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Privacy Games Along Location Traces: A Game-Theoretic Framework
for Optimizing Location Privacy
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The mainstream approach to protecting the privacy of mobile users in location-based services (LBSs) is
to alter (e.g., perturb, hide, and so on) the users’ actual locations in order to reduce exposed sensitive
information. In order to be effective, a location-privacy preserving mechanism must consider both the privacy
and utility requirements of each user, as well as the user’s overall exposed locations (which contribute to the
adversary’s background knowledge).

In this article, we propose a methodology that enables the design of optimal user-centric location obfus-
cation mechanisms respecting each individual user’s service quality requirements, while maximizing the
expected error that the optimal adversary incurs in reconstructing the user’s actual trace. A key advantage
of a user-centric mechanism is that it does not depend on third-party proxies or anonymizers; thus, it can
be directly integrated in the mobile devices that users employ to access LBSs. Our methodology is based
on the mutual optimization of user/adversary objectives (maximizing location privacy versus minimizing
localization error) formalized as a Stackelberg Bayesian game. This formalization makes our solution robust
against any location inference attack, that is, the adversary cannot decrease the user’s privacy by designing a
better inference algorithm as long as the obfuscation mechanism is designed according to our privacy games.

We develop two linear programs that solve the location privacy game and output the optimal obfuscation
strategy and its corresponding optimal inference attack. These linear programs are used to design location
privacy–preserving mechanisms that consider the correlation between past, current, and future locations of
the user, thus can be tuned to protect different privacy objectives along the user’s location trace. We illustrate
the efficacy of the optimal location privacy–preserving mechanisms obtained with our approach against real
location traces, showing their performance in protecting users’ different location privacy objectives.

CCS Concepts: � Security and privacy → Privacy-preserving protocols; Mobile and wireless se-
curity; � Information systems → Location-based services; � Networks → Network privacy and
anonymity; � Mathematics of computing → Linear programming;
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1. INTRODUCTION

The widespread use of smart mobile devices with continuous connection to the Internet
has fostered the development of a variety of successful location-based services (LBSs).
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Even though LBSs can be very useful, these benefits come at a cost for users’ privacy.
The whereabouts of users disclose aspects of their private lives that are not apparent
at first, but can be inferred from the revealed location data [Freudiger et al. 2012; Golle
and Partridge 2009; Krumm 2007].

A large body of research has focused on developing location-privacy protection mech-
anisms (LPPMs) that allow users to make use of LBSs while limiting the amount of
disclosed sensitive information [Beresford and Stajano 2003; Chow and Golle 2009;
Freudiger et al. 2009; Gedik and Liu 2005; Hoh et al. 2007; Kalnis et al. 2007;
Meyerowitz and Roy Choudhury 2009]. These protection mechanisms are based on
increasing the uncertainty of the adversary about a user’s true whereabouts by hiding
locations from the LBS, or sending perturbed or fake locations. However, more often
than not, the evaluation of these designs disregards that the adversary might have
some prior knowledge about users’ movements as well as about the algorithm imple-
mented by the LPPM. It has been shown [Shokri et al. 2011a] that such information
allows a strategic adversary to reduce one’s uncertainty of the user’s true location;
thus, prior evaluations overestimate the location privacy offered by a given protection
system.

Furthermore, previous work usually targets protection against localization at-
tacks [Shokri et al. 2011a, 2011b], that is, to protect the users’ whereabouts when
disclosing an obfuscated location to the LBS. Protecting the user’s current location is
intricately bound with protecting the user’s past and future locations. Different LBSs
require the user location to be updated at different rates. Some require frequent up-
dates, such as applications for obtaining local traffic information—for example, Beat
the Traffic, INRIX Traffic Maps, Routes & Alerts; or finding nearby points of interest,
local events, or nearby friends—for example, Google Maps. Others can function per-
fectly well with just a single location, such as Foursquare, Google Latitude/Google+
Local, or, in general, location check-in and location-tagging services that require only
sporadic location exposures. The frequency of location exposures has a severe impact on
the privacy protection offered by an LPPM since locations exposed in quick succession
are highly correlated, leaking a lot of information that allows the adversary to reduce
one’s uncertainty of the user’s immediate past or future whereabouts.

In this work, we propose an LPPM design methodology that explicitly accounts for
a strategic adversary, allowing for a more accurate estimation of the privacy protec-
tion that can be achieved by these LPPMs. The design methodology takes location
correlation into account to effectively protect a user’s location privacy along the user’s
trajectory; for example, it provides protection against inference attacks that aim at
reconstructing the user’s location in the past or predicting the user’s location in the
future based on what the user shares at any moment. We focus on user-centric LPPMs,
in which privacy decisions are made locally by the user, rather than by a third party
that acts as an anonymizer [Gruteser and Grunwald 2003]. These LPPMs require no
changes in infrastructure or any cooperation from other users, from third parties, or
from the LBS. Therefore, they can be directly integrated into the mobile devices.

The goal of our methodology is to allow system designers to find the optimal LPPM
against a strategic adversary who, knowing each user’s LBS access pattern, observa-
tion history, and the LPPM’s obfuscation algorithm, employs the theoretically strongest
attack to infer users’ whereabouts. The challenge is to design such an optimal protec-
tion mechanism when the inference attack, that the strategic adversary will choose
depending on the mechanism being designed, is a priori unknown to the designer. To
overcome this obstacle, instead of making assumptions about the adversary’s inference
algorithm (i.e., instead of assuming limits in the adversary’s power), our approach an-
ticipates the optimal attack. Additionally, our methodology constrains the search space
to LPPMs that obfuscate locations in such a way that the quality of the LBS response is
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not degraded below a threshold imposed by the user, guaranteeing the required service
quality for the user. We assume that this user-specified service quality constraint is
also known to the adversary.

We formalize the problem of finding the optimal LPPM anticipating the optimal
inference attack as an instance of a zero-sum Bayesian Stackelberg game. In this
game, a leader and a follower interact strategically, with each one’s gain being the
loss of the other. The leader decides on a strategy knowing that it will be observed
by the follower; the follower will optimize a choice based on this observation. In our
scenario, the user is the leader and the adversary is the follower. Then, the game
precisely models that the adversary knows the user’s choice of protection mechanism
and will use that knowledge to improve the attack’s effectiveness. We further extend
the classic formulation of a Stackelberg game with an extra constraint to ensure that
the service quality is satisfactory for the user. This enables us to find the optimal
point in the trade-off curve between privacy and service quality that satisfies users’
requirements. We prove that the solution to our location privacy games can be obtained
using linear programs that must be solved by the user along the trace of the user’s
movements, since, as the user reveals more of one’s location over time, the adversary’s
knowledge and observation history evolves. Ours is, to the best of our knowledge, the
first analytical framework that allows us to integrate adversarial knowledge in the
design methodology of optimal user-centric privacy protection mechanisms.

We apply our methodology to design LPPMs for various scenarios in which we aim
protect not just the current user location, but also past locations (i.e., the LPPM’s
current obfuscation is chosen so as not to compromise the privacy of past locations),
future locations (i.e., the current obfuscation should be compatible with potential fu-
ture locations where the user might go next), and transitions between locations (i.e.,
obfuscations of successive locations should be chosen jointly).

We evaluate the effectiveness of the designed LPPMs using real location traces,
showing that, for a given user’s LBS access pattern and service-quality threshold, our
game-theoretic approach enables us to simultaneously find the optimal LPPM and the
optimal attack against it. We confirm that there is a trade-off between the maximum
achievable privacy and the service quality, but, once a certain privacy level is reached,
loosening the quality requirements does not necessarily result in a privacy gain. We
also find that the location-privacy advantage of the optimal LPPM over a suboptimal
LPPM is larger when the quality requirement is tighter. The theory is that, when the
quality requirement is loose, both LPPMs are allowed to add so much noise that the
attacker’s observation is very uninformative about the user’s true location. In contrast,
when the quality requirement is tight, the optimal LPPM makes a better allocation of
the limited noise it is allowed to inject.

In summary, our proposal for designing LPPMs showcases four contributions:

(1) Our LPPMs assume that the adversary is strategic, because, as Shannon’s maxim
states: “One ought to design systems under the assumption that the enemy will
immediately gain full familiarity with them.”

(2) Our LPPMs are user-centric, needing no changes in the infrastructure, nor any
trusted third parties, because we believe that this would facilitate their deployment.

(3) Our LPPMs take into account that successively visited locations are correlated,
which dramatically changes the way that they should be protected.

(4) Our LPPMs are optimal by design in the scenarios for which they are designed;
thus, they offer the best possible privacy protection against the best possible attack.

We motivate and state the problem in Sections 2 and 3. We formalize the problem
as a Bayesian Stackelberg game between user and adversary in Section 4. We show
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Fig. 1. A user’s real location (�) and obfuscated exposed location (�). In principle, the attacker has 1 chance
in 9 to accurately locate the user. However, if the attacker knows that row 1 is a lake, or that the protection
mechanism always produces a 3x3 square centered on the real location, then the user’s privacy is lower than
naı̈vely expected.

how to design optimal protection mechanisms in different scenarios in Section 5, and
evaluate our method in Section 6. We discuss the related work in Section 7.

2. MOTIVATION: LOCATION PRIVACY AGAINST STRATEGIC ADVERSARIES

This section delves into the need to consider, at the time of designing an LPPM, strategic
adversaries that use their knowledge of user behavior, LPPM operation, and correlation
between successively visited locations, since the use of such knowledge has great impact
on the maximum level of privacy achievable.

2.1. Strategic Adversaries Use Prior Knowledge on Users’ Behavior and LPPM Design
to Reduce Their Uncertainty

Consider a user who issues a location-based query from location (2,2), �, in the area
depicted in Figure 1. Instead of revealing the true location, the user employs an LPPM
that outputs a 3x3 square, �, centered on the true location. The hope is that this
mechanism masks the user’s location, making any location within the exposed square
equally probable in the eyes of the attacker.

There are two problems with this naı̈ve approach. First, if the adversary has back-
ground information about the user’s mobility, the probability of the user being in any
location is not uniform anymore. For example, the adversary may have access to to-
pographic information about the area in which the user moves, which changes the
probability of the user visiting locations—the user is much more likely to be at the
shore of a lake than in its middle. This probability also changes if the attacker has ac-
cess to behavioral information about the user, for example, the user’s favorite locations
reported in social networks, or demographic information such as age, which lead to
likely locations of that particular demographic group. Second, if the adversary knows
how the mechanism works, the probability of the user being in any location may also
change. In this example, such knowledge would completely break the user’s privacy.
Upon observing the reported square, the attacker would always correctly infer that the
user is located at (2,2), the center of the square.

These examples show that not considering a strategic adversary with access to back-
ground knowledge leads to an overestimation of the privacy achievable by an LPPM.

2.2. Strategic Adversaries Use Correlation to Reduce Their Uncertainty

Users’ movements are not isolated discrete events. Rather, users follow a trajectory to
go from one place to another. Along this trajectory, users may query a location-based
service, continuously in time or only at selected spots, to obtain useful information

ACM Transactions on Privacy and Security, Vol. 19, No. 4, Article 11, Publication date: December 2016.



Privacy Games Along Location Traces 11:5

Fig. 2. Correlation of user’s locations between time t − 1 and time t, reduces attacker’s uncertainty about
the user’s current (time t) location.

concerning the surroundings or the arrival point. However, even if not all points in
the trajectory are exposed to the service provider, the correlation between consecutive
positions implies that inferring just one of them reveals information about past and
future positions. For instance, spatiotemporal constraints derived from maximum user
velocity may reveal with high probability the route followed by a user between two
successive location exposures.

The correlation between successively shared locations depends on two factors: ran-
domness of user mobility patterns and LBS access frequency. The former relates to
how predictable a user’s future location is given the user’s current location. The latter
defines the rate at which the LBS provider can sample the user’s trajectory. These
two factors have opposite effects on correlation: High randomness decreases correla-
tion between successively exposed locations, since the current position contains less
information about past and future events than when movements are deterministic. In
contrast, high LBS access frequency increases correlation: the user has little time to
move between two LBS accesses and exposed locations are nearer to each other than
when access frequency is low. We now show, through a toy example, how correlation
between successive locations can decrease the uncertainty of the adversary about past
and/or future locations of the user.

Consider the example in Figure 2, in which the LPPM outputs a location chosen
arbitrarily from the 3x3 square centered on (x, y), {(x + i, y + j), i, j ∈ {−1, 0, 1}}, and
in which, in addition, the user moves at most one location per time unit. At time
t − 1, shown in Figure 2(a), the user accesses the LBS from location (2,2), �, and the
LPPM reports obfuscated location (2,2), ©. Given the reported location and the LPPM
mechanism, the adversary can infer that the user could only have been in the bottom-
left 3x3 square of locations, �. Moreover, since the user moves at most one location per
time unit, the adversary knows that at time t, the user will be somewhere inside the
bottom-left 4x4 square (as shown by the arrows in Figure 2(a)).

At time t, shown in Figure 2(b), the user accesses again the LBS from location (3,3),
�, reporting obfuscated location (4,4), ©. Naı̈vely, as in Section 2.1, the probability of
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Fig. 3. Correlation of user’s locations between time t − 1 and time t reduces attacker’s uncertainty about
both the user’s current (time t) location and the user’s past (time t − 1) location.

the adversary correctly guessing the user’s real location is 1/9 (any location in the 3x3
square surrounding location (4,4), �). However, recall that the adversary knows from
the observation at t−1 that, at time t, the user can only be in the bottom-left 4x4 square.
Intersecting this knowledge with the current observation, the adversary can deduce
that the user is in the darkened 2x2 square in Figure 2(b). Therefore, the probability of a
correct guess is 1/4, more than twice as much as the naı̈vely expected 1/9. This example
highlights that designing LPPMs disregarding correlation may reduce the privacy of
the current location. We formally describe this scenario as Problem 1 in Section 5, and
we show how to optimally choose obfuscated exposed locations to avoid this situation.

Now, consider the example in Figure (3), in which, at time t−1 (Figure 3(a)), the user
is at location (2,2), �, but the LPPM reports (1,1), ©, instead of reporting (2,2); and at
time t (Figure 3(b)), the user is at (3,3), �, and the LPPM reports (4,4), ©. In this case,
the correlation stemming from the user’s one-location-per-time-unit movement pattern
compromises the real locations at both t − 1 and t. The only two-step trajectory that
is compatible with the successive exposure of obfuscated locations (1,1) and (4,4) given
the LPPM operation is that the user accessed the LBS from (2,2) followed by (3,3).
Strikingly, designing LPPMs disregarding correlation may retroactively compromise
the privacy of past locations: the user was safe until the obfuscated location at time
t was reported. In Section 5, Problem 2, we show how to choose obfuscated exposed
locations at time t so as not to compromise the previous or the current location.

The example just discussed also illustrates that the choice of obfuscated locations can
affect future privacy. Consider again the user’s predicament at time t: the user reported
(1,1) at time t−1 and is now at (3,3) trying to choose an appropriate obfuscated location.
Revealing (4,4) is not an option since it would reveal the user’s real location at both
t − 1 and t. Thus, the unfortunate choice at t − 1 reduces the user’s possible choices
at t. In other words, future privacy may be proactively compromised by current choices.
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Table I. Summary of Notations

Symbol Meaning
r, R, M Actual location of the user, set of possible locations, number of locations
ψt(r) User’s profile: The probability, according to the attacker, of the user being at

location r when accessing the LBS at time t.
〈r, t〉 or rt Actual event: The user is at location r at time t.
r′, R′ User’s pseudolocation as the output of the LPPM, and the set of possible

pseudolocations
r′
t Observed pseudolocation r′ of the user at time t
ft(r′| r) Location obfuscation function implemented by the LPPM: Probability of replacing

r with r′ at time t
dq(r′, r) Incurred service-quality loss by the user if LPPM replaces location r with

pseudolocation r′
Qloss(ψt, ft, dq) Expected quality loss of an LPPM at time t, given profile ψt and the location

obfuscation function ft
Qmax

loss Maximum tolerable service quality loss
r̂ Adversary’s estimate of the user’s location
ht(r̂| r′) Adversary’s inference attack function: Probability of estimating r̂ as the user’s

actual location, if r′ is observed from the user at time t
dp(r̂, r) Distance between locations r̂ and r: Privacy of the user at location r if adversary’s

estimate is r̂
Privacy(ψt, ft, ht, dp) Expected location privacy of the user at time t, given profile ψt using protection ft

against attack ht

This scenario is handled as Problem 3 in Section 5, in which we offer a mechanism to
choose obfuscated exposed locations so as not to compromise future locations.

Finally, taking into account correlation between successively visited places is im-
portant because transitions between locations can also be sensitive, even when the
individual locations in their own might not be. For instance, visiting the bank to make
a big withdrawal, and visiting a government official in charge of land development
licensing may not be very sensitive if considered separately, but visiting the official
immediately after the bank may be much more sensitive. Another sensitive issue with
transitions between locations is that they reveal the direction of travel. For instance,
the adversary may learn whether the user enters or exits a building, for example, a
hospital.

The conclusion from these examples is that it is important to take into account the
correlation between exposed locations when designing LPPMs for frequently queried
location-based services, in order to protect all past, current, and future locations. In
the following, we introduce our mechanism that allows us to find the optimal way
to expose obfuscated locations, that is, maximizing privacy in the best possible way
against a strategic adversary.

3. PROBLEM STATEMENT

In this section, we first explain our probabilistic framework and our assumptions
about the protection mechanisms and adversary model. We conclude by sketching the
problem that we solve in this article. In Table I, we summarize the notations introduced
throughout the section.

3.1. User and Adversary

We consider a scenario in which users move in an area partitioned into M discrete re-
gions R = {r1, r2, . . . , rM}. We also assume that time is discrete and it is partitioned into
different time periods (e.g., morning, afternoon). An event 〈r, t〉 denotes that the user
is at location r ∈ R at time t ∈ T . Slightly abusing notation, time-subscripted variable
rt will denote the user’s location at time t. Typical values from R are r, ri, rj , whereas
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typical time-subscripted locations are rt, rt−1, rt+1. In movement, the user connects to
an LBS, sharing current location in order to obtain a service.

The adversary is the LBS to which the user connects, or any entity that can eavesdrop
on the user–LBS communications. The adversary is passive and curious, whose aim
is to discover the location of the user at the query time. The adversary observes the
locations sent by the user (protected by the privacy mechanism, as described in the next
section), and has some external information about the user’s mobility. For simplicity,
we assume that the user’s mobility is encoded as a Markov chain, although that is not
mandatory. Any other model is possible, as long as it allows us to compute probabilities
of the user visiting various (sequences of) locations.

Let ψt(r) be the probability, from the point of view of the adversary, that the user
accesses the LBS at time t from location r. Thus,

∑
r∈R ψt(r) = 1 for any time instant t.

We note that this quantity is time-dependent (i.e., users may have different access pat-
terns in the morning than in the afternoon). In addition, ψt(r) can depend on previous
LBS accesses that the user has made and the adversary has observed; this dependence
on previous accesses will be shown explicitly when needed. Overall, ψt can be computed
by the adversary from the combination of the user’s general mobility and previous LBS
accesses. We call ψ the user’s profile, as it reflects the behavior of the user in accessing
the LBS over time, as seen from the point of view of the attacker.

Note, crucially, that ψt(r) is the adversary’s prior information about the user’s location
at time t, before observing anything at time t.

3.2. Location-Privacy Protection Mechanism

As users want to preserve their location privacy when they use the LBS, they employ a
local and user-centric LPPM that transforms each true location r into a pseudolocation
(or obfuscated location) r′ ∈ R′, which is then sent to the LBS instead of the actual
location. For simplicity, we set R′ = R, though in the most general case, R′ is the
powerset of R. Problem 0 (Section 5) has been extended in this direction [Herrmann
et al. 2013].

The corresponding events 〈r′, t〉 are termed pseudoevents or observed events.
The transformation from r to r′ at time t happens probabilistically according to the

location obfuscation function implemented by the LPPM: a probability distribution
ft(r′|r), which can be seen as a matrix whose rows are indexed by the locations r ∈ R
and whose columns are indexed by the pseudolocations r′ ∈ R′. For a given location r,
the function ft(r′|r) defines the probability with which the LPPM selects pseudolocation
r′ as output.

3.3. Service Quality Metric

In the aforementioned setting, the LBS response quality depends on the pseudoloca-
tion output by the LPPM, not on the user’s actual location. The distortion introduced
in the observed pseudolocations determines the quality of service that the user experi-
ences. We model the loss of service quality due to obfuscation using a distance function
dq(r′, r).1 This function quantifies the dissimilarity between location r and pseudolo-
cation r′. Its value for any pair (r, r′) depends on how the LBS under consideration
responds to obfuscated locations, as studied in Micinski et al. [2013], and also on the
user’s specific service-quality expectations. In many applications, the service quality
can be considered inversely proportional to the physical distance between r and r′.
For example, applications that find nearby points of interest could give very different
responses to r and to r′ even if they are only a couple of kilometers apart. In contrast,

1The quality loss function could also be time dependent, for example, users could be more concerned about
quality during working hours than during their free time.
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there exist LBSs in which the service quality depends on other criteria, such as whether
r′ is within a region of interest. For a weather forecast application, for instance, any
pseudolocation r′ in the same city as the actual location r would result in a high-quality
LBS response. In general, dq can model a broad range of service-quality loss functions,
and it is considered as an input to our framework.

The expected quality loss Qloss due to an LPPM ft is computed as an average of dq(r′, r)
over all r and r′:

Qloss(ψt, ft, dq) =
∑
r,r′

ψt(r) · ft(r′|r) · dq(r′, r). (1)

We assume that users impose a maximum tolerable service quality loss, Qmax
loss , to

prevent the obfuscation function from making the service useless for them. Formally,

Qloss(ψt, ft, dq) ≤ Qmax
loss . (2)

This constrains the LPPM obfuscation function ft(r′|r), which must not output pseu-
dolocations that, on average, result in a lower quality. We note that the influence of the
threshold Qmax

loss on the LPPM depends on the function dq; thus, it is also dependent on
the type of LBS the user is querying. In the case of an LBS that finds nearby points of
interest, where dq is proportional to the physical distance between r and r′, enforcing
the quality threshold could result in ensuring a maximum allowed distance between
these two locations. For the weather application, enforcing the quality threshold could
result in setting region boundaries within which locations lead to the same forecast.
For other location-based applications, the function dq and the threshold Qmax

loss can be
defined in the same vein.

3.4. Location Privacy Metric

The adversary’s goal is to infer the user’s true location rt after observing the LPPM’s
output r′

t at time t. The adversary uses knowledge of the user’s profile ψt to run an
inference attack on the observed location r′

t in order to output estimations r̂t of the
user’s actual location. Formally, the attack result can be described as a probability
distribution function ht(r̂t|r′

t), which denotes the probability, according to the adversary,
that the user’s true location at time t is r̂t.

We follow the definitionby Shokri et al. [2011b] and quantify the user’s location
privacy as the adversary’s expected error in the inference attack, that is, the expected
distortion dp(r̂, r) between the estimated location r̂ and the true location r. We compute
the expectation over all r, r′, and r̂:

Privacy(ψt, ft, ht, dp) =
∑
r̂,r′,r

ψt(r) · ft(r′|r) · ht(r̂|r′) · dp(r̂, r) (3)

The distortion function dp(.) quantifies the privacy that still persists despite the
inference attack. This level of privacy depends on the locations’ semantics as well as
on the privacy requirements of the user (e.g., users might consider locations inside
a hospital more sensitive than other places), and dp(.) must be defined accordingly.
For instance, if the user wants to hide just an exact current location (as opposed to
hiding a large area around the location), the appropriate distortion function could be
the Discrete Metric between the estimated location r̂ and the actual location r:

dp(r̂, r) =
{

0, if r̂ = r
1, otherwise

. (4)

Substituting this dp(.) into Equation (3) and performing the summation, we see that
the term with r̂ = r disappears, and all terms with r̂ 	= r survive with dp(r̂, r) = 1.
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In other words, the resulting sum is the total probability attributed to the wrong
estimations of r, that is, the probability of error in the estimate.

Alternatively, the user’s privacy might depend on the physical distance between the
estimated and actual locations. In that case, the distortion function can be equal to the
Squared Euclidean distance between these locations:

dp(r̂, r) = (r̂ − r)2. (5)

In general, dp reflects the sensitivity of the user when r is estimated as r̂. This
sensitivity can be due to any semantic relation between r and r̂. We assume that dp is
an input to our framework.

3.5. Problem Statement

Having introduced all the components of our framework, we are ready to state precisely
the problem that we solve. Given:

(a) a maximum tolerable service-quality loss Qmax
loss imposed by the user as a bound for

Qloss, computed using the quality function dq, and
(b) a user profile ψt, computed from the user’s mobility pattern and from the user’s

previously observed locations,

we find the LPPM obfuscation function ft that maximizes the user’s location privacy
as defined in Equation (3). The solution must consider that the adversary

(a) observes the LPPM’s output r′ and
(b) is aware of the LPPM’s internal algorithm ft, and the user’s profile ψt.

The adversary implements the optimal attack ht that estimates the true location of
the user with the least distortion, as measured by dp.

4. LOCATION PRIVACY GAMES

We formulate the problem of designing LPPMs that are optimal against the strongest
strategic adversary as a game. In fact, the problem of finding an LPPM that offers
optimal location privacy given the user’s profile at a given time instant is an instance
of a zero-sum Bayesian Stackelberg game. In a Stackelberg game, the leader—in our
case, the user—plays first by choosing an LPPM and committing to it by running it
on the user’s actual location. The follower—in our case, the adversary—plays next by
estimating the user’s location, knowing the LPPM to which the user has committed.
It is a Bayesian game because the adversary has incomplete information about the
user’s true location, and plays according to a hypothesis about this location. It is also
an instance of a zero-sum game, as the adversary’s gain (or loss) is exactly balanced
by the loss (or gain) of the user: the information gained (lost) by the adversary is the
location privacy lost (gained) by the user, according to the location privacy metric (3).
We now proceed to define the steps of the game adapted to our problem:

Step 0. At time t, Nature uses probability distribution ψt (reflecting the probabilistic
model for the mobility and the previously observed locations of the user) to select
a location r ∈ R for the user, from which the user accesses the LBS.

Step 1. Given the user’s location r, the LPPM uses ft(r′|r) to select a pseudolocation
r′ ∈ R′, subject to ft complying with the service quality constraint (2).

Step 2. Having observed r′, the adversary selects an estimated location r̂ ∼
ht(r̂|r′), r̂ ∈ R. The adversary knows the LPPM’s probability distribution ft(r′|r);
he also knows the user’s profile ψt, but, of course, not the true location r.

Final Step. The adversary pays an amount dp(r̂, r) to the user. This amount repre-
sents the adversary’s error (equivalently, the location privacy of the user).
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This description is common knowledge to both the adversary and the user. They both
aim to maximize their payoff, that is, the adversary tries to minimize the expected
amount that will be paid, while the user tries to maximize it. Next, we describe an
optimization problem, which formalizes the objectives of the user and the adversary.
We construct two linear programs that—with inputs ψt, dp, and dq—compute the user’s
optimal choice of protection mechanism ft as well as the adversary’s optimal choice
of inference attack ht. We emphasize that, when we use the terms “optimal ft” and
“optimal ht” in this article, we mean that they are optimal against each other, that is,
they form a game-theoretic equilibrium, which is a solution for a game.

4.1. Optimal Strategy for the User

The adversary observes the pseudolocation r′ output by the LPPM, knowing the func-
tion ft(r′|r) implemented by the LPPM, and also knowing the user’s profile ψt(.). Thus,
the adversary can form the posterior distribution

Pr(r|r′) = Pr(r, r′)
Pr(r′)

= ft(r′|r)ψt(r)∑
r ft(r′|r)ψt(r)

(6)

on the true location r of the user, conditional on the observation r′. The adversary’s
objective is then to choose r̂ to minimize the user’s conditional expected privacy, where
the expectation is taken under Pr(r|r′). The user’s conditional expected privacy for an
arbitrary r̂ is ∑

r

Pr(r|r′)dp(r̂, r), (7)

and for the minimizing r̂ it is

min
r̂

∑
r

Pr(r|r′)dp(r̂, r). (8)

If there are multiple values of r̂ that satisfy Equation (8), then the adversary may
randomize arbitrarily among them, including selecting one of them with probability 1.
The probability with which r̂ is chosen in this randomization is ht(r̂|r′). Of course,
ht(r̂|r′) can be nonzero only for minimizing values of r̂; for all other values, ht(r̂|r′) will
be zero. When randomizing, Equation (8) is rewritten as∑

r,r̂

Pr(r|r′)ht(r̂|r′)dp(r̂, r). (9)

Note that if there is only one value of r̂ satisfying Equation (8), then this value is
selected with probability 1 in the randomization, whereas all other values are selected
with probability 0; thus, Equation (9) reduces to Equation (8). In this sense, Equation (9)
is a generalization of Equation (8), but it should be noted that both expressions compute
the same conditional expected privacy.

We see that, for a given r′, the user’s conditional privacy is given by Equation (8). The
probability that r′ is output by the LPPM is Pr(r′) = ∑

r ft(r′|r)ψt(r). Thus, the user’s
unconditional expected privacy (averaged over all r′) is∑

r′
Pr(r′) min

r̂

∑
r

Pr(r|r′)dp(r̂, r) =
∑

r′
min

r̂

∑
r

ψt(r) ft(r′|r)dp(r̂, r). (10)

To facilitate the computations, we define

xr′ � min
r̂

∑
r

ψt(r) ft(r′|r)dp(r̂, r). (11)
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Incorporating xr′ into Equation (10), we rewrite the unconditional expected privacy
as ∑

r′
xr′ , (12)

which the user aims to maximize by choosing the optimal ft(r′|r). The minimum op-
erator makes the problem nonlinear, which is undesirable, but Equation (11) can be
transformed to a series of linear constraints:

xr′ ≤
∑

r

ψt(r) ft(r′|r)dp(r̂, r), ∀r̂. (13)

It turns out that maximizing Equation (12) under Equation (11) is equivalent to
maximizing Equation (12) under Equation (13) [Dasgupta et al. 2008, Ch. 7, p. 224].

We construct the linear program for the user from Equations (12) and (13). Note
that variable xr′ is a decision variable in the linear program, that is, it is among the
quantities chosen by the solver. This might appear counterintuitive, as xr′ is defined
in Equation (11) as a function of ft(.), rather than as an independent variable that
can be freely selected. But, because of the transformation, it is always guaranteed that
Equation (11) will hold.

The linear program for the user is the following: Choose ft(r′|r), xr′ ,∀r, r′ in order to

Maximize
∑

r′
xr′ (14a)

subject to xr′ ≤
∑

r

ψt(r) ft(r′|r)dp(r̂, r), ∀r̂, r′ (14b)

∑
r

ψt(r)
∑

r′
ft(r′|r)dq(r′, r) ≤ Qmax

loss (14c)

∑
r′

ft(r′|r) = 1, ∀r, and ft(r′|r) ≥ 0, ∀r, r′. (14d)

Inequalities (14b) are the series of linear constraints (Equation (13)), repeated for
each value of r′; inequality (Equation (14c)) reflects the service quality constraint;
constraints (Equation (14d)) reflect that ft(r′|r) is a probability distribution function.

4.2. Optimal Strategy for the Adversary

To find the adversary strategy that is at a game theoretical equilibrium with the user
strategy computed in Equations (14a) to (14d) (i.e., the two strategies are optimal
against each other), we construct and solve the linear program that is dual to Equa-
tions (14a) to (14d): Choose ht(r̂|r′), yr, ∀r, r′, r̂, and z ∈ [0,∞) to

Minimize
∑

r

ψt(r) yr + zQmax
loss (15a)

subject to yr ≥
∑

r̂

ht(r̂|r′)dp(r̂, r) − zdq(r′, r),∀r, r′ (15b)

z ≥ 0 (15c)
∑

r̂

ht(r̂|r′) = 1,∀r′, and ht(r̂|r′) ≥ 0,∀r′, r̂. (15d)

Note the role of variable z: In linear programming parlance, it is the shadow price
of the service quality constraint. Intuitively, z is the “exchange rate” between service
quality and privacy. Its value in the optimal solution indicates the amount of privacy
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(in privacy units) that is lost (gained) if the service quality threshold Qmax
loss increases

(decreases) by one unit of quality.
For example, if z > 0 in the optimal solution, then any change �Qmax

loss in Qmax
loss will

change the privacy achieved by z�Qmax
loss . In this case, constraint (14c) is satisfied as a

strict equality. In contrast, if constraint (14c) is satisfied as a strict inequality, then,
intuitively, the selection of ft(r′|r) has not been constrained by Qmax

loss . In this case, any
(small) changes in Qmax

loss will have no effect on ft(r′|r) or on the privacy achieved. Thus,
z would be zero.

Note that both linear programs compute the unconditional expected privacy of the
user (3), which we repeat here for convenience.

Privacy(ψt, ft, ht, dp) =
∑
r̂,r′,r

ψt(r) ft(r′|r)ht(r̂|r′)dp(r̂, r). (16)

The optimal solution of each linear program results in the same value for the privacy
of the user. Hence, in principle, we only need to compute one of the two to quantify the
maximum level of privacy of the user. We choose to present both, because the user’s
linear program incorporates the service quality constraint in a more straightforward
manner, whereas the adversary’s linear program explicitly computes the “exchange
rate” between service quality and privacy.

5. LPPM DESIGN IN SPECIFIC SCENARIOS

We now formalize concrete problems, starting with sporadic location exposures and
continuing with the problems that were described in Section 2.2.

Compared to our description so far, the variations in the following problems have
to do with the previously observed pseudolocations (which affect the attacker’s prior
knowledge ψt() about his objective) and with the attacker’s objective (which may be
not just to estimate the single current location rt, but also past locations rt−1 or future
locations rt+1; thus, this also affects the computation of ψt()). In other words, the central
quantity that changes among the various problems is the adversary’s prior knowledge
about the adversary’s objective. For each particular problem, we show how to compute
ψt(), which can then be simply inserted into the linear programs (14) and (15). Finally,
we show how one can adapt the framework for arbitrary new problems.

Problem 0: Protecting Privacy of Time t at Time t, With No Previous Exposure

The user has previously not exposed any pseudolocation. Currently, at time t, the user
issues the first query, and the LPPM must choose an appropriate obfuscation function
that generates r′

t to protect the user’s current location rt.
This problem is equivalent to that of sporadic location privacy, which is relevant

for LBSs to which queries are sent sporadically: location check-in, location-tagging,
or applications for finding nearby points of interest, local events, or nearby friends.
In these services, if there is enough time between queries, then successively exposed
locations are independent of each other, that is, previous exposures do not give any
information to the attacker about the current exposure.

The relevant prior information in this case is Pr{rt}, which is computed from back-
ground knowledge about the area in which the user moves (e.g., if r is in the middle of
a lake, then presumably Pr{rt} = 0), and from background knowledge about the user’s
mobility or habits (e.g., if the attacker knows the user’s daily mobility pattern, then
at t = 7am Pr{rt} is high for locations around the user’s home, and at 11am it is high
around the user’s workplace). If the mobility is described by a Markov chain, then Pr{rt}
can be simply read from the steady-state distribution of the Markov chain.
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Problem 1: Protecting Privacy of Time t at Time t, for A Given Exposure at t − 1

At time t−1, the LPPM exposed pseudolocation r′
t−1. Currently, at time t, the user issues

another query; thus, the LPPM must choose an appropriate obfuscation r′
t to protect

the user’s current location rt. This is the problem shown in Figure 2 (Section 2.2).
The attacker, having observed r′

t−1, has a probabilistic estimate of the user’s location
at time t − 1, which was previously (at t − 1) computed as ht−1(r̂t−1|r′

t−1). This estimate
must be “moved forward” to form a location estimate for time t. If we assume that
the user moves according to a Markov chain mobility model, “moving forward” from
t − 1 to t is equivalent to multiplying ht−1(r̂t−1|r′

t−1) by the Markov chain transition
matrix Pr{rt|rt−1}. Note that the Markov chain assumption is not necessary for our
proposed approach; all we need is a way to compute a location estimate at time t from
a location estimate at time t − 1. We make the Markov assumption for convenience;
other literature has used simpler models, based on just the velocity of the user [Ghinita
et al. 2009].

Pr{rt|r′
t−1} =

∑
rt−1

Pr{rt, rt−1|r′
t−1} =

∑
rt−1

Pr{rt|rt−1}ht−1(r̂t−1|r′
t−1) (17)

Function Pr{rt|r′
t−1}, rt ∈ R is the prior information of the adversary for Problem 1.

The LPPM design continues with solving the linear program as in the previous section,
computing f (r′

t|rt, r′
t−1) for a particular value of r′

t−1.
Note, however, that the prior information function Pr{rt|r′

t−1}, thus the designed
LPPM, is different for each value of the previously exposed r′

t−1. This is a formal
description of the obvious fact that the LPPM to be designed must depend on the exact
value of the previously exposed pseudolocation.

This dependence raises the practically important issue of when to compute the
appropriate LPPM. One choice is to precompute all LPPMs, one for each possible
value of r′

t−1 (M in total), then copy them to the device. This allows for performing all
computations on a powerful, nonresource-constrained machine, but it requires more
storage space on the mobile device. The other extreme is to compute the appropriate
LPPM when the actual r′

t−1 becomes known, but this means that the computation has
to happen on the mobile device between time t − 1 and time t. Thus, there is a trade-off
here, which we explore when discussing computational considerations (Section 6.2).

There are intermediate solutions, such as precomputing and storing LPPMs only for
the most frequent pseudolocation values. The probability of each pseudolocation can
be computed as

Pr{r′} =
∑

r

Pr{r} Pr{r′|r} =
∑

r

Pr{r} f (r′|r). (18)

A variant of Problem 1 is when the latest exposure was at time t − k, for a single
value of k ≥ 1. Then we compute the prior by multiplying ht−k(r̂t−k|r′

t−k) by the k-th
power of the Markov transition matrix. Note here that, if k is large enough, then the
effect of ht−k(r̂t−k|r′

t−k) disappears; thus, we are back to the original sporadic problem
of protecting privacy at time t with just Pr{rt} as the prior, as if there are no prior
exposures. We explore this variant next, for which our general aim is to quantify the
effect of multiple past exposures as opposed to just one.

Problem 1A: Exposing Past Pseudolocations and Their Effect on the Adversary’s
Knowledge of the User’s Current Location

In a continuous LBS, users expose more than one pseudolocation in short order. The
question is to what extent pseudolocations exposed before t − 1 give information to
the adversary about the user’s current (time t) location. If pseudolocations far into
the past need to be taken into account, then an LPPM that protects the current
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location would be correspondingly more complex, as each possible combination of past
exposures would induce a different optimal current obfuscation; in other words, a
different LPPM would have to be computed for each combination.

To answer this question, we compare the sequence of priors Pr{rt}, Pr{rt|r′
t−1},

Pr{rt|r′
t−2}, . . . . The general term of this sequence, Pr{rt|r′

t−k} is equal to

Pr{rt|r′
t−k} =

∑
rt−k

Pr{rt, rt−k|r′
t−k} =

∑
rt−k

Pr{rt|rt−k}ht−k(rt−k|r′
t−k). (19)

The term Pr{rt|rt−k} is the k-step transition probability in a Markov chain mobility
model; it is computed as the k-th power of the corresponding transition matrix.

We therefore see that the effect of r′
t−k on the adversary’s prior on the current location

comprises two factors: (1) the uncertainty for the true location rt−k at time t − k, which
is caused by the obfuscation used at time t − k, and (2) the dissipation effect caused by
the k-step transition from t − k to t.

Problem 2: Protecting Privacy of Times t − 1 and t at Time t, for a Given Exposure at t − 1

At time t − 1, the LPPM exposed pseudolocation r′
t−1. Currently, at time t, the user

issues another query; thus, the LPPM must choose an appropriate obfuscation r′
t that

will protect the current location rt and will not retroactively compromise the user’s
previous location rt−1. In other words, the obfuscation r′

t must be “compatible” with the
previously exposed r′

t−1. This is the problem shown in Figure 3 (Section 2.2).
The prior information that is available to the adversary before observing r′

t is

Pr{rt, rt−1|r′
t−1} = Pr{rt|rt−1, r′

t−1} Pr{rt−1|r′
t−1} = Pr{rt|rt−1}ht−1(rt−1|r′

t−1). (20)

The first term Pr{rt|rt−1} is known from the mobility model (e.g., the Markov transition
matrix); the second term ht−1(rt−1|r′

t−1) is computed at t − 1.
Note that, here, the prior information is not just about the current location rt, but

rather about the pair (rt, rt−1), because that pair is the information that the adversary
tries to infer.

Problem 3: Protecting Privacy of Times t + 1 and t at Time t

In this problem, we assume that there are no past exposures of the user’s location. The
user issues a query at the current time t, the objective of which is to protect not only
the current location, but also the location at the next time instant t + 1.

We discussed this scenario at the end of Section 2.2, which is motivated as follows:
Disclosing the current location might not be important in and of itself, but it might
make it much easier for the adversary to infer the next location, which happens to be
very sensitive. For instance, the user might currently be on a street that only leads
to an abortion clinic. Hence, disclosing her current location is almost equivalent to
disclosing that she will go to the clinic. Symmetrically, her current location might be
very sensitive, and her next (expected) location can be linked easily to her current one.
For instance, she might be about to leave the abortion clinic and enter a street that is
only used as the clinic’s exit. Furthermore, neither the current nor the next location
might be particularly sensitive separately, but the transition from one to the other
might be.

The conclusion in all these cases is that the current location must be protected jointly
with the (possible) next one(s) where the user will be at time t + 1. For this reason,
the LPPM should compute at the present time t the pseudolocations that it is likely to
output at t+1, so that the current choice of r′

t does not limit future choices. The intuition
is that the LPPM should choose the current pseudolocation r′

t so that future paths that
the user will likely take can be protected with pseudolocations compatible with r′

t.
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In this scenario, the prior information of the adversary is about the current (t) and
future (t + 1) location of the adversary: Pr{rt+1, rt} = Pr{rt+1|rt} Pr{rt}. The first term is
known from the Markov transition matrix; the second term is, as in Problem 0, just
the steady state of the Markov chain.

As noted earlier, in all four problems, we can compute an appropriate prior probability
distribution for the adversary’s knowledge about the target locations. This probability
distribution is then used as a parameter in the linear program described in the previous
section. In Section 5.1, we see how one can write a linear program for a very general
set of target locations and prior exposures.

When Problems are Interleaved

As the user moves, she might be facing a different problem at each time, so she would
need to compute a succession of different LPPMs. For example, the first time she ex-
poses a location, Problem 0 applies. Then, at the next exposure, Problem 1 or Problem 2
could apply, depending on whether the user wishes to protect just the current location
(Problem 1) or both the current and the previously exposed location (Problem 2). The
prior probability at each time has to be computed taking into account the past LPPMs
and, most important, their corresponding attacks h. It is these attacks that determine
the attacker’s probabilistic estimate of the user’s location at each time, which is then
multiplied by the transition probabilities to provide the prior probability for the next
time instant.

We now compute the prior probability at time t, t ≥ 2, in an example in which the
user originally computed a Problem-0 LPPM at time t = 1, then at every subsequent
time instant up to t − 1, she computed a Problem-2 LPPM. She is currently (time t)
interested in computing yet another Problem-2 LPPM, hence the prior probability is
Pr{rt, rt−1|r′

t−1}. We denote by hspor the Problem-0 attack.
The computation of the prior proceeds as follows:

Pr{rt, rt−1|r′
t−1} = Pr{rt|rt−1, r′

t−1}Pr{rt−1|r′
t−1}. (21)

However, the first term is known from the user’s mobility model: Pr{rt|rt−1, r′
t−1} =

Pr{rt|rt−1}. If t = 2, the second term Pr{rt−1|r′
t−1} can be immediately equated to the

attack h at time t−1: Pr{rt−1|r′
t−1} = hspor

t−1 (rt−1|r′
t−1), as delineated earlier. This concludes

the case t = 2.
To compute Pr{rt−1|r′

t−1} for the case t > 2, we use Bayes’s rule:

Pr{rt−1|r′
t−1} = Pr{r′

t−1|rt−1}Pr{rt−1}∑
rt−1

Pr{r′
t−1|rt−1}Pr{rt−1} (22)

Now, Pr{rt−1} is known (again from the mobility model; if the mobility is a Markov
chain, then this is the steady state of the Markov chain). Thus, we only need to compute
Pr{r′

t−1|rt−1}:
Pr{r′

t−1|rt−1} =
∑

r′
t−2,rt−2

Pr{r′
t−1, rt−2, r′

t−2|rt−1}

=
∑

r′
t−2,rt−2

Pr{r′
t−1|rt−1, rt−2, r′

t−2}Pr{rt−2, r′
t−2|rt−1}

=
∑

r′
t−2,rt−2

Pr{r′
t−1|rt−1, rt−2, r′

t−2}Pr{r′
t−2|rt−2, rt−1}Pr{rt−2|rt−1} (23)

The first term is the LPPM function ft−1, as computed at time t − 1 for Problem 2.
The third term is known from the mobility model. The second term Pr{r′

t−2|rt−2, rt−1} is
equal to Pr{r′

t−2|rt−2}, because the obfuscation at time t − 2 depends only on rt−2, rt−3,
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Fig. 4. A user moves from location (3, 4) at time t − 2, to (4,3) at t − 1, to (4, 2) at current time t. The user
wants to protect locations at times t − 1 and t, which are denoted by atrg (target events). At past times t − 2
and t − 1, the LPPM exposed pseudolocations (3, 3) and (3, 2) (denoted by opre), and to protect atrg, the LPPM
currently exposes location (3, 1) (denoted by opost).

and r′
t−3. Knowing rt−1 when rt−2 is already known gives us no extra information on rt−3

or r′
t−3. Hence, the computation of Pr{r′

t−1|rt−1} is shown to be recursive:

Pr{r′
t−1|rt−1} =

∑
r′

t−2,rt−2

ft−1(r′
t−1|rt−1, rt−2, r′

t−2)Pr{r′
t−2|rt−2}Pr{rt−2|rt−1}. (24)

Having recursively computed Pr{r′
t−1|rt−1}, we substitute it into Equation (22), the

result of which is, in turn, substituted into Equation (21) to compute the desired prior.

5.1. Location Privacy for a Generic Objective

As we see in the previous sections, many different variants of location privacy
can be formulated, depending on the adversary’s knowledge (i.e., past exposed
pseudolocations), and on the privacy target (i.e., on what the user wishes to protect or,
equivalently, on what the adversary wishes to attack). Each combination leads to a dif-
ferent optimal LPPM. In particular, in Problems 2 and 3, we see that the privacy target
does not need to be the user’s current location. It can be a pair or a tuple of locations;
this tuple might not even include the user’s current location, for example, if the user
only wants to protect a past location by choosing an appropriate pseudolocation at the
current time.

We now describe generic terminology and a generic linear program for LPPM design,
with the help of the example shown in Figure 4.

5.1.1. Generic LPPM Parameters.

—atrg denotes the target events that the user wants to protect or, equivalently, the
events that the adversary wants to infer. In the example, the user wants to protect
her location at times t − 1 and t, thus atrg = (rt−1, rt) = {〈(4, 3), t − 1〉, 〈(4, 2), t〉}.
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Fig. 5. Information available to the LPPM and the adversary: The LPPM wants to protect location(s) atrg
by producing appropriate pseudolocation(s) opost. The adversary observes the output opost of the LPPM and,
using knowledge of the LPPM function f , estimates atrg; the adversary’s estimate is âtrg. The prior knowledge
of the adversary and of the LPPM consists of the transition matrix P and the pseudolocations opre that have
been produced in the past.

—opre is a subset of the pseudoevents that the LPPM created and sent to the LBS
up to but before the current time. These are the pseudoevents that matter for the
estimation of atrg: typically, opre would be a sequence of consecutive pseudoevents
starting with a recent time instant (as old ones do not matter for estimating atrg) and
leading up to the current time. These are known both to the adversary and to the
LPPM. In the example, the relevant pseudolocations were exposed at times t −1 and
t − 2; thus, opre = (r′

t−2, r′
t−1) = {〈(3, 3), t − 2〉, 〈(3, 2), t − 1〉}.

—opost is the pseudolocation (or set of pseudolocations) that the LPPM produces to
protect atrg and that will be sent to the LBS at the current time. In the example, at
current time t the user exposes pseudolocation (3, 1); thus, opost = (r′

t) = {〈(3, 1), t〉}.
— f (opost|atrg, opre) is the probability that the LPPM produces opost, given its knowledge

opre and the locations atrg that it is trying to protect. This function encodes the
defensive mechanism. It can be viewed as a codebook that prescribes, for each value
of atrg and opre, a randomization over the possible values of opost.

5.1.2. Generic Privacy Metric. As before, privacy is quantified as the adversary’s error in
estimating the user’s true location(s) atrg. Figure 5 illustrates the information flow of
events and pseudoevents to the LPPM and to the adversary. The detailed notation is
as follows:

—ψ(atrg|opre) is the adversary’s prior probability distribution on the inference target
atrg, given the adversary’s prior knowledge opre. It encodes what the adversary can
deduce about atrg before observing the LPPM’s current output opost.

—âtrg denotes the adversary’s estimate of atrg. Similar to atrg, it can be seen as a time-
indexed vector whose elements belong to the set R of locations.

—h(âtrg|opre, opost) is the probability that the adversary estimates âtrg to be the true
value of atrg, given the adversary’s knowledge of prior pseudolocations opre and given
the pseudolocation(s) opost exposed at current time t.

—dp(âtrg, atrg) ≥ 0 is the privacy gain when the adversary’s estimate is âtrg and the true
value of the inference target is atrg. It is zero only if âtrg = atrg.

The privacy that an LPPM f (.) achieves against an adversary implementing attack h(.)
is then the expected value of dp(âtrg, atrg), given prior observations opre:

Privacy(ψ, f, h, dp; opre) = E{dp(âtrg, atrg)|opre} =
∑

atrg,âtrg

Pr{âtrg, atrg|opre}dp(âtrg, atrg)

=
∑
atrg
opost
âtrg

ψ(atrg|opre) f (opost|atrg, opre)h(âtrg|opre, opost)dp(âtrg, atrg).

(25)

This formula represents the adversary’s expected estimation error.
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5.1.3. Generic Quality Metric. The final ingredient is the quality metric:

—qtrg denotes the relevant events with respect to quality. Similar to atrg, qtrg is a time-
indexed vector. However, its time indices are not necessarily the same as those of
atrg: the locations/times that matter for quality may be different from the ones that
matter for privacy.

—dq(qtrg, opost, opre) represents the quality loss when qtrg is the true value of the quality-
relevant events, the LPPM currently reports opost, and it has reported opre in the past.

The expected quality loss caused by an LPPM f (.) is the expected value of
dq(qtrg, opost, opre) over all qtrg and opost for a given history opre.

5.1.4. Generic Linear Program. We now form the linear program that computes the op-
timal LPPM (using, as before, auxiliary variables xopost ):

We want to maximize
∑

opost
xopost under the constraint

xopost ≤
∑
atrg

ψ(atrg|opre) f (opost|atrg, opre)dp(âtrg, atrg),∀âtrg, opost, (26)

under the quality constraint,∑
qtrg
opost

Pr{qtrg|opre}Pr{opost|qtrg, opre}dq(qtrg, opost, opre) ≤ Qmax
loss , (27)

as well as the constraint (omitted) that f should be a probability function.

6. EVALUATION

The LPPMs that we design are optimal by construction. In this section, we illustrate
their privacy-utility performance, and compare them against nonoptimal LPPMs. We
also show how the optimal attacks that we compute fare against nonoptimal, but
intuitive, LPPMs. We begin with LPPMs and attacks computed for the sporadic case
(Problem 0), and we continue with trajectory-aware LPPMs.

6.1. Location Obfuscation for Sporadic Exposures

We use real location traces of people (in Lausanne, Switzerland) who use various means
of transportation.2 We select 11 users at random, and focus on their location traces
during the day (8am to 8pm), when it is more probable that users employ location-
based services. The length of the considered traces is 1mo. The location area, within
which they move, is divided into 300 regions. Figure 6 shows the density of users
across all the regions. The grayness of the cells shows the density of its corresponding
region in log scale. As many of the regions are abandoned (or very rarely visited) by
many individual users, we compute each user’s profile ψ(.) by considering only the 30
most popular regions across the whole population. This prevents sparse user profiles.
A user’s profile is the normalized number of the user’s visits to each region.

Given distance functions dp(.) and dq(.) and service-quality loss threshold Qmax
loss ,

we compute the optimal LPPM and its corresponding optimal attack by solving
Equations (14a) and (15a) using a linear programming solver. We then compare the
obtained optimal protection mechanism and the optimal inference attack against the
basic obfuscation LPPM and the Bayesian inference attack, respectively. See Figure 7
for an illustration.

2The traces are obtained from the Nokia Lausanne Data Collection Campaign dataset.
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Fig. 6. Spatial histogram showing the density of users per region (in log scale) in Lausanne. Size is 15.32km×
7.58km, divided into 20 × 15 regions.

Fig. 7. Input/Output of LPPM. Profile of a user for whom the subsequent calculations are made (subfigure 1).
Distribution Pr(r′) of observed pseudolocations when using the optimal LPPM with Qmax

loss = 0.8690 (subfig-
ure 2). Distribution Pr(r′) of observed pseudolocations when using obfuscation LPPM with Qloss(ψ, f, dq) =
0.8690 (subfigure 3). Conditional distribution Pr(r′|r) when using the optimal LPPM on location r = (13, 7)
(subfigure 4). Conditional distribution Pr(r′|r) when using obfuscation LPPM on location r = (13, 7) (subfig-
ure 5). Column 1 is the leftmost column, and row 1 is the bottom row. (Squared Euclidean dp, Discrete Metric
dq).

Basic Obfuscation LPPM. The basic obfuscation LPPM, with an obfuscation level
k = 1, 2, 3, . . . , is constructed in the following way: For each location r, we find its
k − 1 closest locations (using the Squared Euclidean distance between the centers of
the regions). The LPPM function f (.|r) will be the uniform probability distribution on
the set of the k − 1 selected locations together with the location r. That is, location r
is replaced by each of the k locations, as a pseudolocation, with the same probability
1
k , and all other locations have probability 0. Thus, in practice, an actual location r is
hidden among its k − 1 nearest locations. We choose this mechanism, as it has been
very popular in the literature.
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Given the user profile ψ(.) and quality distance function dq(.), we use Equation (1) to
compute the expected service-quality loss Qloss(ψ, f, dq) for any LPPM obfuscation f (.),
whether it is optimal or not.

Bayesian Inference Attack on an LPPM. We compare the effectiveness of our
optimal attack with the Bayesian inference attack, which has been shown effective be-
fore [Shokri et al. 2011b]. The Bayesian attack first computes the posterior probability
of locations Pr(.|r′):

Pr(r|r′) = Pr(r, r′)
Pr(r′)

= f (r′|r)ψ(r)∑
r f (r′|r)ψ(r)

,∀r ∈ R. (28)

Then, it sets r̂ to the location that minimizes the expected estimation error r̂ =
arg minr̂

∑
r Pr(r|r′)dp(r̂, r). If the estimation error dp is the Squared Euclidean

distance, then the attack selects the conditional expected value r̂ = E[r|r′] and the
resulting expected estimation error is the conditional variance Var[r|r′]. If dp is the
Discrete Metric, then the attack selects the location with the highest posterior proba-
bility r̂ = arg maxr̂ Pr(r̂|r′); the resulting expected estimation error is 1 − ∑

r 	=r̂ Pr(r|r′).
These facts follow from standard Bayesian estimation theory.

The difference between the Bayesian attack and the optimal attack is that the
Bayesian attack does not take into account that the LPPM was designed to antici-
pate the optimal attack against it, nor that the LPPM had a quality constraint. In
contrast, both of these facts are incorporated into the linear program that computes
the optimal attack. As a result, the Bayesian attack is not optimal against any par-
ticular LPPM—definitely not against the optimal defense LPPM that our algorithms
design.

Optimal Inference Attack on an Arbitrary LPPM. In order to make a fair com-
parison between the effectiveness of the optimal and obfuscation LPPM, we need to run
the same attack on both of them. The Bayesian inference attack described by Equa-
tion (28) can be performed against both. However, we still need to design an optimal
attack against arbitrary LPPMs that have not been constructed in our game-theoretic
framework.

The optimal inference attack is the one that minimizes the expected user privacy:

h(.) = arg min
h

Privacy(ψ, f, h, dp). (29)

Given the user profile ψ(.), an LPPM f (.) and distortion function dp(.), the following
linear program finds the optimal attack h(.). Note that, compared to Equation (15a),
there is no service quality constraint here, as the LPPM has been assumed to be
arbitrary.

Minimize
∑
r̂,r′,r

ψ(r) f (r′|r)h(r̂|r′)dp(r̂, r) (30a)

subject to
∑

r̂

h(r̂|r′) = 1,∀r′, and h(r̂|r′) ≥ 0,∀r̂, r′ (30b)

Trade-off between Privacy and Service Quality. We now study the trade-off
between the level of privacy that the optimal LPPM provides against the optimal
attack, and the service-quality loss that it causes. We plot in Figure 8(a) the evolution
of the service-quality loss and the corresponding privacy achieved, as the optimal
LPPM is configured with increasingly higher values of service-quality thresholds Qmax

loss
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Fig. 8. Trade-off between privacy and service quality: optimal LPPM against the optimal attack. The
different lines represent users with diverse profiles ψ(.) (Squared Euclidean dq(.) and Squared Euclidean
dp(.)).

(for users with diverse profiles). Each line in the figure represents one user and each ◦
represents one Qmax

loss . We plot Privacy(ψ, f, h, dp) versus Qloss(ψ, f, dq).
Unsurprisingly, with higher levels of location-privacy protection comes a significant

degradation in service quality. Also, as expected, the maximum achievable location
privacy strongly depends on the user profile. This is reflected by the separation between
the different lines. However, we also see that each user’s privacy increases up to a
certain level, then there is no change even when the quality threshold Qmax

loss is further
increased. This is due to the presence of the optimal attack that squeezes the location-
privacy gain.

This effect is further illustrated in Figure 8(b), in which the service-quality loss of the
optimal LPPM is plotted against the service-quality threshold. Once the optimal LPPM
offers the maximal location privacy for a given user profile, loosening the service-quality
constraint does not significantly change the LPPM’s underlying function f ; thus, there
is no reduction in service quality. In other words, there is no need to sacrifice any more
service quality, even though the looser Qmax

loss constraint allows it, because doing so does
not increase the user’s location privacy.

We can draw some parallels with the “shadow price” interpretation of z in the linear
program—Section 4.2. In that section, we see that z = 0 means that small changes to
Qmax

loss have no effect on privacy, whereas a positive value of z gives the rate of privacy
increase for a small change in Qmax

loss . Qualitatively, we observe both these effects in the
figure (an initial privacy increase with Qmax

loss , subsequently no effect on privacy as Qmax
loss

increases further). However, note that the “shadow price” interpretation is only valid
for small changes of Qmax

loss ; thus, strictly speaking, we cannot quantitatively link the
values of z to the observed privacy changes in the figure.

Optimal LPPM and Attack are Better than Basic LPPM and Bayesian Attack.
Given Squared Euclidean distance functions dp(.) and dq(.), we compute the optimal
LPPM and attack methods for a set of service-quality thresholds Qmax

loss . For each user,
we run the Bayesian inference attack on the user’s optimal LPPM. We also evaluate
the location privacy offered by the basic obfuscation LPPM with respect to the optimal
attack. We vary the obfuscation level from 1 (minimum) to 30 (maximum); for each level,
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Fig. 9. Effectiveness of the optimal attack and optimal LPPM strategies. Lines represent users with different
profiles ψ(.). Circles ◦ represent different values of Qmax

loss , each of which corresponds to a different obfuscation
level of the basic obfuscation LPPM. (Squared Euclidean dq(.) and Squared Euclidean dp(.).)

we compute the corresponding quality loss. Then, this value is set as the threshold Qmax
loss

in the computation of the optimal attack mechanism.
Figure 9(a) shows the superiority of the optimal attack to the Bayesian attack when

location privacy of users is protected using the optimal LPPM. For any given user and
service-quality threshold, the location privacy that the user obtains is smaller when
the adversary implements the optimal strategy rather than the Bayesian attack.

Figure 9(b) shows the superiority of the optimal LPPM to the obfuscation LPPM,
against the optimal attack. For any given user and service-quality threshold, a user
has a higher privacy level when the LPPM implements the optimal strategy. Note
that the privacy levels achieved by the two mechanisms approach each other and
eventually become equal when very little service quality is guaranteed for the user
(i.e., when Qmax

loss is set to its maximum value). When the quality requirement becomes
increasingly looser, both mechanisms add so much noise that the adversary, in effect,
learns nothing new about the user’s true location.

6.2. Location Obfuscation Over a Trajectory

So far, we have analyzed the behavior of optimal LPPMs in the sporadic setting. In this
section, we focus on LPPMs that take the previous exposed locations into account. We
also evaluate transition privacy.

For the comparison to the sporadic LPPM and for illustration of the privacy-quality
trade-off, we use a real dataset of location traces. These traces, which are one day long,
belong to 10 randomly chosen mobile users (vehicles) in the San Francisco Bay area
from the epfl/mobility dataset at CRAWDAD. We divide the Bay Area into 10 × 25
equal-sized locations, and consider a day to be composed by 288 time units, one per
each 5 minutes. We emphasize that the granularity of both time and locations can
be arbitrarily selected depending on the required accuracy in quantifying privacy and
service quality. We consider all the locations that are visited by each user, which is 23.4
locations per user, on average. We also consider all the transitions that each user has
made between these locations in our dataset.

Without loss of generality, we select the privacy gain dp and the quality loss dq
functions to be the Discrete Metric: dp(âtrg, atrg) = 1âtrg 	=atrg and dq(qtrg, opost, opre) =
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Fig. 10. Users’ single-location privacy, using a sporadic LPPM against two attacks: sporadic attack versus
correlation-aware attack. For 10 different users (lines), and for various values of the service-quality threshold
Qmax

loss (dots), we see that the privacy against a correlation-aware attack (x-axis) is always less than the privacy
against a sporadic attack (y-axis).

1qtrg 	=(opost,opre). Taking the privacy gain as an example, using the Discrete Metric implies
that we consider it bad for privacy only when the attacker correctly estimates the exact
value of the target locations (i.e., when âtrg is exactly equal to atrg). All other estimates
are equally good for privacy, regardless, for example, of the physical distance between
the attacker’s estimate and the true value of atrg. Our quantification of privacy is the
expected value of dp(âtrg, atrg), and the expected value of 1âtrg 	=atrg is just the probability
of âtrg 	= atrg, which is the adversary’s probability of error.

For the maximum tolerable quality loss Qmax
loss , we do not specify a single value; rather,

we compute the achievable privacy for multiple values to observe the privacy-quality
trade-off.

For the previously reported events opre, we do not specify a single value. Instead, the
privacy values that we compute are averaged over all possible values of opre, because
such an average is more representative of the privacy that a user can expect to achieve:

∑
opre

Pr{opre}Privacy(ψ, f, h, dp; opre).

Comparison to Optimal Sporadic LPPM. A trajectory-oblivious (sporadic) LPPM
is typically evaluated against an attack that is also sporadic, that is, an attack in which
location correlation is not taken into account. To provide quantitative justification for
the inadequacy of such LPPMs and their evaluation when the exposed locations are
correlated, we show in Figure 10 that a correlation-aware attack can achieve much
lower privacy than a sporadic attack.

A sporadic LPPM protects single locations only; thus, to compare meaningfully, we
pick as the objective of the correlation-aware attack the single-location privacy objec-
tive, that is, atrg = rt. The difference between the correlation-aware attack and the
sporadic attack is that the former uses the conditional prior probability on the target
location ψ(rt|opre) (for opre = ot−1), whereas the latter uses the unconditional prior ψ(rt).

Each attack is paired against the same sporadic LPPM. The results are plotted across
the 10 mobile users and for various values of the service-quality threshold Qmax

loss . As all
data points are below the x = y diagonal, we conclude that privacy in the correlation-
aware attack (x-axis) is lower than privacy in the sporadic attack (y-axis). The only
cases in which the two attacks are equally (un)successful are when the quality loss
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Fig. 11. Tradeoff between Privacy and Service Quality. Each curve corresponds to one user.

threshold is so high that the sporadic LPPM can inject enough noise to blur even the
inference of a correlation-aware attack.

Privacy-Quality Trade-off. Here, we illustrate the privacy-quality trade-off of our
LPPMs for two particular scenarios: protecting single-location privacy for the current
location, taking into account the immediately previous pseudolocation (atrg = rt and
opre = ot−1), shown in Figure 11(a); and protecting transition privacy for the current
and future locations (atrg = (rt, rt+1)), shown in Figure 11(b).

Under each of these scenarios, we construct the optimal protection mechanism for
each of the 10 users in our traces (i.e., the mechanism that provides the maximum
privacy for the user). We plot this maximum privacy as a function of the service-
quality threshold Qmax

loss . We see in both figures that the achievable privacy increases as
Qmax

loss increases (as higher values of Qmax
loss let the LPPM inject more noise).

Similar to the sporadic case, we observe two effects: first, a saturation effect takes
place for most users as Qmax

loss increases. Their privacy reaches a plateau beyond which
any further increase in Qmax

loss does not increase privacy. Second, the privacy plateau,
as well as the privacy level for any value of Qmax

loss , differs for each user, indicating that
there is an inherent per-user privacy limit that is connected to how predictable the
user’s mobility is.

Computational Considerations. Our mechanism is intended to becomputed of-
fline and used online: The LPPM function f (opost|atrg, opre) is precomputed offline, then
downloaded to the device. Then, whenever the user attempts to expose a location, the
LPPM looks up and performs the appropriate randomization on pseudolocations opost
based on the actual values of the target events to be protected atrg and the previously
exposed vector of pseudolocations opre. In this way, the only computational burden of
the mobile device is a look-up and a randomized selection of opost.

The offline computation of the LPPM function f requires solving a separate linear
program for each value of opre that may arise in practice. However, most of the theo-
retically possible values of the vector opre are nonsensical sequences of locations, for
example, sequences in which successive locations are too far away from each other;
thus, these need not be taken into account, which saves considerable time. Similarly,
the number of variables in each linear program is theoretically equal to the total num-
ber of pairs of atrg and opost vectors, since a value for f must be computed for each such
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combination. This number is Mlength(atrg)+length(opost) (recall that M is the total number of
locations). In practice, however, it is much smaller. The actual number of linear pro-
grams and variables is closer to the number of likely trajectories of the corresponding
length (the number of linear programs is equal to the number of trajectories of length
length(opre), whereas the number of variables is equal to the number of trajectories of
length length(atrg) + length(opost)).

It is very important to note also that the computation of f needs to be done only
once; thus, the associated cost needs to be incurred only once. A recomputation of
f is necessary only if, for example, the user parameters or application parameters
dp, dq, Qmax

loss change, or if the user wants to protect a different aspect of one’s privacy
(e.g., previous, present, and next location, instead of just present and next location),
which would translate to a change in atrg, or if one wishes to take into account different
prior knowledge of previously reported pseudolocations opre (e.g., take into account the
3 previously reported pseudolocations instead of just one).

7. RELATED WORK

Location privacy has been a very active area of research in recent years. Work on this
topic can be roughly classified in three categories: mainly focused on the design of
LPPMs; mainly focused on recovering actual user trajectories from anonymized or per-
turbed traces; or mainly focused on the formal analysis and the search for appropriate
location privacy metrics to allow for fair comparison between LPPMs.

Existing LPPMs are built according to different design principles. The most popular
approach to obtaining location privacy is to send a space- or time-obfuscated version of
the users’ actual locations to the service provider [Gedik and Liu 2005; Gruteser and
Grunwald 2003; Hoh et al. 2007; Kalnis et al. 2007]. A different approach consists of
hiding some of the users’ locations by using mix zones [Beresford and Stajano 2003;
Freudiger et al. 2009] or silent periods [Jiang et al. 2007]. These are regions where
users do not communicate with the provider while changing their pseudonym. Provided
that several users traverse the zone simultaneously, this mechanism prevents an ad-
versary from tracking them, as the adversary cannot link those who enter with those
who exit the region. A third line of work protects location privacy by adding dummy
requests, indistinguishable from real requests, issued from fake locations to the service
provider [Chow and Golle 2009]. The purpose of these fake locations is to increase the
uncertainty of the adversary about the users’ real movements.

The predictability of users’ location traces, and the particular constraints of users’
movements, has been shown to be sufficient to reconstruct and/or identify anonymous
or perturbed locations. An adversary can, to name but a few possibilities, infer users’
activities from the frequency of their visits to certain locations [Liao et al. 2007]; reiden-
tify anonymous low-granularity location traces given the users’ mobility profiles [De
Mulder et al. 2008]; or derive [Hoh et al. 2006] and reidentify [Golle and Partridge
2009; Krumm 2007] the home address of individuals from location traces.

Several authors have made efforts toward formalizing the desirable location privacy
requirements that LPPMs should fulfill, as well as toward finding suitable metrics to
evaluate the degree to which these requirements are fulfilled. Examples of these lines
of work are Krumm [2007], Decker [2009], and Duckham [2010]. Shokri et al. [2009]
revisit existing LPPMs and the location-privacy metrics used in their evaluation. They
classify these metrics in three categories: uncertainty-based (entropy), error-based, and
k-anonymity. The authors conclude, by means of a qualitative evaluation, that metrics
such as entropy and k-anonymity are not suitable for measuring location privacy. In
a follow-up of thiswork, Shokri et al. [2011a, 2011b] provide a framework to quantify
location privacy. The framework allows us to specify an LPPM and then to evaluate
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various questions about the location information leaked. Our design methodology uses
this analytical framework as an evaluation tool to quantifying the LPPMs’ offered
privacy against the localization attack.

Specifically for protecting trajectory privacy (i.e., consecutive location exposures), a
first class of mechanisms in the literature protect user privacy when trajectories are
published in bulk. Protection is achieved by grouping trajectories of different users
in a wide area to ensure that the aggregate trajectory can be ascribed to at least
k users [Abul et al. 2008]; mixing the trajectories of k users [Nergiz et al. 2009];
eliminating some events from the published dataset [Hoh et al. 2010; Terrovitis and
Mamoulis 2008]; or replacing locations with larger regions defined by a predefined
grid [Gidófalvi et al. 2007]. Along similar lines, some protection algorithms need access
to the complete trajectory before protection can be applied [You et al. 2007], or they
delay the exposure of queries to gather additional information about subsequent user
locations [Ghinita et al. 2009; Ardagna et al. 2012]. In contrast, our approach decides
in real time how to protect a given location that the user is about to expose.

Other trajectory-aware mechanisms assume the existence of a trusted third party
(e.g., the cellular service provider) [Pan et al. 2009; Gao et al. 2013], or assume
that nearby users are present and can be leveraged to achieve joint privacy protec-
tion [Beresford and Stajano 2003; Freudiger et al. 2009; Huang et al. 2006]. Both of
these scenarios violate the user-centricity design requirement in this article. Not de-
pending on other users is also the reason why k-anonymity does not apply in our case,
as well as any other method that attempts to make users indistinguishable.

Despite the extent to which location privacy has been studied, there is a patent dis-
connection between these different lines of work. Most of the aforementioned papers
use different models to state the problem and evaluate location privacy. This hinders
the comparison of systems and slows down the design of robust LPPMs. Further, in
some of these papers, there is a detachment between the proposed design and the ad-
versarial model against which it is evaluated. Often, the considered adversary is static
in its knowledge and disregards the information leaked by the LPPM algorithm; or ad-
versarial knowledge is not even considered in the evaluation. The works by Freudiger
et al. [2009] and Shokri et al. [2009, 2011a, 2011b] do consider a strategic adversary
that exploits the information leaked by the LPPM in order to compute location pri-
vacy. Nevertheless, their work does not address how this privacy computation can be
integrated into the design of location-privacy preserving mechanisms.

In this work, we bridge the gap between design and evaluation of LPPMs. We provide
a systematic method for developing LPPMs; our method maximizes users’ location
privacy while guaranteeing a desired level of service quality. We formalize the optimal
design problem as a Bayesian Stackelberg game similar to previous work on security in
which, as in our location-privacy scenario, the defender can be modeled as a Stackelberg
game leader and the adversary as the follower. The common theme with this previous
work is that the defender must commit to a defense strategy/protocol, which is then
disclosed to the adversary, who can then choose an optimal course of action after
observing the defender’s strategy. Paruchuri et al. [2008] propose an efficient algorithm
for finding the leader’s optimal strategy, considering as a main case study a patrolling
agent who searches for a robber in a limited area. In their case, the defender is unsure
about the type of the adversary (i.e., where the adversary will attack). In contrast, in
our work, it is the adversary who is unsure about the type (i.e., the true location) of
the user/defender. A similar approach is used by Liu and Chawla [2009] in the design
of an optimal e-mail spam filter, taking into account that spammers adapt their e-
mails to get past the spam detectors. The same problem is tackled by Brückner and
Scheffer [2011], who further compare the Stackelberg-based approach with previous
spam filters based on support vector machines, logistic regression, and Nash-logistic
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regression. Korzhyk et al. [2011] contrast the Stackelberg framework with the more
traditional Nash framework, within a class of security games. Manshaei et al. [2013]
explore the connections between security and game theory more generally. To the best
of our knowledge, our work is the first that uses Bayesian Stackelberg games to design
optimal privacy-protection mechanisms.

The only other formal approach to measuring and protecting privacy that we are
aware of is by Andrés et al. [2013], who extend the concept of differential privacy to
sporadic location privacy, thus defining a new privacy metric: geo-indistinguishability.
They also propose a mechanism to achieve it optimally [Bordenabe et al. 2014].
In later work [Chatzikokolakis et al. 2014], geo-indistinguishability is extended to
correlated location traces. To achieve this extended notion of geo-indistinguishability,
the concrete mechanism proposed reports the previous pseudolocation (i.e. r′

t = r′
t−1)

if that is acceptable in terms of quality (i.e., if r′
t−1 is close enough to rt) or adds

zero-mean Laplacian noise to the true location rt otherwise. The main feature of geo-
indistinguishability in both the sporadic and correlated settings is that it does not use
any information about the adversary’s prior knowledge, whereas our approach does.
We consider this to be a design choice for the LPPM designer, rather than an objective
advantage or disadvantage of one method over the other, as it, in effect, models a
different adversary. If the LPPM designer wants to protect against an adversary with
some background knowledge, then our approach is the only one possible. Otherwise,
one can use either our approach with an uninformative prior (i.e., with a uniform prior
over all possible locations), or the no-prior approach. The technical difference between
the two is that our approach aims to maximize the Bayesian estimation error, whereas
no-prior approaches aim to keep the likelihoods of nearby locations close to each other.

In a recent work, Shokri [2015] shows how to combine the two notions of differential
and distortion privacy, and how to optimize their joint effect on privacy and utility.
However, it does not address trajectories and correlated locations.

8. CONCLUSION

Accessing location-based services from mobile devices entails a privacy risk for users,
since sensitive information can be inferred from the locations they visit. This infor-
mation leakage raises the need for robust LPPMs. In this article, we have proposed a
game-theoretic framework that enables a designer to find the optimal LPPM for a given
location-based service, ensuring satisfactory service quality for the user. This LPPM is
designed to provide user-centric location privacy; thus, it is ideal for implementation
in mobile devices.

Our method accounts for the fact that the strongest adversary not only observes
the perturbed location sent by the user but also knows the algorithm implemented
by the protection mechanism. Thus, the adversary can exploit the information leaked
by the LPPM’s algorithm to reduce uncertainty about the user’s true location. In our
approach, the user is aware of the adversary’s knowledge and does not make any
assumption about the attacker’s computation power. The user thus prepares the pro-
tection mechanism against the strongest possible attack by modeling the problem as a
Bayesian Stackelberg competition.

We have validated our method using real location traces. We have demonstrated that
our approach finds the optimal attack for a given LPPM and service-quality constraint,
and we have shown that it is superior to other LPPMs, such as basic location obfusca-
tion. We have also shown that the superiority of the optimal LPPM over alternatives
is more significant when the service-quality constraint imposed by the user is tight-
ened. Therefore, our solution is effective exactly where it will be used. Finally, our re-
sults confirm that loosening the service-quality constraint allows for increased privacy
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protection, but the magnitude of this increase strongly depends on the user profile, that
is, on the degree to which a user’s location is predictable from the user’s LBS access
profile. To the best of our knowledge, this is the first framework to explicitly include
the adversarial knowledge into a privacy-preserving design process, considering the
common knowledge between the privacy protector and the attacker.
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Game theory meets network security and privacy. ACM Computing Surveys 45, 3, Article 25, 39 pages.
DOI:http://dx.doi.org/10.1145/2480741.2480742

Joseph Meyerowitz and Romit Roy Choudhury. 2009. Hiding stars with fireworks: Location privacy through
camouflage. In Proceedings of the 15th Annual International Conference on Mobile Computing and
Networking (MobiCom’09). ACM, New York, NY, 345–356.

Kristopher Micinski, Philip Phelps, and Jeffrey S. Foster. 2013. An empirical study of location truncation on
Android. Proceedings of the Mobile Security Technologies (MoST’13) 2.
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