investigate the membership inference problem in the

A plausible notion of privacy, known in statistical disclosurélack-box scenario where the adversary can only supply inputs
control as the ODalenius desideratum,0 states that the m@dehe model and receive the model®s output(s). In some
should reveal no more about the input to which it is appliesituations, the model is available to the adversary indirectly.
than would have been known about this input without applyirfgor example, an app developer may use a machine-learning
the model. This cannot be achieved by any useful model [14krvice to construct a model from the data collected by the app

A related notion of privacy appears in prior work on modehnd have the app make API calls to the resulting model. In this
inversion [17]: a privacy breach occurs if an adversary camase, the adversary would supply inputs to the app (rather than
use the modelOs output to infer the values of unintenddicectly to the model) and receive the appOs outputs (which are
(sensitive) attributes used as input to the model. As observeased on the modelOs outputs). The details of internal model
in [27], it may not be possible to prevent this ObreachOugage vary signibcantly from app to app. For simplicity and
the model is based on statistical facts about the populatigenerality, we will assume that the adversary directly supplies
For example, suppose that training the model has uncoveieputs to and receives outputs from the black-box model.

a high correlation between a personOs externally observable

phenotype features and their genetic predisposition to a certain IV. PROBLEM STATEMENT

disease. This correlation is now a publicly known scientibc Consider a set of labeled data records sampled from some
fact that allows anyone to infer information about the person@pulation and partitioned into classes. We assume that a
genome after observing that person. machine learning algorithm is used to train a classibcation

Critically, this correlation applies tall members of a given model that captures the relationship between the content of
population. Therefore, the model breaches OprivacyO not jushefdata records and their labels.
the people whose data was used to create the model, but also éfor any input data record, the model outputs piediction
other people from the same population, even those whose datator of probabilities, one per class, that the record belongs
was not used and whose identities may not even be knownttoa certain class. We will also refer to these probabilities
the modelQOs creator (i.e., this is Ospooky action at a distan@s@pnbdence valueFhe class with the highest conbdence
Valid models generalize, i.e., they make accurate predictiovalue is selected as the predicted label for the data record.
on inputs that were not part of their training datasets. Thighe accuracy of the model is evaluated by measuring how it
means that the creator of a generalizable model cannot gineralizes beyond its training set and predicts the labels of
anything to protect OprivacyO as debned above becauseotiier data records from the same population.
correlations on which the model is basedNand the inferencesWe assume that the attacker has query access to the model
that these correlations enableNhold for the entire populatioand can obtain the modelOs prediction vector on any data
regardless of how the training sample was chosen or how tleeord. The attacker knows the format of the inputs and
model was created from this sample. outputs of the model, including their number and the range of

o values they can take. We also assume that the attacker either
B. Inference about members of the training dataset (1) knows the type and architecture of the machine learning

To bypass the difbculties inherent in debPning and protectingpdel, as well as the training algorithm, or (2) has black-box
privacy of the entire population, we focus on protecting privagccess to a machine learning oracle (e.g., a Omachine learning
of the individuals whose data was used to train the model. This a serviceO platform) that was used to train the model. In
motivation is closely related to the original goals of differentiathe latter case, the attacker doest know a priori the modelOs
privacy [13]. structure or meta-parameters.

Of course, members of the training dataset are membersThe attacker may have some background knowledge about
of the population, too. We investigate what the model reveatse population from which the target modelOs training dataset
about thenmbeyondwhat it reveals about an arbitrary membewas drawn. For example, he may have independently drawn
of the population. Our ultimate goal is to measure them- samples from the population, disjoint from the target modelOs
bership riskthat a person incurs if they allow their data to béraining dataset. Alternatively, the attacker may know some
used to train a model. general statistics about the population, for example, the

The basic attack in this setting membership inference marginal distribution of feature values.

i.e., determining whether a given data record was part of theThe setting for our inference attack is as follows. The
modelOs training dataset or not. When a record is fully knoattacker is given a data record and black-box query access
to the adversary, learning that it was used to train a particutar the target model. The attack succeeds if the attacker can
model is an indication of information leakage through theorrectly determine whether this data record was part of the
model. In some cases, it can directly lead to a privacy breachodelOs training dataset or not. The standard metrics for attack
For example, knowing that a certain patientOs clinical recarccuracy areprecision (what fraction of records inferred as
was used to train a model associated with a disease (e.gmembers are indeed members of the training dataset) and

A. Inference about members of the population



attack because the target model produces different distributions
over its output classes depending on the inputOs true class.
To train our attack model, we build multiple OshadowO
models intended to behave similarly to the target model. In
contrast to the target model, we know the ground truth for each
shadow model, i.e., whether a given record was in its training
dataset or not. Therefore, we can use supervised training on
data c training set ? the inputs and the corresponding outputs (each labeled OinO or
OoutO) of the shadow models to teach the attack model how to
Fig. 1: Membership inference attack in the black-box setting. Trtﬁstinguish the shadow models® outputs on members of their

attacker queries the target model with a data record and obt . . )
the modelQOs prediction on that record. The prediction is a vectoaﬁo ining datasets from their outputs on non-members.

i
probabilities, one per class, that the record belongs to a certain clasd-0rMally, let furget() be the target model, and ldbige,

This prediction vector, along with the label of the target record, i€ its private training dataset which contains labeled data
passed to the attack model, which infers whether the recordiwasrecords(x{, y{i})target_ A data recordxt{alr{;et is the input to

or out of the target modelOs training dataset. the model, andyé%et is the true label that can take values

from a set of classes of sizgyger. The output of the target
model is a probability vector of siz&xget. The elements of

e T S train () Tareet Model this vector are in0, 1] and sum up td.
Hvate Tratims 5e B Let farack () De the attack model. Its inputaack is com-

,,,,,,,,,,,,,,,,,,, predict(data)

Target Model
,,,,,,,,, e

prediction

Attack Model

posed of a correctly labeled record and a prediction vector
of size cuaget- Since the goal of the attack is decisional
membership inference, the attack model is a binary classiber

with two output classes, OinO and Oout.O
train ()

Shadow Training Set 1 Shadow Model 1 Figure 1 illustrates our end-to-end attack process. For a
labeled record(x,y), we use the target model to compute
tran () () the prediction vectoly = faget(x). The distribution ofy
Shadow Training Set 2 Shadow Model 2 (classibcation conbdence values) depends heavily on the true

class ofx. This is why we pass the true labgl of x in
addition to the modelOs prediction vectorto the attack
model. Given how the probabilities y are distributed around

y, the attack model computes the membership probability
Pr{(x,y) ! Di@n}, ie. the probability that((x,y),y)

belongs to the OinO class or, equivalently, thas in the
Fig. 2: Training shadow models using the same machine leamiggining dataset Offarget ()-

platform as was used to train the target model. The training datasetsl-he main challenge is how to train the attack model to
of the target and shadow models have the same format but are disjoint

The training datasets of the shadow models may overlap. All modefi&finguish members from non-members of the target modelOs
internal parameters are trained independently. training dataset when the attacker has no information about the

internal parameters of the target model and only limited query

access to it through the public API. To solve this conundrum,
recall (what fraction of the training datasetOs members ave developed ahadow trainingtechnique that lets us train
correctly inferred as members by the attacker). the attack model on proxy targets for which we do know the

training dataset and can thus perform supervised training.

)

train ()
Shadow Training Set k Shadow Model k

| —

ML API

V. MEMBERSHIPINFERENCE B. Shadow models

The attacker create¢ shadow modelsf 4on()- Each

Our membership inference attack exploits the observatishadow modet is trained on a datas@gﬁggjowi of the same
that machine learning models often behave differently on tfiermat as and distributed similarly to the target modelQOs train-
data that they were trained on versus the data that they Oseg@ataset. These shadow training datasets can be generated
for the prst time. Overptting is a common reason but not tlging one of methods described in Section V-C. We assume
only one (see Section VII). The objective of the attacker is that the datasets used for training the shadow models are
construct arattack modethat can recognize such differenceslisjoint from the private dataset used to train the target model
in the target modelOs behavior and use them to distingufsh Dan = # pian - — $). This is the worst case for the

A. Overview of the attack

~ I shadow? target . .
members from non-members of the target modelOs trainaitacker; the attack will perform even better if the training
dataset based solely on the target modelOs output. datasets happen to overlap.

Our attack model is a collection of models, one for each The shadow models must be trained in a similar way to
output class of the target model. This increases accuracy of the target model. This is easy if the targetOs training algorithm
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Algorithm 1 Data synthesis using the target model be statistically similar to the targetOs training dataset and thus

1: procedure SYNTHESIZE(class : ¢) provide good fodder for shadow models.

2: x % RANDRECORD() » initialize a record randomly ~ The synthesis process runs in two phasesséHrch using

3 yE% 0 a hill-climbing algorithm, the space of possible data records
4: j% 0 to bPnd inputs that are classibed by the target model with high
5: k% ki conbdence; (Zamplesynthetic data from these records. After

6: for iteration = 1 &Aa#éer ., do this process synthesizes a record, the attacker can repeat it until
7 Y % frarget (%) > query the target model the training dataset for shadow models is full.

8: if y. & y then > accept the record ~ See Algorithm 1 for the pseudocode of our synthesis
9: if y. > conf,,;, andc = argmax(y) then procedure. First, Px class for which the attacker wants to

10: if rand() < y. then > sample generate synthetic data. The brst phase is an iterative process.
11: return x > synthetic data Start by randomly initializing a data recosd Assuming that

12: end if the attacker knows only the syntactic format of data records,
13: end if sample the value for each feature uniformly at random from
14: x* % x among all possible values of that feature. In each iteration,
15: yr % y. propose a new record. A proposed recordacseptedonly

16: j%0 if it increases the hill-climbing objective: the probability of
17: else being classibed by the target model as class

18: Jj% j+1 Each iteration involves proposing a new candidate record by
19: if j > rejmas then © many consecutive rejects changingk randomly selected features of the latest accepted
20: k % max(kin, ' k/2() recordx*. This is done by Ripping binary features or resam-
21 j% 0 pling new values for features of other types. We initializeo

22: end if kmaz @nd divide it by2 whenrej,,.. subsequent proposals
23: end if are rejected. This controls the diameter of search around the
24: x % RANDRECORD(x*, k) > randomizek features accepted record in order to propose a new record. We set the
25: end for minimum value ofk to k,,;,. This controls the speed of the
26: return ) > failed to synthesize search for new records with a potentially higher classibcation
27: end procedure probability ...

The second, sampling phase starts when the target modelOs
probability y. that the proposed data record is classibed as

(e.g., neural networks, SVM, logistic regression) and mod&f/onging to class: is larger than the probabilities for all

structure (e.g., the wiring of a neural network) are know@ther classes and also larger than a threshotd,;,.. This
Machine leaming as a service is more challenging. Here tRESUTes that the predicted label for the record snd that the

type and structure of the target model are not known pidrget model is sufPciently conbdent in its label prediction. We

the attacker can use exactly the same service (e.g., GoogieeCt such record for the synthetic dataset with probabyjlity

Prediction API) to train the shadow model as was used ad, if selection fails, repeat until a record is selected.

train the target modelNsee Figure 2. This synthesis procedure works only if the adversary can
The more shadow models, the more accurate the attafggciently explore the space of possible inputs and discover

model will be. As described in Section V-D, the attack moddPUts that are classibed by the target model with high conp-

is trained to recognize differences in shadow models® behafgice: For example, it may not work if the inputs are high-
olution images and the target model performs a complex

when these models operate on inputs from their own trainiig> nages
datasets versus inputs they did not encounter during trainiH@.age classibcation task.
Therefore, more shadow models provide more training fodd$susistics-based synthesis. The attacker may have some statis-
for the attack model. tical information about the population from which the target
modelOs training data was drawn. For example, the attacker
may have prior knowledge of the marginal distributions of
different features. In our experiments, we generate synthetic
To train shadow models, the attacker needs training dataining records for the shadow models by independently
that is distributed similarly to the target modelOs training dagampling the value of each feature from its own marginal
We developed several methods for generating such data. distribution. The resulting attack models are very effective.

C. Generating training data for shadow models

Model-based synthesis. |If the attacker does not have realVoisy real data. The attacker may have access to some data
training data nor any statistics about its distribution, he cahat is similar to the target modelOs training data and can be
generate synthetic training data for the shadow models usitmnsidered as a OnoisyO version thereof. In our experiments
the target model itself. The intuition is that records that akeith location datasets, we simulate this by Ripping the (bi-
classibed by the target model with high conbdence shouldry) values of 10% or 20% randomly selected features, then



' (data record, class label) | predict(data) | (prediction, class label, “in” / “out”) :

e — —
Shadow Training Set 1 Shadow Model 1 “in” Prediction Set 1
e —

Shadow Test Set 1 “out ” Prediction Set 1

e ——
“in” Prediction Set K
e

“out” Prediction Set k

Attack Training Set Attack Model

Fig. 3: Training the attack model on the inputs and outputs of the shadow models. For all records in the training dataset of a shadow mot
we query the model and obtain the output. These output vectors are labeled OinO and added to the attack modelOs training dataset. V
query the shadow model with a test dataset disjoint from its training dataset. The outputs on this set are labeled OoutO and also added
attack modelOs training dataset. Having constructed a dataset that reBects the black-box behavior of the shadow models on their trainin
test datasets, we train a collection @fqer attack models, one per each output class of the target model.

Shadow Training Set k train()

Shadow Model k

Shadow Test Set k

training our shadow models on the resulting noisy dataset.If we use model-based synthesis from Section V-C, all of
This scenario models the case where the training data for the raw training data for the attack model is drawn from
target and shadow models are not sampled from exactly the records that are classibed by the target model with high
same population, or else sampled in a non-uniform way. conbdence. This is true, however, both for the records irsed
the shadow modelsO training datasets and for the test records
left out of these datasets. Therefore, it is not the case that
the attack model simply learns to recognize inputs that are

The main idea behind our shadow training technique is thelassiPed with high conbdence. Instead, it learns to perform
similar models trained on relatively similar data records usirgmuch subtler task: how to distinguish between the training
the same service behave in a similar way. This observationifiguts classiPed with high conbdence and other, non-training
empirically borne out by our experiments in the rest of thigputs that are also classiped with high conbdence.
paper. Our results show that learning how to infer membershipin effect, we convert the problem of recognizing the com-
in shadow modelsO training datasets (for which we know thiex relationship between members of the training dataset and
ground truth and can easily compute the cost function duritige modelOs output into a binary classibcation problem. Binary
supervised training) produces an attack model that successfelyssibcation is a standard machine learning task, thus we can
infers membership in the target modelOs training dataset, tose any state-of-the-art machine learning framework or service

We query each shadow model with its own training datastet build the attack model. Our approach is independent of the
and with a disjoint test set of the same size. The outputs specibc method used for attack model training. For example,
the training dataset are labeled Oin,0 the rest are labeled Oou&€ction VI we construct the attack model using neural
Now, the attacker has a dataset of records, the correspondiegworks and also using the same black-box Google Prediction
outputs of the shadow models, and the in/out labels. Thé! that we are attacking, in which case we have no control
objective of the attack model is to infer the labels from thever the model structure, model parameters, or training meta-
records and corresponding outputs. parametersNbut still obtain a working attack model.

Figure 3 shows how to train the attack model. For all
(x,y) ! Dran compute the prediction vectoy =

D. Training the attack model

; shadow?’ . L
Jeadow(X) @nd add the recordly, y, in) to the attack training V1. EVALUATION
setDyan, . Let DS . be a set of records disjoint from the
training set of theth shadow model. Thefi(x,y) ! D$>, We Prst describe the datasets that we use for evaluation,

compute the prediction vectay = fi_4..(x) and add the followed by the description of the target models and our exper-
record (y,y,out) to the attack training seDfan . Finally, imental setup. We then present the results of our membership
split D8, into c,qe¢ Partitions, each associated with anference attacks in several settings and study in detail how and
different class label. For each labgl train a separate modelwhy the attacks work against different datasets and machine

that, giveny, predicts then or out membership status fat. learning platforms.



A. Data of the dataset contributes to the test set and (if necessary) the

training sets of the shadow models.
CIFAR. CIFAR-10 and CIFAR-100 are benchmark datasets

used to evaluate image recognition algorithms [24]. CIFAR-14y¥as hospital stays. This dataset is based on the Hospital
is composed 082* 32 color images inl0 classes, witls, 000 Discharge Data public use bles with information about inpa-
images per class. In total, there &, 000 training images tients stays in several health faciliti®seleased by the Texas

and 10,000 test images. CIFAR-100 has the same format QRepartment qf State Hea!th Services from.2006 to 2009. Each
CIFAR-10, but it hasl00 classes containing00 images each. record cont_al_ns four main groups of atftrlbutes: the _externa_\l
There are500 training images and.00 testing images per Causes of injury (e.g., suicide, drug misuse), the diagnosis
class. We use different fractions of this dataset in our attatk9- Schizophrenia, illegal abortion), the procedures the pa-

experiments to show the effect of the training dataset size BNt underwent (e.g., surgery) and some generic information
the accuracy of the attack. such as the gender, age, race, hospital id, and length of stay.

h d is based le®s ¢ Our classibcation task is to predict the patientOs main proce-
Purchases. Our purchase dataset is based on KaggleOs Q@fz pased on the attributes other than secondary procedures.
quire valued shoppersO challenge dataset that contains s

. . o W@Tocus on thel00 most frequent procedures. The resulting
ping histories for several thousand individu&i$he purpose dataset has7, 330 records and, 170 binary features. We use

of the _challenge 's to design accurate coupon promOt'_%,OOO randomly selected records to train the target model.
strategies. Each user record contains his or her transactlonﬁIote that our experiments do not involve re-identibcation

over a year. The transa}ctions include many belds such dtSknown individuals and fully comply with the data use
product name, store chain, quantity, and date of purchase.agreemem for the original Public Use Data File.

For our experiments, we derived a simpliPed purchas o ] o
dataset (with197,324 records), where each record consist?dVIST. This is a dataset off0,000 handwritten digits
of 600 binary features. Each feature corresponds to a proddgfmatted as32 * 32 images and normalized so that the
and represents whether the user has purchased it or not.Ji@its are located at the center of the imagéle use10, 000
design our classiPcation tasks, we brst cluster the recof@8domly selected images to train the target model.
into multiple classes, each representing a different purchd$€l Adult (Census Income). This dataset includess, 842
style. In our experiments, we use different classibcation records with 14 attributes such as age, gender, education,
tasks with a different number of classg®, 10,20, 50,100}. marital status, occupation, working hours, and native country.
The classibcation task is to predict the purchase style ofThe (binary) classibcation task is to predict if a person makes
user given thes00-feature vector. We us&0,000 randomly over $50K a year based on the census attribttase use
selected records from the purchase dataset to train the tariget)00 randomly selected records to train the target model.
model. The rest of the dataset contributes to the test set and
(if necessary) the training sets of the shadow models. B. Target models

Locations. \We created a location dataset from the publicly We evaluated our inference attacks on three types of target
available set of mobile usersO location Ocheck-insO innigels: two constructed by cloud-based Omachine learning as
Foursquare social network, restricted to the Bangkok ar@aserviceO platforms and one we implemented locally. In all
and collected from April 2012 to September 2013 [86]he cases, our attacks treat the models as black boxes. For the
check-in dataset containg, 592 users and 19, 744 locations, cloud services, we do not know the type or structure of the
for a total of1, 136, 481 check-ins. We bltered out users withmodels they create, nor the values of the hyper-parameters
fewer than 25 check-ins and venues with fewer than 100 visitised during the training process.

which left us with5, 010 user proPles. For each location venueyachine learning as a service. The brst cloud-based machine
we have the geographical position as well as its location typearning service in our study is Google Prediction API. With
(e.g., Indian restaurant, fast food, etc.). The total number @fis service, the user uploads a dataset and obtains an API
location types id.28. We partition the Bangkok map into areagor querying the resulting model. There are no conbguration
of size 0.5km * 0.5km, yleldlng 318 regions for which we parameters that can be changed by the user.
have at least one user check-in. The other cloud service is Amazon ML. The user cannot
Each record in the reSUlting dataset Hd6 binary features, choose the type of the model but can control a few meta-
representing whether the~ user visited a certain region @&rameters. In our experiments, we varied igximum num-
location type, i.e., the userOs semantic and geographical praiie.of passesver the training data and LZgularization
The classibcation task is similar to the purchase dataset. YWaount The former determines the number of training epochs
cluster the location dataset inft) classes, each representingind controls the convergence of model training; its default
a different geosocial type. The classibcation task is to predigflue is10. The latter tunes how much regularization is per-

the userOs geosocial type given his or her record. We 8@  formed on the model parameters in order to avoid overbtting.
randomly selected records to train the target model. The rest
8https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm
Shttps://kaggle.com/c/acquire-valued-shoppers-challenge/data Shttp://yann.lecun.com/exdb/mnist
"https://sites.google.com/site/yangdinggi/home/foursquare-dataset 1Ohttp://archive.ics.uci.edu/ml/datasets/Adult
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Fig. 4: Precision of the membership inference attack against neural networks trained on CIFAR datasets. The graphs show precision
different classes while varying the size of the training datasets. The median values are connected across different training set sizes.
median precision (from the smallest dataset size to large8ty80.74,0.72,0.71 for CIFAR-10 andl, 1, 0.98, 0.97 for CIFAR-100. Recall
is almostl for both datasets. The bgure on the left shows the per-class precision (for CIFAR-10). Random guessing ad&.btacy is
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Fig. 5: Empirical CDF of the precision and recall of the membership inference attack against different classes of the models trained usi
Amazon ML (in two different conbgurations) and Google Prediction APILB/000 purchase record$0, 75, 90-percentile of precision is
0.74,0.79,0.84 on Amazon(10,le! 6), 0.84,0.88,0.91 on Amazon(100,1e! 4), and0.94,0.97,1 on Google, respectively. Recall is
close to 1.

We used the platform in two conbgurations: the default setti®y Experimental setup

(10, le+ 6) and (00, e+ 4). The training set and the test set of each target and shadow
Neural networks. Neural networks have become a verynodel are randomly selected from the respective datasets, have
popular approach to large-scale machine learning. We Ube same size, and are disjoint. There is no overlap between the
Torch7 and its nn packagésa deep-learning library that hasdatasets of the target model and those of the shadow models,
been used and extended by major Internet companies suchiisthe datasets used for different shadow models can overlap
Facebook? with each other.

On CIFAR datasets, we train a standard convolutional neuralVe set the fraining set size to0), 000 for the purchase
plus a fully connected layer of sizZe8 and aSoftMax layer. and the MNIST dataset. We set it 19200 for the location

We useTanh as the activation function. We set the learningataset. We vary the size of the training set for the CIFAR
rate t00.001, the learning rate decay tbe + 07, and the datasets, to measure the difference in the attack accuracy.

maximum epochs of training t©00. For the CIFAR-10 dataset, we chodagg00; 5,000; 10, 000;

nd 15,000. For the CIFAR-100 dataset, we choo$&500;

,520; 19, 920; and 29, 540.

The experiments on the CIFAR datasets were run lo-
cally, against our own models, so we can vary the modelOs
conbguration and measure the impact on the attack accu-
racy. The experiments on the other datasets (purchases with
{2,10,20,50,100} classes, Texas hospital stays, locations,
Lipttps://github.com/torch/nn Adult, and MNIST) were run against models trained using
2nttps:/lgithub.com/facebook/fblualib either Google or Amazon services, where we have no visibility

On the purchase dataset (see Section VI-A), we train a fu
connected neural network with one hidden layer of si2e
and a SoftMax layer. We uskanh as the activation function.
We set the learning rate @001, the learning rate decay to
le + 07, and the maximum epochs of training 260.
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Fig. 6: Precision and recall of the membership inference attack agaiR&l. 7: Precision of the membership inference attack against models
the classibcation model trained using Google Prediction API on ttrained on the same datasets but using different platforms. The attack
Texas hospital-stay dataset. model is a neural network.

into their choice of the model type and structure and littleespectively) is0.6 and 0.2 for CIFAR-10 and CIFAR-100,
control over the training process (see Section VI-B). respectively. The accuracy is low, indicating that the models
For the purchase dataset, we built target models on all plate heavily overptted on their training sets. Figure 4 shows
forms (Google, Amazon, local neural networks) employing ththe results of the membership inference attack against the
same training dataset, thus enabling us to compare the leak&@#ffAR models. For both CIFAR-10 and CIFAR-100, the
from different models. We used similar training architectureatack performs much better than the baseline, with CIFAR-
for the attack models across different platforms: either a full00 especially vulnerable.
connected neural network with one hidden layer of size 64 Table | shows the training and test accuracy of the models
with ReLU (rectiber linear units) activation functions and aonstructed using different machine learning platforms for the
SoftMax layer, or a Google-trained black-box model. purchase dataset with 100 classes. Large gaps between training
We set the number of shadow modelslt for the CIFAR and test accuracy indicate overbtting. Larger test accuracy
datasets20 for the purchase datasét) for the Texas hospital- indicates better generalizability and higher predictive power.
stay datasetg0 for the location datasef0 for the MNIST Figure 5 shows the results of the membership inference
dataset, an@0 for the Adult dataset. Increasing the numbeattack against the black-box models trained by GoogleOs and
of shadow models would increase the accuracy of the attadinazonOs machine learning platforms. Figure 7 compares

but also its cost. precision of the attacks against these models with the attacks
against a neural-network model trained on the same data. Mod-
D. Accuracy of the attack els trained using Google Prediction API exhibit the biggest

The attackerOs goal is to determine whether a given rede@kage.
was part of the target modelOs training dataset. We evaluateor the Texas hospital-stay dataset, we evaluated our attack
this attack by executing it on randomly reshufRed records froagainst a Google-trained model. The training accuracy of the
the targetOs training and test datasets. In our attack evaluat@nget model is0.66 and its test accuracy i8.51. Figure 6
we use sets of the same size (i.e, equal number of membghews the accuracy of membership inference. Precision is
and non-members) in order to maximize the uncertainty ofostly above0.6, and for half of the classes, it is abooey.
inference, thus the baseline accuracy).s. Precision is abov@.85 for more than20 classes.

We evaluate the attack using the standardcision and For the location dataset, we evaluated our attacks against
recall metrics. Precision is the fraction of the records inferreél Google-trained model. The training accuracy of the target
as members of the training dataset that are indeed memberedel is1 and its test accuracy i.66. Figure 8 shows the
Recall measures coverage of the attack, i.e., the fractionasicuracy of membership inference. Precision is betw&én
the training records that the attacker can correctly infer asd0.8, with an almost constant recall af
members. Most measurements are reported per class because o
the accuracy of the attack can vary considerably for differeft Effect of the shadow training data
classes. This is due to the difference in size and compositiorFigure 8 reports precision of the attacks trained on the
of the training data belonging to each class and highly deperstsadow models whose training datasets are noisy versions of
on the dataset. the real data (disjoint from the target modelQOs training dataset

The test accuracy of our target neural-network models wibut sampled from the same population). Precision drops as the
the largest training datasetd5(000 and 29,540 records, amount of noise increases, but the attack still outperforms the
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Google 0.999 0.656 1 ‘ ‘ ‘ _
Amazon (10,1e-6) 0.941 0.468 ] Real Data
Amazon (100,1e-4) 1.00 0.504 09 1 e Baoy Somote ]
Neural network 0.830 0.670 2 o8 H
TABLE [: Training and test accuracy of the models constructed using 5 o7 i !
different ML-as-a-service platforms on the purchase dataset (with 100 5 o6
classes). 2
g o5
w
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% 05 Fig. 9: Empirical CDF of the precision of the membership inference
i attack against the Google-trained model for the purchase dataset.
g 04 Results are shown for different ways of generating training data for
é 0.3 the shadow models (real, synthetic generated from the target model,
3 o2 synthetic generated from marginal statistics). Precision of the attack
o1 over all classes i6.935 (real data)0.795 (marginal-based synthetic
) data), and0.896 (model-based synthetic data). The corresponding
0 0 o2 oa 06 08 1 recall of the attack i9.994, 0.991, and0.526, respectively.

Precision

Fig. 8: Empirical CDF of the precision of the membership inference _ o
attack against the Google-trained model for the location dataset synthetic data. The overall precision(i®935 on real data

Results are shown for the shadow models trained on real data anddompared t00.795 for marginal-based synthetics adR95
E.hz Shsdg‘f"’f;‘t’dreelz :2“;‘1 lggeréo's¥hdf;ﬁ d"g‘r?]% :l‘“g ;O(’fgrgg.':% _ for model-based synthetics. The accuracy of the attack using
tlﬁe.é)t(taock over :” cIasses(?sG?S (r;\gl data) ,0.666\3/ (duata Withlol%l) ﬂ{arginal-pased synthetic data i_s noticeably reduced versus real
noise), and0.613 (data with 20% noise). The corresponding recalldata, but is nevertheless very high for most classes. The attack
of the attack is0.98, 0.99, and1.00, respectively. using model-based synthetic data exhibits dual behavior. For
most classes its precision is high and close to the attacks
that use real data for shadow training, but for a few classes
baseline and, even with 10% of the features in the shadowsérision is very low (less thaf.1).
training data replaced by random values, matches the originalThe reason for the attackOs low precision on some classes
attack. This demonstrates thatir attacks are robust even is that the target classiber cannot conbdently model the dis-
if the attackerOs assumptions about the distribution of the tribution of data records belonging to these classesNbecause
target modelOs training data are not very accurate it has not seen enough examples. These classes are under-
Figure 9 reports precision of the attacks when the attack@presented in the target modelOs training dataset. For example,
has no real data (not even noisy) for training his shadow mogich of the classes where the attack has less(thgprecision
els. Instead, we used the marginal distributions of individuabntributes unde.6% of the target modelOs training dataset.
features to generate87, 300 synthetic purchase records, therBome of these classes have fewer tBanraining records (out
trained20 shadow models on these records. of 10,000). This makes it very difbcult for our algorithm to
We also generated0,000 synthetic records using thesynthesize representatives of these classes when searching the
model-based approach presented in Algorithm 1. In our efigh-dimensional space of possible records.
periments with the purchase dataset where records ¢@¥e For the majority of the target modelOs classes, our attack
binary features, we initializé to k... = 128 and divide it achieves high precision. This demonstrates @&haiembership
by 2 whenrej.. = 10 subsequent proposals are rejecteddference attack can be trained with only black-box access
We set its minimum valué:,,;,, = 4. In the sampling phase, to the target model, without any prjor knowledge about
we set the minimum conbdence threshald f,,;, to 0.2. the distribution of the target modelOs training dataif the
For our bnal set of sampled records, the target mode®Bgcker can efbciently generate inputs that are classiped by
conbdence in classifying the recordsiig4 on average (just the target model with high conbdence.
a bit over our thresholdon f,,;, = 0.2). On average, each o
synthetic record needetl56 queries (of proposed records)':- Effect of the number of classes and training data per class
during our hill-climbing two-phase process (see Section V-C). The number of output classes of the target model contributes
We trained8 shadow models on this data. to how much the model leaks. The more classes, the more
Figure 9 compares precision of the attacks when shadeignals about the internal state of the model are available to
models are trained on real data versus shadow models traitteslattacker. This is one of the reasons why the results in Fig. 4
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Purchase Dataset, Google, Membership Inference Attack Dataset Training Testing Atta_d_(
Accuracy  Accuracy Precision
L Adult 0.848 0.842 0.503
MNIST 0.984 0.928 0.517
Location 1.000 0.673 0.678
0.9 Purchase (2) 0.999 0.984 0.505
- Purchase (10) 0.999 0.866 0.550
a s | Purchase (20) 1.000 0.781 0.590
g Purchase (50) 1.000 0.693 0.860
e Purchase (100) 0.999 0.659 0.935
g 07r TX hospital stays| 0.668 0.517 0.657
<
06 b % TABLE II: Accuracy of the Google-trained models and the corre-
' % sponding attack precision.
05 | +
2 10 20 50 100 guessing. There could be two reasons for why membership

Number of Classes inference fails against this model. First, the model is not

Fig. 10: Precision of the membership inference attack against diffeyerpited (jts test and train accuracies are almost the same).

ent purchase classibcation models trained on the Google platfo;Fnécond the model is a binary classiber. which means that the

The boxplots show the distribution of precision over different classi ’ s g y ’

bcation tasks (with a different number of classes). attacker has to distinguish members from non-members by
observing the behavior of the model on essentially 1 signal,

since the two outputs are complements of each other. This

are better for CIFAR-100 than for CIFAR-10. The CIFARJS not enough for our attack to extract useful membership
100 model is also more overbtted to its training dataset. Iﬂggormatmn from the model.

the same number of training records per class, the attagk Effect of overptting

performs better against CIFAR-100 than against CIFAR-10.

For example, compare CIFAR-10 when the size of the trainir};gr models of the same type. For example, the Amazon-
dataset i€, 000 with CIFAR-100 when the size of the trammgtrained(loo, le+ 4) model that, according to Table I, is more

dataset is20,000. The average number of data records per erbtted leaks more than the Amazon-trairied, lc + 6)

: ) . vV
class is200 in both cases, but the attack accuracy is much .
better (close td) for CIFAR-100. model. However, they both leak less than the Google-trained

T i the eff hat th b ¢ ol h model, even though the Google model is less overbtted than
0 quantify the effect that the num Er ol classes e of the Amazon models and has a much better predictive
on the accuracy of the attack, we trained target mod

: - dwer (and thus generalizability) than both Amazon models.
using Google Prediction API on the purchase dataset w

. AR erefore,overbtting is not the only factor that causes
{2,10,20,50,100} classes. Figure 10 shows the dlstr|but|ora model to be vulnerable to membership inferenceThe

of attack precision for each modell. Modg!s W'.th fewer ClasS%’?‘ructure and type of the model also contribute to the problem.
leak less |nformat|_on about their training inputs. As the |, Figure 11, we look deeper into the factors that contribute
”.“”.‘bef of classes increases, the model needs to e>§tra.ct M8 &ttack accuracy per class, including how overbtted the
distinctive features from the data to be able to classify NPUiR, e is and what fraction of the training data belongs to each

with high accuracy. Informally, models with more OUIPUL|ass. The (train-test) accuracy gap is the difference between

classes need to remember more about their training data, this ¢\ racy of the target model on its training and test data.
they leak more information. Similar metrics are used in the literature to measure how

Figure 11 shows the relationship between the amount Qierpited a model is [18]. We compute this metric for each
training data per class and the accuracy of membership infefsss Bigger gaps indicate that the model is overbtted on its
ence. This relationship is more complex, but, in general, th&ining data for that class. The plots show that, as expected,

more data in the training datas;e; is associated with a giVS@ger (train-test) accuracy gaps are associated with higher
class, the lower the attack precision for that class. precision of membership inference.

Table Il shows the precision of membership inference
against Google-trained models. For the MNIST dataset, the VII. WHY OUR ATTACKS WORK
training accuracy of the target model (5984 and its test  Table Il shows the relationship between the accuracy of
accuracy is0.928. The overall precision of the membershipur membership inference attack and the (train-test) gap of
inference attack i9.517, which is just slightly above randomthe target models. Figure 12 also illustrates how the target
guessing. The lack of randomness in the training data for eagldelsO outputs distinguish members of their training datasets
class and the small number of classes contribute to the failffem the non-members. This is the information that our attack
of the attack. exploits.

For the Adult dataset, the training accuracy of the target Specibcally, we look at how accurately the model predicts
model is0.848 and its test accuracy i8.842. The overall the correct label as well as its prediction uncertainty. The ac-
precision of the attack i8.503, which is equivalent to random curacy for class is the probability that the model classibes an

The more overbtted a model, the more it leaksNbut only
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Fig. 11: Relationship between the precision of the membership inference attack on a class and the (train-test) accuracy gap of the ta
model, as well as the fraction of the training dataset that belongs to this class. Each point represent the values for one class. The (train-
accuracy gap is a metric for generalization error [18] and an indicator of how overbtted the target model is.

Purchase Dataset, 10 Classes, Google, Membership Inference Attack Purchase Dataset, 20 Classes, Google, Membership Inference Attack Purchase Dataset, 100 Classes, Google, Membership Inference Attack
1 1
Members m— Members m— 1 Members m—
Non-i — Non-members mmm— Non-members m—
0.8 - 0.8 0.8
0.6 - 06 0.6
0.4 0.4 0.4

0.2 -

| 1 TR e sl ball ]

0

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Prediction Uncertainty Prediction Uncertainty Prediction Uncertainty
Purchase Dataset, 10 Classes, Google, Membership Inference Attack Purchase Dataset, 20 Classes, Google, Membership Inference Attack Purchase Dataset, 100 Classes, Google, Membership Inference Attack
1 1
Members Members t Members
on-1 Non-members Non-members
0.8 q 0.8 0.8
0.6 ol 0.6 Bl 0.6
0.4 ol 0.4 q 04
0.2 l 0.2 | 02
0 0 0
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Prediction Accuracy Prediction Accuracy Prediction Accuracy

Fig. 12: Classibcation uncertainty (top row) and prediction accuracy (bottom row) of the target model for the members of its training datas
vs. non-members, visualized for several sample classes. The difference between the member and non-member output distributions is ar
the factors that our attack exploits to infer membership. The accuracy of our attack is higher for the models where the two distributions ¢
more distinguishable (See Table ).

input with labeli asi. Prediction uncertainty i5 the normalized As we explained in Section VI, overbtting is not the only
entropy of the modelOs prediction vecﬁg&%' ;pilog(p;), reason why our inference attacks work. Different machine
wherep; is the probability that the input belongs to class learning models, due to their different structures, OrememberO
and n is the number of classes. The plots show that thedéferent amounts of information about their training datasets.
is an observable difference between the output (both accurddyis leads to different amounts of information leakage even if
and uncertainty) of the model on the member inputs versus tie models are overbtted to the same degree (see Table I).
non-member inputs in the cases where our attack is successful.

Success of membership inference is directly related to the VIl MITIGATION

(1) generalizability of the target model and (2) diversity of its As explained in Section VII, overbtting is an important
training data. If the model overbts and does not generalize w@dut not the only) reason why machine learning models leak
to inputs beyond its training data, or if the training data is naformation about their training datasets. Of course, overbtting
representative, the model leaks information about its trainiig a canonical problem in machine learning because it limits
inputs. We quantify this relationship in Fig. 11. From thehe predictive power and generalizability of models. This
machine learning perspective, overbtting is harmful becauseans that instead of the usual tradeoff between utility and
it produces models that lack predictive power. In this papeivacy, machine learning research and privacy research have
we show another harm of overbtting: the leakage of sensitigenilar objectives in this case. Regularization techniques such
information about the training data. as dropout [31] can help defeat overbtting and also strengthen
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. . . . . Purch 1, t Testi Attack Attack Attack
privacy guarantees in neural networks [23]. Regularization is urchase datase Aceflj:ggy Total Aif:uracy Pre;gion R,;fa”
also used for objective perturbation in differentially privateéNo Mitigation 0.66 0.92 0.87 1.00
machine learning [9]. Top k = 3 0.66 0.92 0.87 0.99

(Ideal) well-regularized models should not leak much infor—lggt - i label 8'22 8'22 8'23 é'gg
mation about their training data, and our attack can serve &soundingd = 3 0.66 0.92 0.87 0.99
a metric to quantify this. Also, models with a trivial structure Roundingd = 1 0.66 0.89 0.83 1.00

; ; irdemperaturd =5 0.66 0.88 0.86 0.93
(e.g., XOR of some mqu feature_s) generalize to the entlrekmperature DS o 084 083 0.86
universe and do not leak information. T =Tel 4 0.68 087 08T 0.96

If the training process is differentially private [12], the L2! =1e! 3 0.72 0.77 0.73 0.86
probability of producing a given model from a training datasett2! =1e! 2 0.63 0.53 0.54 0.52
that mc_ludes a particular record is c_Iose to th_e probgblhty ofHOSpital dataset Testing Attack Attack  Attack
producing the same model when this record is not included. Accuracy  Total Accuracy  Precision  Recall
Differentially private models are, by construction, secureNo Mitigation 0.55 0.83 0.77 0.95
aoai hip inf ks of the ki | ifopk =3 0.55 0.83 0.77 0.95

gainst membership inference attacks of the kind developed k=1 s 0.82 076 008
this paper because our attacks operate solely on the outputsmg k=1 label 0.55 0.73 0.67 0.93
the model, without any auxiliary information. One obstacle iSRoundingd =3 0.55 0.83 0.77 0.95
that differentially private models may signibcantly reduce theRoundingd =1 0.55 0.81 0.75 0.96

del®s prediction accuracy for smalalues. In Section IX, 1cmperaturd =5 9.2 0.79 0.7 0.83
mMoaels p y falues. » Temperaturd =20 |  0.55 0.76 0.76 0.76
we survey some of the related work in this area. 27T =1el 4 0.56 0.80 0.74 0.92

In the case of machine learning as a service, platformt2! =5e! 4 0.57 0.73 0.69 0.86

U 21 =1e! 3 0.56 0.66 0.64 0.73
operators such as Google and Amazon have signibcant réé! —5el 3 035 052 052 053

sponsibility to the users of their services. In their current

form, these services simply accept the data, produce a moH¥pLE Il The accuracy of the target models with different mitiga-
n technigues on the purchase and Texas hospital-stay datasets (both

Of_ unknown type and structure, and return an opaqge API mh 100 classes), as well as total accuracy, precision, and recall of
this model that data owners use as they see Pt, without Ry membership inference attack. The relative reduction in the metrics
understanding that by doing so, they may be leaking out theit the attack shows the effectiveness of the mitigation strategy.

data. Machine learning services do not inform their customers

about the risks of overbtting or the harm that may result

from models trained on inadequate datasets (for example, witctor down tod Roating point digits. The smallet is, the
unrepresentative records or too few representatives for cert@igs information the model leaks.

classes). .. .
. . Increase entropy of the prediction vector. One of the signals
Instead, when adaptively choosing a model for a customeyr: Py of the p g

lied dataset . h as Gooale Prediction AP gt membership inference exploits is the difference between
supplied dataset, services such as 00gle Frediction prediction entropy of the target model on its training inputs
Amazon ML should take into account not only the accuracy ol

h del but also the risk that it will leak inf , b rsus other inputs. As a mitigation technique for neural-
.t € moce ut also the risk that it will leak in Ofmat,"?” aboufayyork models, we can modify (or add) the softmax layer and
its training data. Furthermore, they need to explicitly war

[hcrease its normalizing temperature- 0. The softmax layer

customers about this risk and provide more visibility into the, s the logits computed for each class into probabilities.

model and the methods that can be used to reduce this Ieak%?‘the logits vectow, the it output of the softmax function
Our inference attacks can be used as metrics to quant\m/ ' This technique, also used

leakage from a specibPc model, and also to measure t_héh temperatur_et.ls et )

effectiveness of future privacy protection techniques deploy&4 knowledge distillation and information transfer between

by machine-learning services. models [20], would increase the entropy of the prediction

o ) vector. Note that for a very large temperature, the output

A. Mitigation strategies becomes almost uniform and independent of its input, thus
We quantitatively evaluate several defenses against me@aking no information.

bership inference.

ozilt

Use regularization. Regularization techniques are used to
Restrict the prediction vector to top k classes. When the gyercome overbtting in machine learning. We usenorm
number of classes is large, many classes may have very srdgdhdard, regularization that penalizes large parameters by
probabilities in the modelOs prediction vector. The model Williding A\~ 62 to the modelOs loss function, wheks are

still be useful if it only outputs the probabilities of the mosimodelOs parameters. We implement this technique with various
likely & classes. To implement this, we add a Plter to the lagilues for the regularization factor. The larger) is, the

layer of the model. The smalléris, the less information the stronger the effect of regularization during the training.
model leaks. In the extreme case, the model returns only the

label of the most likely class without reporting its probabilityB. Evaluation of mitigation strategies

Coarsen precision of the prediction vector. To implement  To evaluate the effectiveness of different mitigation strate-
this, we round the classibcation probabilities in the predictiaries, we implemented all of them in locally trained mod-
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els over which we have full control. The inference attacl

however, still assumes only black-box access to the resulti
models. The baseline model for these experiments is a ne
network with one hidden layer with 256 units (for the purcha:

dataset) and 1,000 units (for the Texas hospital-stay datas

We useTanh as the activation function.
Table Ill shows the results of our evaluation. It compar
different mitigation strategies based on how they degrade

accuracy of our attack relative to the attack on a modEig. 13: Images produced by model inversion on a trained CIFAR-10
that does not use any mitigation. The mitigation Strategigﬁodel- Top: airplane, automobile, bird, cat, deer. Bottom: dog, frog,

. . . rse, ship, truck. The images do not correspond to any specibc
that we implemented did not impose any cost on the tarq-#cwtage from the training dataset, are not human-recognizable, and at

modelOs prediction accuracy, and in the case of regularizatiQit (e.g., the truck class image) are vaguely similar to the average
the target modelOs prediction accuracy increased as expegigde of all objects in a given class.

Note that more regularization (by increasingeven further)
would potentially result in a signibcant reduction of the target
modelOs test accuracy, even if it foils membership infereng
This is shown in the table foA = le + 2 on the purchase

Other attacks on machine learning include [7], where the
SVersary exploitxhangesin the outputs of a collaborative

recommender system to infer inputs that caused these changes.

dataset, and fok = et 3 on the Tgxas hospltal_gtay_dataset].hese attacks exploit temporal behavior specibc to the recom-
Overall, our attack is robust against these mitigation Stratﬁfender systems based on collaborative bltering

gies. Filtering out low-probability classes from the predic-
tion vector and limiting the vector to the top 1 or 3 mosModel inversion. Model inversion [16], [17] uses the output
likely classes does not foil the attack. Evesstricting the 0f @ model applied to a hidden input to infer certain features
prediction vector to a single label (most likely class), Of this input. See [27] for a detailed analysis of this attack and
which is the absolute minimum a model must output to an explanation of why it does not necessarily entail a privacy
remain useful, is not enough to fully prevent membership breach. For example, in the specibc case of pharmacogenetics
inference Our attack can still exploit thenislabeling behavior analyzed in [17], the model captures the correlation between
of the target model because members and non-memberdhgr patientOs genotype and the dosage of a certain medicine.
the training dataset are mislabeled differently (assigned this correlation is a valid scientibc fact that holds for all
different wrong classes). If the prediction vector contairigatients, regardless of whether they were included in the
probabilities in addition to the labels, the model leaks evéRodelOs training dataset or not. It is not possible to prevent
more information that can be used for membership inferenélisclosure due to population statistics [14].

Some of the mitigation methods are not suitable for In general, model inversion cannot tell whether a particular
machine-learning-as-service APIs used by general applicatisasord was used as part of the modelOs training dataset. Given
and services. Regularization, however, appears to be nedesecord and a model, model inversion works exactly the same
sary and useful. As mentioned above, it (1) generalizes th@y when the record was used to train the model and when
model and improves its predictive power and (2) decreagésvas not used. In the case of pharmacogenetics [17], model
the modelOs information leakage about its training datage¢ersion produces almost identical results for members and
However, regularization needs to be deployed carefully f@n-members. Due to the overbtting of the model, the results
avoid damaging the modelOs performance on the test datasfe. a little (4%) more accurate for the members, but this
accuracy can only be measured in retrospect, if the adversary
already knows the ground truth (i.e., which records are indeed
Attacks on statistical and machine learning models. In [2], members of the modelOs training dataset). By contrast, our goal
knowledge of the parameters of SVM and HMM models i to construct a decision procedure that distinguishes members
used to infer general statistical information about the trainirfgPm non-members.
dataset, for example, whether records of a particular race werdlodel inversion has also been applied to face recognition
used during training. By contrast, our inference attacks workodels [16]. In this scenario, the modelOs output is sét to
in a black-box setting, without any knowledge of the modelf class:i and 0 for the rest, and model inversion is used to
parameters, and infer information absyecibc records the construct an input that produces these outputs. This input is
training dataset, as opposed to general statistics. not an actual member of the training dataset but simply an

Homer et al. [21] developed a technique, which was furtheverage of the features that OcharacterizeO the class.
studied in [3], [15], for inferring the presence of a particular In the face recognition scenarioNanehly in this speciPc
genome in a dataset, based on comparing the published stati®narioNeach output class of the model is associated with a
tics about this dataset (in particular, minor allele frequenciesingle person. All training images for this class are different
to the distribution of these statistics in the general populatiophotos of that person, thus model inversion constructs an
By contrast, our inference attacks target trained machiagtibcial image that is an average of these photos. Because
learning models, not explicit statistics. they all depict the same person, this average is recognizable

IX. RELATED WORK
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(by a human) as that person. Critically, model inversion do8&ayes classibers [33], and k-means clustering [22]. The goal
not produce angpecibc imagérom the training dataset, whichis to limit information leakage during training. The training
is the debnition of membership inference. algorithm is the same as in the non-privacy-preserving case,
If the images in a class are diverse (e.g., if the class contathss the resulting models are as vulnerable to inference attacks
multiple individuals or many different objects), the results cdis any conventionally trained model. This also holds for the
model inversion as used in [16] are semantically meaningles®dels trained by computing on encrypted data [4], [6], [35].
and not recognizable as any speciPc image from the trainindDifferential privacy [12] has been applied to linear and
dataset. To illustrate this, we ran model inversion againsugistic regression [8], [37], support vector machines [28], risk
a convolutional neural netwotk trained on the CIFAR-10 minimization [5], [9], [34], deep learning [1], [30], learning
dataset, which is a standard benchmark for object recognitian unknown probability distribution over a discrete population
models. Each class includes different images of a single tyfpem random samples [10], and releasing hyper-parameters
of object (e.g., an airplane). Figure 13 shows the imagead classibPer accuracy [25]. By dePnition, differentially pri-
OreconstructedO by model inversion. As expected, they dovaté models limit the success probability of membership
depict any recognizable object, let alone an image from tirfference attacks based solely on the model, which includes
training dataset. We expect similar results for other modettie attacks described in this paper.
too. For the pharmacogenetics model mentioned above, this
form of model inversion produces an average of different X. CONCLUSIONS
patientsO genomes. For the model that classiPes location trac@g& have designed, implemented, and evaluated the brst
into geosocial probles (see Section VI-A), it produces anembership inference attack against machine learning models,
average of the location traces of different people. In bothotably black-box models trained in the cloud using Google
cases, the results of model inversion are not associated Wiiediction APl and Amazon ML. Our attack is a general,
any specibc individual or specibc training input. quantitative approach to understanding how machine learning
In summary, model inversion produces the average of thtodels leak information about their training datasets. When
features that at best can characterize an entire output clagiosing the type of the model to train or a machine learning
It does not (1) construct a specibc member of the trainiRgrvice to use, our attack can be used as one of the selection
dataset, nor (2) given an input and a model, determines if thigetrics.
speciPc input was used to train the model. Our key technical innovation is the shadow training tech-
Model extraction. Model extraction attacks [32] aim tonique that trains an attack model to distinguish the target
extract the parameters of a model trained on private dafaodelOs outputs on members versus non-members of its train-
The attackerOs goal is to construct a model whose predictiv@ dataset. We demonstrate that shadow models used in this
performance on validation data is similar to the target modéltack can be effectively created using synthetic or noisy data.
Model extraction can be a stepping stone for inferrintji the case of synthetic data generated from the target model
information about the modelOs training dataset. In [32], thisitigelf, the attack does not require any prior knowledge about
illustrated for a specibc type of models called kernel logisttbe distribution of the target modelOs training data.
regression (KLR) [38]. In KLR models, the kernel function Membership in hospital-stay and other health-care datasets
includes a tiny fraction of the training data (so called Oimpdstsensitive from the privacy perspective. Therefore, our results
pointsO) directly into the model. Since import points afeave substantial practical privacy implications.

parameters of the model, extracting them results in the leaka@@nowledgments. Thanks to Adam Smith for explaining

of that particular part of the data. This result is very speciRfiferential privacy and the state of the art in membership

to KLR and does not extend to other types of models singgerence attacks based on explicit statistics.

they do not explicitly store training data in the_ir parameters. This work was supported by the NSF grant 1409442 and a
Even for KLR models, leakage is not quantiped other thafiyogle Research Award.
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