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ABSTRACT
Releasing full data records is one of the most challenging
problems in data privacy. On the one hand, many of the
popular techniques such as data de-identification are proble-
matic because of their dependence on the background kno-
wledge of adversaries. On the other hand, rigorous methods
such as the exponential mechanism for differential privacy
are often computationally impractical to use for releasing
high dimensional data or cannot preserve high utility of ori-
ginal data due to their extensive data perturbation.

This paper presents a criterion called plausible deniability
that provides a formal privacy guarantee, notably for rele-
asing sensitive datasets: an output record can be released
only if a certain amount of input records are indistinguisha-
ble, up to a privacy parameter. This notion does not depend
on the background knowledge of an adversary. Also, it can
efficiently be checked by privacy tests. We present mecha-
nisms to generate synthetic datasets with similar statistical
properties to the input data and the same format. We study
this technique both theoretically and experimentally. A key
theoretical result shows that, with proper randomization,
the plausible deniability mechanism generates differentially
private synthetic data. We demonstrate the efficiency of
this generative technique on a large dataset; it is shown to
preserve the utility of original data with respect to various
statistical analysis and machine learning measures.

1. INTRODUCTION
There is tremendous interest in releasing datasets for rese-

arch and development. Privacy policies of data holders, ho-
wever, prevent them from sharing their sensitive datasets.
This is due, to a large extent, to multiple failed attempts
of releasing datasets using imperfect privacy-preserving me-
chanisms such as de-identification. A range of inference at-
tacks on, for example, AOL search log dataset [2], Netflix
movie rating dataset [39], Genomic data [48, 22], location
data [18, 46], and social networks data [40], shows that sim-
ple modification of sensitive data by removing identifiers or
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by generalizing/suppressing data features results in major
information leakage and cannot guarantee meaningful pri-
vacy for data owners. These simple de-identification soluti-
ons, however, preserve data utility as they impose minimal
perturbation to real data.

Rigorous privacy definitions, such as differential privacy
[15], can theoretically guarantee privacy and bound infor-
mation leakage about sensitive data. However, known me-
chanisms, such as the Laplacian mechanism [15] or the ex-
ponential mechanism [37], that achieve differential privacy
through randomization, have practical limitations. The ma-
jority of scenarios, where they have been applied, are limited
to interactive count queries on statistical databases [14]. In a
non-interactive setting for releasing generic datasets, these
mechanisms are either computationally infeasible on high-
dimensional data, or practically ineffective because of their
large utility costs [26]. At best, these methods are used to
release some privacy-preserving statistics (e.g., histograms
[6, 51]) about a dataset, but not full data records. It is not
obvious how to protect the privacy of full records as opposed
to that of aggregate statistics (by adding random noise).

Despite all these obstacles, releasing full data records is
firmly pursued by large-scale data holders such as the U.S.
Census Bureau [21, 28, 27]. The purpose of this endea-
vor is to allow researchers to develop analytic techniques
by processing full synthetic data records rather than a limi-
ted set of statistics. Synthetic data could also be used for
educational purpose, application development for data ana-
lysis, sharing sensitive data among different departments in
a company, developing and testing pattern recognition and
machine learning models, and algorithm design for sensitive
data. There exists some inference-based techniques to assess
the privacy risks of releasing synthetic data [42, 43]. Howe-
ver, the major open problem is how to generate synthetic
full data records with provable privacy, that experimentally
can achieve acceptable utility in various statistical analytics
and machine learning settings.

In this paper, we fill this major gap in data privacy by pro-
posing a generic theoretical framework for generating synt-
hetic data in a privacy-preserving manner. The fundamental
difference between our approach and that of existing mecha-
nisms for differential privacy (e.g., exponential mechanism)
is that we disentangle the data generative model from pri-
vacy definitions. Instead of forcing a generative model to be
privacy-preserving by design, which might significantly de-
grade its utility, we can use a utility-preserving generative
model and release only a subset of its output that satisfies
our privacy requirements. Thus, for designing a generative



model, we rely on the state-of-the-art techniques from data
science independently from the privacy requirements. This
enables us to generate high utility synthetic data.

We formalize the notion of plausible deniability for data
privacy [3], and generalize it to any type of data. Consider
a probabilistic generative model that transforms a real data
record, as its seed, into a synthetic data record. We can sam-
ple many synthetic data records from each seed using such
a generative model. According to our definition, a synthetic
record provides plausible deniability if there exists a set of
real data records that could have generated the same synthe-
tic data with (more or less) the same probability by which
it was generated from its own seed. We design a privacy
mechanism that provably guarantees plausible deniability.
This mechanism results in input indistinguishability : by ob-
serving the output set (i.e., synthetics), an adversary cannot
tell for sure whether a particular data record was in the input
set (i.e., real data). The degree of this indistinguishability
is a parameter in our mechanism.

Plausible deniability is a property of the overall process,
and similar to differential privacy, it is independent of any
adversary’s background knowledge. In fact, we prove that
our proposed plausible deniable data synthesis process can
also satisfy differential privacy, if we randomize the indis-
tinguishability parameter in the privacy mechanism. This
is a significant theoretical result towards achieving strong
privacy using privacy-agnostic utility-preserving generative
models. Thus, we achieve differential privacy without ar-
tificially downgrading the utility of the synthesized data
through output perturbation.

The process of generating a single synthetic data record
and testing its plausible deniability can be done indepen-
dently from that of other data records. Thus, millions of
data records can be generated and processed in parallel.
This makes our framework extremely efficient and allows
implementing it at a large scale. In this paper, we deve-
lop our theoretical framework as an open-source tool, and
run it on a large dataset: the American Community Sur-
vey [47] from the U.S. Census Bureau which contains over
3.1 million records. In fact, we can generate over one million
privacy-preserving synthetic records in less than one hour on
a multi-core machine running 12 processes in parallel.

We analyze the utility of synthetic data in two major sce-
narios: extracting statistics for data analysis, and perfor-
ming prediction using machine learning. We show that our
privacy test does not impose high utility cost. We also de-
monstrate that a significant fraction of candidate synthetic
records proposed by a generative model can pass the privacy
test even for strict privacy parameters.

We show that a strong adversary cannot distinguish a
synthetic record from a real one with better than 63.0%
accuracy (baseline: 79.8%). Furthermore, when it comes
to classification tasks, the accuracy of the model learned
on a synthetic dataset is only slightly lower than that of
model trained on real data. For example, for Random Fo-
rest the accuracy is 75.3% compared to 80.4% when trained
on real data (baseline: 63.8%); whereas for AdaBoostM1
the accuracy is 78.1% compared to 79.3% when trained on
real data (baseline: 69.2%). Similar results are obtained
when we compare logistic regression (LR) and support vec-
tor machine (SVM) classifiers trained on our synthetic da-
tasets with the same classifiers trained (on real data) in a
differential private way (using state-of-the-art techniques).

Concretely, the accuracy of classifiers trained on our synt-
hetic data is 77.5% (LR) and 77.1% (SVM); compared to
76.3% (LR) and 78.2% (SVM) for objective-perturbation ε-
DP classifiers.

Contributions. We introduce a formal framework for plau-
sible deniability as a privacy definition. We also design a
mechanism to achieve it for the case of generating synthetic
data. We prove that using a randomized test in our plausible
deniability mechanism achieves differential privacy (which is
a stronger guarantee). We also show how to construct ge-
nerative models with differential privacy guarantees. The
composition of our generative model and plausible deniabi-
lity mechanism also satisfies differential privacy. We show
the high accuracy of our model and utility of our generated
synthetic data. We develop a generic tool and show its high
efficiency for generating millions of full data records.

2. PLAUSIBLE DENIABILITY
In this section, we formalize plausible deniability as a

new privacy notion for releasing privacy-preserving synthe-
tic data. We also present a mechanism to achieve it. Finally,
we prove that our mechanism can also satisfy differential pri-
vacy (which is a stronger guarantee) by slightly randomizing
our plausible deniability mechanism.

Informally, plausible deniability states that an adversary
(with any background knowledge) cannot deduce that a par-
ticular record in the input (real) dataset was significantly
more responsible for an observed output (synthetic record)
than was a collection of other input records. A mecha-
nism ensures plausible deniability if, for a privacy parameter
k > 0, there are at least k input records that could have ge-
nerated the observed output with similar probability.

Unlike the majority of existing approaches (e.g., to achieve
differential privacy), designing a mechanism to satisfy plau-
sible deniability for generative models does not require ad-
ding artificial noise to the generated data. Instead, we se-
parate the process of releasing privacy-preserving data into
running two independent modules: (1) generative models,
and (2) privacy test. The first consists in constructing a
utility-preserving generative data model. This is ultimately
a data science task which requires insight into the type of
data for which one wants to generate synthetics. By con-
trast, the privacy test aims to safeguard the privacy of those
individuals whose data records are in the input dataset.
Every generated synthetic is subjected to this privacy test;
if it passes the test it can be safely released, otherwise it is
discarded. This is where the plausible deniability criterion
comes into the frame: the privacy test is designed to ensure
that any released output can be plausibly denied.

In this section, we assume a generic generative model that,
given a data record in the input dataset as seed, produces
a synthetic data record. In Section 3, we present a generic
generative model based on statistical models, and show how
it can be constructed in a differentially-private manner, so
that it does not significantly leak about its own training
data. Plausibly deniable mechanisms protect the privacy of
the seeds, and are not concerned about how the generative
models are constructed.

LetM be a probabilistic generative model that given any
data record d can generate synthetic records y with proba-
bility Pr{y =M(d)}. Let k ≥ 1 be an integer and γ ≥ 1 be
a real number. Both k and γ are privacy parameters.



Definition 1 (Plausible Deniability).
For any dataset D with |D| ≥ k, and any record y gene-
rated by a probabilistic generative model M such that y =
M(d1) for d1 ∈ D, we state that y is releasable with (k, γ)-
plausible deniability, if there exist at least k − 1 distinct
records d2, ..., dk ∈ D \ {d1} such that

γ−1 ≤ Pr{y =M(di)}
Pr{y =M(dj)}

≤ γ, (1)

for any i, j ∈ {1, 2, . . . , k}.

The larger privacy parameter k is, the larger the indistin-
guishability set for the input data record. Also, the closer
to 1 privacy parameter γ is, the stronger the indistinguisha-
bility of the input record among other plausible records.

Given a generative model M, and a dataset D, we need
a mechanism F to guarantee that the privacy criterion is
satisfied for any released data. Specifically F produces data
records by usingM on dataset D. The following mechanism
enforces (k, γ)-plausible deniability by construction.

Mechanism 1 (F with Plausible Deniability).
Given a generative model M, dataset D, and parameters k,
γ, output a synthetic record y or nothing.

1. Randomly sample a seed record d ∈ D.
2. Generate a candidate synthetic record y =M(d).
3. Invoke the privacy test on (M, D, d, y, k, γ).
4. If the tuple passes the test, then release y.

Otherwise, there is no output.

The core of Mechanism 1 (F) is a privacy test that simply
rejects a candidate synthetic data record if it does not satisfy
a given privacy criterion.

We can think of Definition 1 as a privacy criterion that
can be efficiently checked and enforced. So, instead of trying
to measure how sensitive the modelM is with respect to in-
put data records, we test if there are enough indistinguisha-
ble records in the input dataset that could have (plausibly)
generated a candidate synthetic data record.

Privacy Test 1 (Deterministic test T ).
Given a generative model M, dataset D, data records d and
y, and privacy parameters k and γ, output pass to allow
releasing y, otherwise output fail.

1. Let i ≥ 0 be the (only) integer that fits the inequalities

γ−i−1 < Pr{y =M(d)} ≤ γ−i .

2. Let k′ be the number of records da ∈ D such that

γ−i−1 < Pr{y =M(da)} ≤ γ−i .

3. If k′ ≥ k then return pass, otherwise return fail.

Step 2 counts the number of plausible seeds, i.e., records
in D which could have plausibly produced y. Note that for
a given y, there may exist some records da ∈ D such that
Pr{y =M(da)} = 0. Such records cannot be plausible seeds
of y since no integer i ≥ 0 fits the inequalities.

Remark that Privacy Test 1 (T ) enforces a stringent con-
dition that the probability of generating a candidate synt-
hetic y given the seed d and the probability of generating
the same record given another plausible seed da both fall
into a geometric range [γ−i−1, γ−i], for some integer i ≥ 0,

assuming γ > 1. Notice that, under this test, the set of
k − 1 different das plus d satisfies the plausible deniability
condition (1).

Informally, the threshold k prevents releasing the implau-
sible synthetics records y. As k increases the number of
plausible records which could have produced y also increa-
ses. Thus, an adversary with only partial knowledge of the
input dataset cannot readily determine whether a particular
input record d was the seed of any released record y. This
is because there are at least k − 1 other records di 6= d in
the input dataset which could plausibly have been the seed.
However, whether y passes the privacy test itself reveals so-
mething about the number of plausible seeds, which could
potentially reveal whether a particular d is included in the
input data. This can be prevented by using a privacy test
which randomizes the threshold k (as Section 2.1 shows) in
which case the mechanism achieves (ε, δ)-differential privacy.

2.1 Relationship with Differential Privacy
We show a connection between Plausible Deniability and

Differential Privacy, given the following definition.

Definition 2 (Differential Privacy [16]).
Mechanism F satisfies (ε, δ)-differential privacy if for any
neighboring datasets D, D′, and any output S ⊆ Range(F ):

Pr{F (D′) ∈ S} ≤ eεPr{F (D) ∈ S}+ δ .

Typically, one chooses δ smaller than an inverse polynomial
in the size of the dataset, e.g., δ ≤ |D|−c, for some c > 1.

In this section, we prove that if the privacy test is rand-
omized in a certain way, then Mechanism 1 (F) is in fact
(ε, δ)-differentially private for some δ > 0 and ε > 0. Pri-
vacy Test 1 simply counts the number of plausible seeds for
an output and only releases a candidate synthetic if that
number is at least k. We design Privacy Test 2 which is
identical except that it randomizes the threshold k.

Privacy Test 2 (Randomized test Tε0).
Given a generative model M, dataset D, data records d and
y, privacy parameters k and γ, and randomness parameter
ε0, output pass to allow releasing y, otherwise output fail.

1. Randomize k by adding fresh noise: k̃ = k + Lap( 1
ε0

).

2. Let i ≥ 0 be the (only) integer that fits the inequalities

γ−i−1 < Pr{y =M(d)} ≤ γ−i .

3. Let k′ be the number of records da ∈ D such that

γ−i−1 < Pr{y =M(da)} ≤ γ−i .

4. If k′ ≥ k̃ then return pass, otherwise return fail.

Here z ∼ Lap(b) is a sample from the Laplace distribution
1
2b

exp (−|z|
b

) with mean 0 and shape parameter b > 0.

Theorem 1 (Differential Privacy of F).
Let F denote Mechanism 1 with the (randomized) Privacy
Test 2 and parameters k ≥ 1, γ > 1, and ε0 > 0. For any
neighboring datasets D and D′ such that |D|, |D′| ≥ k, any
set of outcomes Y ⊆ U , and any integer 1 ≤ t < k, we have:

Pr{F(D′) ∈ Y } ≤ eεPr{F(D) ∈ Y }+ δ ,

for δ = e−ε0(k−t) and ε = ε0 + ln (1 + γ
t
).



The privacy level offered by Theorem 1 is meaningful pro-
vided k is such that δ is sufficiently small. For example, if we
want δ ≤ 1

nc for some c > 1, then we can set k ≥ t+ c
ε0

lnn.
Here t provides a trade-off between δ and ε.

The proof of Theorem 1 can be found in the extended
version of the paper ([4] Appendix C). Roughly speaking,
the theorem says that, except with some small probability δ,
adding a record to a dataset cannot change the probability
that any synthetic record y is produced by more than a
small multiplicative factor. The intuition behind this is the
following.

Fix an arbitrary synthetic record y. Observe that given y,
all the records in the dataset are partitioned into (disjoint)
sets according to their probabilities of generating y (with
respect to M). That is, the ith partition (or set) contains

those records d such that γ−(i+1) < Pr{y = M(d)} ≤ γ−i.
(Records d such that Pr{y = M(d)} = 0 can be ignored.)
Note that: for y to be released from partition i, the seed
must be in partition i, and it must pass the privacy test;
and the probability of passing the privacy test depends only
on the number of records in the partition of the seed.

Suppose we add d′ to the dataset and let j be the partition
that d′ falls into. The number of plausible seeds can increase
by at most one (this occurs when the seed is in partition j)
and so the probability of passing the privacy test changes by
a factor of at most eε0 due to adding Laplacian noise to the
threshold k. Now, suppose the seed belongs to partition j.
One the one hand, if partition j contains only l records, such
that l� k, then the change in probability (due to adding d′)
could be unbounded. (For example, it could be that d′ is the
only record for which Pr{y =M(d′)} > 0.) However, in this
case, the probability of passing the privacy test is negligible
(at most δ). On the other hand, if l is large enough (say
l ≈ k) so that passing the privacy test is likely, then the
probability of generating y from partition j can only change
by a small multiplicative factor. Indeed, the probabilities of
generating y from d′ or from any of the other l records in
partition j are γ-close.

3. GENERATIVE MODEL
In this section, we present our generative model, and the

process of using it to generate synthetic data. The core of
our synthesizer is a probabilistic model that captures the
joint distribution of attributes. We learn this model from
training data samples drawn from our real dataset D. Thus,
the model itself needs to be privacy-preserving with respect
to its training set. We show how to achieve this with diffe-
rential privacy guarantees.

Let DS, DT, and DP be three non-overlapping subsets of
dataset D. We use these datasets in the process of synthesis,
structure learning, and parameter learning, respectively.

3.1 Model
Let {x1,x2, ...,xm} be the set of random variables asso-

ciated with the attributes of the data records in D. Let G
be a directed acyclic graph (DAG), where the nodes are the
random variables, and the edges represent the probabilistic
dependency between them. A directed edge from xj to xi
indicates the probabilistic dependence of attribute i to at-
tribute j. Let PG(i) be the set of parents of random variable
i according to the dependency graph G. The following mo-
del, which we use in Section 3.2 to generate synthetic data,

represents the joint probability of data attributes.

Pr{x1, ...,xm} =

m∏
i=1

Pr{xi | {xj}∀j∈PG(i)} (2)

This model is based on a structure between random vari-
ables, captured by G, and a set of parameters that construct
the conditional probabilities. In Section 3.3 and Section 3.4,
we present our differentially-private algorithms to learn the
structure and parameters of the model from D, respectively.

3.2 Synthesis
Using a generative model, we probabilistically transform

a real data record (called the seed) into a synthetic data re-
cord, by updating its attributes. Let {x1, x2, ..., xm} be the
values for the set of data attributes for a randomly selected
record in the seed dataset DS. Let ω be the number of attri-
butes for which we generate new values. Thus, we keep (i.e.,
copy over) the values of m − ω attributes from the seed to
the synthetic data. Let σ be a permutation over {1, 2, ...,m}
to determine the re-sampling order of attributes.

We set the re-sampling order σ to be the dependency or-
der between random variables. More precisely, ∀j ∈ PG(i):
σ(j) < σ(i). We fix the values of the first m − ω attribu-
tes according to σ (i.e., the synthetic record and the seed
overlap on their {σ(1), ..., σ(m − ω)} attributes). We then
generate a new value for each of the remaining ω attribu-
tes, using the conditional probabilities (2). As we update
the record while we re-sample, each new value can depend
on attributes with updated values as well as the ones with
original (seed) values.

We re-sample attribute σ(i), for i > m− ω, as

x′σ(i) ∼ Pr{xσ(i) | {xσ(j) = xσ(j)}∀j∈PG(i),j≤m−ω,

{xσ(j) = x′σ(j)}∀j∈PG(i),j>m−ω} (3)

In Section 2, we show how to protect the privacy of the
seed data record using our plausible deniability mechanisms.

Baseline: Marginal Synthesis. As a baseline generative
model, we consider a synthesizer that (independently from
any seed record) samples a value for an attribute from its
marginal distribution. Thus, for all attribute i, we generate
xi ∼ Pr{xi}. This is based on an assumption of indepen-
dence between attributes’ random variables, i.e., it assumes
Pr{x1, ...,xm} =

∏m
i=1 Pr{xi}.

3.3 Privacy-Preserving Structure Learning
Our generative model depends on the dependency struc-

ture between random variables that represent data attribu-
tes. The dependency graph G embodies this structure. In
this section, we present an algorithm that learns G from real
data, in a privacy-preserving manner such that G does not
significantly depend on individual data records.

The algorithm is based on maximizing a scoring function
that reflects how correlated the attributes are according to
the data. There are multiple approaches to this problem
in the literature [35]. We use a method based on a well-
studied machine learning problem: feature selection. For
each attribute, the goal is to find the best set of features
(among all attributes) to predict it, and add them as the
attribute’s parents, under the condition that the dependency
graph remains acyclic.



The machine learning literature proposes several ways to
rank features in terms of how well they can predict a particu-
lar attribute. One possibility is to calculate the information
gain of each feature with the target attribute. The major
downside with this approach is that it ignores the redun-
dancy in information between the features. We propose to
use a different approach, namely Correlation-based Feature
Selection (CFS) [20] which consists in determining the best
subset of predictive features according to some correlation
measure. This is an optimization problem to select a sub-
set of features that have high correlation with the target
attribute and at the same time have low correlation among
themselves. The task is to find the best subset of features
which maximizes a merit score that captures our objective.

We follow [20] to compute the merit score for a parent set
PG(i) for attribute i as

score(PG(i)) =

∑
j∈PG(i) corr(xi,xj)√

|PG(i)|+
∑
j,k∈PG(i) corr(xj ,xk)

, (4)

where |PG(i)| is the size of the parent set, and corr() is the
correlation between two random variables associated with
two attributes. The numerator rewards correlation between
parent attributes and the target attribute, and the denomi-
nator penalizes the inner-correlation among parent attribu-
tes. The suggested correlation metric in [20], which we use,
is the symmetrical uncertainty coefficient:

corr(xi,xj) = 2− 2
H(xi,xj)

H(xi) + H(xj)
, (5)

where H() is the entropy function.
The optimization objective in constructing G is to maxi-

mize the total score(PG(i)) for all attributes i. Unfortuna-
tely, the number of possible solutions to search for is expo-
nential in the number of attributes, making it impractical to
find the optimal solution. The greedy algorithm, suggested
in [20], is to start with an empty parent set for a target attri-
bute and always add the attribute (feature) that maximizes
the score.

There are two constraints in our optimization problem.
First, the resulting dependency graph obtained from the set
of best predictive features (i.e., parent attributes) for all
attributes should be acyclic. This would allow us to decom-
pose and compute the joint distribution over attributes as
represented in (2).

Second, we enforce a maximum allowable complexity cost
for the set of parents for each attribute. The cost is pro-
portional to the number of possible joint value assignments
(configurations) for the parent attributes. So, for each at-
tribute i, the complexity cost constraint is

cost(PG(i)) =
∏

j∈PG(i)

|xj | ≤ maxcost (6)

where |xj | is the total number of possible values that the at-
tribute j takes. This constraint prevents selecting too many
parent attribute combinations for predicting an attribute.
The larger the joint cardinality of attribute i’s parents is,
the fewer data points to estimate the conditional probability
Pr{xi | {xj}∀j∈PG(i)} can be found. This would cause over-
fitting the conditional probabilities on the data, that results
in low confidence parameter estimation in Section 3.4. The
constraint prevents this.

To compute the score and cost functions, we discretize the
parent attributes. Let bkt() be a discretizing function that
partitions an attribute’s values into buckets. If the attribute
is continuous, it becomes discrete, and if it is already dis-
crete, bkt() might reduce the number of its bins. Thus, we
update conditional probabilities as follows.

Pr{xi | {xj}∀j∈PG(i)
} ≈ Pr{xi | {bkt(xj)}∀j∈PG(i)

} (7)

where the discretization, of course, varies for each attribute.
We update (4) and (6) according to (7). This approxima-
tion itself decreases the cost complexity of a parent set, and
further prevents overfitting on the data.

3.3.1 Differential-Privacy Protection
In this section, we show how to safeguard the privacy of

individuals whose records are in D, and could influence the
model structure (which might leak about their data).

All the computations required for structured learning are
reduced to computing the correlation metric (5) from D.
Thus, we can achieve differential privacy [16] for the struc-
ture learning by simply adding appropriate noise to the me-
tric. As, the correlation metric is based on the entropy of a
single or a pair of random variables, we only need to compute
the entropy functions in a differentially-private way. We also
need to make sure that the correlation metric remains in the
[0, 1] range, after using noisy entropy values.

Let H̃(z) be the noisy version of the entropy of a random
variable z, where in our case, z could be a single or pair of
random variables associated with the attributes and their
discretized version (as presented in (7)). To be able to
compute differentially-private correlation metric in all ca-
ses, we need to compute noisy entropy H̃(xi), H̃(bkt(xi)),

H̃(xi,xj), and H̃(xi, bkt(xj)), for all attributes i and j. For
each of these cases, we generate a fresh noise drawn from
the Laplacian distribution and compute the differentially-
private entropy as

H̃(z) = H(z) + Lap(
∆H

εH
) (8)

where ∆H is the sensitivity of the entropy function, and εH
is the differential privacy parameter.

It can be shown that if z is a random variable with a
probability distribution, estimated from nT = |DT| data re-
cords, then the upper bound for the entropy sensitivity is

∆H ≤
1

nT
[2 +

1

ln(2)
+ 2 log2 nT ] = O(

log2 nT
nT

) (9)

The proof of (9) can be found in the extended version of
the paper ([4] Appendix B). Remark that ∆H is a function
of nT (the number of records in DT) which per se needs to be
protected. As a defense, we compute ∆H in a differentially-
private manner, by once randomizing the number of records

ñT = nT + Lap(
1

εnT

) (10)

By using the randomized entropy values, according to (8),

the model structure, which will be denoted by G̃, is diffe-
rentially private. In Section 3.5, we use the composition
theorems to analyze the total privacy of our algorithm for
obtaining a differentially-private structure.



3.4 Privacy-Preserving Parameter Learning
Having a dependency structure G̃, we need to compute the

conditional probabilities for predicting each of the attributes
given its parent set (see (2)). This is a well-known problem
in statistics. In this section, we show how to learn the pa-
rameters that represent such conditional probabilities, from
DP, in a differentially private manner.

The problem to be solved is to first learn a prior distribu-
tion over the parameters of the conditional probabilities. To
do so, we learn the hyper-parameters (the parameters of the
prior distribution over the model’s parameters) from data.
Only then, we can compute the parameters that form the
conditional probabilities from the prior distribution.

Let us take the example of computing the parameters for
predicting discrete/categorical attributes. In this case, we
assume a multinomial distribution over the attribute’s va-
lues (that fall into different bins). The conjugate prior for
multinomials comes from a Dirichlet family. The Dirichlet
distribution assigns probabilities to all possible multinomial
distributions, according to the statistics obtained from a set
of data records.

Let |xi| be the number of distinct values that attribute i
can take. The probability of some multinomial distribution
parameters ~p ci = pci,1, p

c
i,2, ..., p

c
i,|xi| to predict attribute i,

under configuration c for PG(i), is

Pr{~p ci | G̃,DP} = Dir(~α ci + ~n ci ) (11)

where ~α ci is the vector of default hyper-parameters for the
Dirichlet distribution, and ~n ci is the vector for the number of
data records in DP with PG̃(i) configuration c with different
values for attribute i (i.e., element n ci,l is the number of
records for which xi = l and PG̃(i) configuration is c). The
Dirichlet distribution is computed as

Dir(~α ci + ~n ci ) =

m∏
i=1

#c∏
c=1

Γ(αci + nci )

|xi|∏
l=1

(pci )
αc
i,l+n

c
i,l−1

Γ(αci,l + nci,l)
(12)

where αci =
∑
l α

c
i,l, and nci =

∑
l n

c
i,l, and the number of

configurations #c is
∏
j∈PG̃(i) |bkt(xj)|, which according to

constraint (6) can at most be maxcost.
Learning the parameters of the model, in the case of a Di-

richlet prior for multinomial distribution, is simply compu-
ting ~n ci from the data records in DP. Given the probability
distribution (11) over the multinomial parameters, we can
compute the most likely set of parameters as

pci,l =
αci,l + nci,l
αci + nci

(13)

or, we can sample a set of multinomial parameters according
to (12). This is what we do in our generative model, in order
to increase the variety of data samples that we can generate.

Note that for computing the marginal distributions, that
are needed for the baseline, we perform the same computa-
tions by setting the parent sets to be empty.

If an attribute is continuous, we can learn the parameters
of a Normal distribution or learn a regression model from
our data to construct its conditional probability. We omit
the details here (as in the dataset we evaluate in Section 6
all attributes are discrete).

3.4.1 Differential-Privacy Protection
The parameters of the conditional probabilities depend on

the data records in DP, thus they can leak sensitive infor-
mation about individuals who contributed to the real da-
taset. In this section, we show how to learn parameters of
the attribute conditional probabilities (i.e., ~p ci values) with
differential privacy guarantees.

Note that in (11), the only computations that are depen-
dent on DP are the ~n ci counts (for all c and i). To find
the variance of the noise to be added to these counts, to
achieve differential privacy, we need to compute their sensi-
tivity with respect to one individual’s data record.

Suppose we are computing the parameters associated with
predicting a given attribute i given its parent set PG̃(i). Note
that adding a record to DP increases exactly a single com-
ponent nci,l, for which it matches value l for attribute i and
configuration c for its parent set. So, only one single element
among all #c×|xi| elements of ~ni = ~n 1

i , ~n
2
i , ..., ~n

#c
i changes.

This implies that the L1 sensitivity of ~ni is 1. Consequently,
a random noise drawn from Lap( 1

εp
) can be added to each

component of ~ni independently. More precisely, for any at-
tribute i value l, and configuration c, we randomize counts
as

ñci,l = max(0, nci,l + Lap(
1

εp
)) (14)

and use them to compute (11) with differential privacy.

3.5 Differential Privacy Analysis
In this section, we compute the differential privacy level

that we can guarantee for the whole dataset D for learning
the structure and the parameters of the model. We com-
pute the total (ε, δ) privacy by composing the differentially-
private mechanisms in Section 3.3.1 and Section 3.4.1.

Remark that we often protect the output f(x) of some

function f by adding noise from Lap(
∆f

ε
), where ∆f is the

L1 sensitivity of f . This mechanism is known as the Laplace
mechanism and it satisfies ε-differential privacy (Theorem
3.6 of [16]).

Thus the m(m+1) entropy values, H̃(z), needed for struc-
ture learning (Section 3.3.1) are obtained in an a way that
satisfies εH -differential privacy. This is also the case for the
number of records nT , i.e., it satisfies εnT -differential pri-
vacy. Similarly, the counts nci,l parameters learned for each
configuration (Section 3.4.1) satisfy εp-differential privacy.

For structure learning, we make use of both sequential
composition (Theorem 2 in [4] Appendix A) and advanced
composition (Theorem 3 in [4] Appendix A). Specifically,
we use advanced composition for the m(m+ 1) entropy va-
lues and sequential composition with the number of records.
That is, the overall privacy achieved (of structure learning)
is (εL, δL)-differential privacy for a fixed δL � 1

nT
and

εL = εnT +εH

√
2m(m+ 1) ln (δ−1

L )+m(m+1)εH(eεH −1).

For the parameter learning (as explain in Section 3.4.1),
for a given attribute i, the L1 sensitivity of all configurati-
ons of the parent set of i, i.e., PG̃(i), is 1. The overall pri-
vacy achieved (of parameter learning) is (εP , δP )-differential
privacy using advanced composition over the m attributes.
Here, δP � 1

np
(where np is the number of records in DP)

and εP = εp

√
2m ln (δ−1

P ) +mεp(e
εp − 1).



Table 1: Pre-processed ACS13 dataset attributes.

Name Type Cardinality (Values)

Age (AGEP) Numerical 80 (17 to 96)
Workclass (COW) Categorical 8
Education (SCHL) Categorical 24
Martial Status (MAR) Categorical 5
Occupation (OCCP) Categorical 25
Relationship (RELP) Categorical 18
Race (RAC1P) Categorical 5
Sex (SEX) Categorical 2 (male or female)
Hours Worked per Week (WKHP) Numerical 100 (0 to 99+)
World Area of Birth (WAOB) Categorical 8
Income Class (WAGP) Categorical 2 (≤ 50K, > 50K)[USD]

Table 2: ACS13 data extraction and cleaning statistics.

Records 3, 132, 796 (clean: 1, 494, 974)
Attributes 11 (numerical: 2, categorical: 9)

Possible Records 540, 587, 520, 000 (≈ 239)
Unique Records 1, 022, 718 (68.4%)
Classification Task Income class

Given that DT and DP are non-overlapping, the privacy
obtained for the generative model is differentially private
with parameters (max{εL, εP },max{δL, δP }). Due to random
subsampling of DT and DP from D, the privacy parameters
can be further improved by using the amplification effect of
sampling (Theorem 4 in [4] Appendix A) to obtain (ε, δ)-
differential privacy.

4. DATA
For validation, we use the 2013 American Community Sur-

vey (ACS) [47] from the U.S. Census Bureau. The dataset
contains upwards of 3 million of individual records. Each
record includes a variety of demographics attributes such as
age, sex, race, as well as attributes related to the individual’s
income such as yearly income in USD.

The ACS dataset has been used for various purposes ran-
ging from examining the relationship between education and
earnings [24] to looking at current language use patterns of
children of immigrants [38]. Furthermore, the prominent
UCI Adultdataset, which provides a well-established ben-
chmark for machine learning tasks, was extracted from the
1994 Census database. The 2013 ACS dataset contains si-
milar attributes so we process it in a manner similar to how
the Adult dataset was extracted. In particular, we extract
the same attributes whenever possible.

As pre-processing, we discard records with missing or in-
valid values for the considered attributes (Table 1). Table 2
shows some statistics of the data cleaning and extracted da-
taset. This is a highly dimensional dataset despite having
only 11 attributes, there are more than half a trillion possible
records and out of the roughly 1.5 million records obtained
after cleaning, approximately 2/3 are unique.

We bucketize (Section 3.3) values of the age attribute in
bins (i.e., buckets) of 10, i.e., 17 to 26, 27 to 36, etc. (Fol-
lowing the rules used to extract the Adult dataset, we only
consider individuals older than 16.) We also bucketize the
values of: hours worked per weeks (HPW), in bins of 15
hours; education, to aggregate education level below a high-
school diploma in a single bin, and high-school diploma but
not college into (another) single-bin. Bucketization is per-
formed based on the data format and the semantics of at-
tributes (and thus is privacy-preserving). It is done only for
structured learning (Section 3.3); both the input and output
data format remain the same.
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Figure 1: Relative Improvement of Model Accuracy of

the un-noised, ε = 1-DP, and ε = 0.1-DP models, with

respect to the baseline (marginals). Overall, the impro-

vement for ε = 1 or ε = 0.1 is comparable to that for

the un-noised version. Adding noise to achieve DP for

structure learning (Section 3.3) can lead to a different

acyclic graph of the model. (This is why there is a sig-

nificant difference in improvement for attributes RACE

and WAOB between ε = 1-DP and ε = 0.1-DP.)

5. SYNTHETICS GENERATOR TOOL
The synthetic generator [5] is implemented as C++ tool

which takes as input: a dataset represented as a CSV file, a
few metadata text files describing the dataset, and a config
file. As output, the tool produces a synthetic dataset of the
requested size and some metadata.

The generation process is defined by the config file, i.e.,
parameters defined within in control various aspects of the
generation process. The parameters are the privacy pa-
rameters k, γ, ε0, and also parameters of the generative
model such as ω. In addition, the tool takes two optio-
nal parameters to control the privacy test: max plausible

and max check plausible, which allow the test to terminate
early. Specifically, the implementation initially sets k′ = 0,
and iterates over the records of D in a random order, in-
crementing k′ for each plausible seed record da encountered.
The process terminates whenever k′ ≥ max plausible or if
max check plausible records have been examined (whiche-
ver occurs first). Note that this affects performance (but not
privacy); lower values lead to faster generation time in ca-
ses where plausible seeds are abundant, at the cost of fewer
synthetics passing the test (potentially lowering utility).

The synthesis process, given a chosen seed, is independent
of other seeds (Section 2); so the generation process itself is
embarrassingly parallel. One hurdle with running multiple
concurrent instances is implementing differentially-private
parameters learning (Section 3.4.1). In general, the number
of configuration (in the sense of Section 3.4) of the model is
too large (i.e., exponential in the number of attributes) to
learn the model as a pre-processing step. So we design the
tool to learn the model for each configuration as it encoun-
ters it. To ensure that the privacy guarantee holds we set
the RNG seed number to be a deterministic function (i.e., a
hash) of the configuration.
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Figure 2: Model Accuracy. The difference between the

random forest accuracy and the marginals accuracy indi-

cates how informative the data is about each attribute.

6. EVALUATION
We feed the 2013 ACS dataset (Section 4) as input to our

tool and generate millions of synthetic records. We start
with a description of the experimental setup. The evalua-
tion itself is divided into four logical parts: (Section 6.2) sta-
tistical measures (how good are the synthetics according to
well-established statistical metrics); (Section 6.3) machine
learning measures (how good are the synthetics for machine
learning tasks, specifically classification); (Section 6.4) dis-
tinguishing game (how successful is an adversary at distin-
guishing between a real record and a synthetic one); and
(Section 6.5) performance measures (how computationally
complex it is to generate synthetics).

6.1 Setup
To achieve differential privacy we sampled the input da-

taset into disjoint sets of records. Each of DT and DP con-
tains roughly 280, 000 records, whereas DS contains roughly
735, 000 records (Section 3.5). For differential privacy of the
generative model, we set ε = 1 (though we give some results
for ε = 0.1) and always set δ to be at most 2−30 ≈ 10−9.

We typically compare the quality of our generated synthe-
tics with real records (coming from the input dataset) and
privacy-preserving marginals (Section 3.2) which we refer
to as reals and marginals, respectively. The synthetics we
generate are referred by their generation parameters (e.g.,
ω = 10). Unless otherwise stated, we set k = 50, ε0 = 1,
γ = 4, and ω is set to vary between 5 and 11.

We maintain a testing set of roughly 100, 000 records.
Evaluation of classifiers (in this section) uses at least 100, 000
records for training and a (disjoint) testing set of size at least
30% of the size of the aforementioned training set.

6.2 Statistical Measures
We evaluate the quality of the synthetics in terms of their

statistical utility, i.e., the extent to which they preserve the
statistical properties of the original (input) dataset. We can
do this at the level of the generative model (Section 3.1)
itself. Concretely, we directly quantify the error of the
privacy-preserving generative model before any synthetic re-
cord is generated. We do this for each attribute by repea-
tedly selecting a record from the input dataset (uniformly
at random) and using the generative model to find the most
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Figure 3: Statistical Distance for individual attribu-

tes of two distributions: reals and (other) reals; reals

and marginals; reals and synthetics (for varying ω). The

smaller the statistical distance the more information is

preserved. The distance of reals and ω = 11 and ω = 10

synthetics is similar to that of reals and marginals.

likely attribute value (of that attribute) given the other at-
tributes. The generative model error is then measured as the
proportion of times that the most likely attribute value is
not the correct (i.e., original) one. We repeat this procedure
millions of times to quantify the average error of the model
for each attribute. Because the generative model is made
differentially private by adding noise (Section 3.4.1) we ad-
ditionally repeat the whole procedure 20 times (learning a
different private model each time) and take the average.

The results are shown in Figures 1 and 2. Figure 1 shows
the relative decrease in model error (i.e., improvement of
model accuracy) over the (privacy-preserving) marginals; it
shows this improvement for the un-noised, (ε=1)-differential
private, and (ε=0.1)-differential private generative models.
There is a clear accuracy improvement over marginals, in
addition to a low decrease in improvement between the un-
noised model and the ε=1 and ε=0.1 noisy versions.

Figure 2 shows the accuracy of the un-noised generative
model against the (un-noised) marginals, random guessing
(baseline), and the best classifier we could find (trained on
as many records as the generative model), the random fo-
rest (RF). While RF’s accuracy is sometimes higher than
that of the generative model, the accuracy of the latter is
in many cases significantly higher than that of marginals
and random guessing. We conclude that while the proposed
generative model does not perform as well as RF (though
making RF differentially private would certainly lower its
performance) it does perform significantly better than mar-
ginals (or random guessing).

In addition to the error of the generative model, we can
more directly evaluate the extent to which the generated
synthetics preserve the statistical properties of the original
(input) dataset. To do this, we compare the probability
distributions of the synthetics with the reals and marginals.
Specifically, for reals, marginals and synthetics datasets, we
compute the distribution of each attribute and of each pair of
attributes. We compare each of these distributions to those
computed on (other) reals and quantify their distance. We
use a well-established statistical distance metric called “the”
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Figure 4: Statistical Distance for pairs of attributes of

two distributions: reals and (other) reals; reals and mar-

ginals; reals and synthetics (for varying ω). The smaller

the statistical distance the more information is preser-

ved. The distance of reals and synthetics is significantly

smaller than that of reals and marginals.

statistical distance (a.k.a. total variation distance [17, 30]).
The results are shown in Figures 3 and 4, where Figure 3

shows box-and-whisker plots for the distance of the distri-
butions of each attribute separately, and Figure 4 shows
box-and-whisker plots for the distance of the distributions
of all pairs of attributes. While marginals do well for single
attribute and sometimes outperform our synthetics (though
the statistical distance for all datasets is small), synthetics
clearly outperform marginals for pairs of attributes. We
conclude that the generated synthetics preserve significantly
more statistical information than marginals.

6.3 Machine Learning Measures
In addition to preserving statistical properties of the ori-

ginal (input) dataset, the synthetics should also be suitable
to various machine learning tasks. In particular, given a le-
arning task, we can evaluate the extent to which synthetics
are suitable replacements for a real dataset. For the ACS
dataset, a natural and well-establish classification task is to
predict a person’s income class (i.e., ≥ 50K or < 50K) using
the other attributes as features (Section 4).

We train various classifiers on the synthetic datasets and
on the real (input) dataset. We then compare: the classi-
fication accuracy obtained, and the agreement rate of the
learned classifiers. Specifically, for two classifiers trained on
different datasets (but with the same classification task), we
define the agreement rate to be the percentage of records
for which the two classifiers make the same prediction (re-
gardless of whether the prediction is correct). Given that we
look at the agreement rate of classifiers trained on reals and
synthetics, the agreement rate reveals the extent to which
the classifier trained on synthetic data has learned the same
model as the classifier trained on real data.

Table 3 shows the obtained results for three (best) classi-
fiers: Classification Tree (Tree), Random Forest (RF), and
AdaBoostM1 (Ada). The accuracy and agreement rate are
calculated as the average over 5 independent runs, that is,
for each run, we use different (randomly sampled) training
and testing datasets. Overall, we see that both the accuracy

Table 3: Classifier Comparisons. The agreement rate

is the proportion of times that the classifier makes the

same prediction as a classifier trained on real data.

Accuracy Agreement Rate
Tree RF Ada Tree RF Ada

Reals 77.8% 80.4% 79.3% 80.2% 86.4% 92.4%
Marginals 57.9% 63.8% 69.2% 58.5% 65.4% 75.6%
ω = 11 72.4% 75.3% 78.0% 73.9% 79.0% 83.0%
ω = 10 72.3% 75.2% 78.1% 73.8% 78.9% 83.6%
ω = 9 72.4% 75.2% 77.5% 73.9% 79.2% 82.4%
ω ∈R [9− 11] 72.3% 75.2% 78.1% 73.7% 79.0% 83.9%
ω ∈R [5− 11] 72.1% 75.2% 78.1% 73.6% 79.2% 83.3%

and the agreement rates of the synthetics are significantly
closer to that of the reals than the marginals are.

In addition to comparing the best classifiers trained on
real data versus those trained on synthetic data, we can also
compare privacy-preserving classifiers trained on real data
versus non-private classifiers trained on (privacy-preserving)
synthetic data. In particular, Chaudhuri et al. [10] propose
two techniques based on empirical risk minimization to train
logistic regression (LR) and support vector machines (SVM)
binary classifiers: output perturbation (noise is added to the
learned model), and objective perturbation (noise is added
to the objective function of the minimization problem). To
train such classifiers, we first pre-process our datasets fol-
lowing the instructions in [10]: we transform each catego-
rical attribute into an equivalent set of binary attributes,
and normalize features so that each feature takes values in
[0, 1] and subsequently further normalize each training ex-
ample such that its norm is at most 1. The target attribute
for classification is again the person’s income class. The
method proposed in [10] has two parameters: the privacy
budget ε which we set to 1 (the same as for our generative
model), and λ which is a regularization parameter. We use
the code of [10], which we obtain courtesy of the authors,
to train the LR and SVM classifiers. Because the classifica-
tion models vary greatly depending on λ, we vary its value
in the set {10−3, 10−4, 10−5, 10−6} and (optimistically) pick
whichever value maximizes the accuracy of the non-private
classification model.

We report the accuracy obtained in each case in Table 4,
where we contrast non-private, output perturbation DP, and
objective perturbation DP classifiers trained on real data
with non-private classifiers trained on our synthetic datasets
(for various values of ω). Remark that for the case ω = 11,
for example, this is a fair comparison as the obtained LR
and SVM classifiers are ε = 1-DP and thus provides the ex-
act same privacy guarantee as the output perturbation and
objective perturbation LR and SVM classifiers. Non-private
LR and SVM classifiers trained on our (privacy-preserving)
synthetic datasets are competitive with differentially private
LR and SVM classifiers trained on real data.

We emphasize that the results should be interpreted in fa-
vor of our proposed framework. Indeed, the classifiers trai-
ned on our privacy-preserving synthetics outperforms ε-DP
LR classifier and only achieves about 1% lower accuracy
than the objective-perturbation ε-DP SVM. This is signifi-
cant because the technique to train the ε-DP LR and SVM
is specifically optimized for that task. In contrast, our synt-
hetics are not specifically generated to optimize any parti-
cular classification task; instead the general objective is to
preserve the statistical properties of real data.



Table 4: Privacy-Preserving Classifier Comparisons.

LR SVM

Non Private 79.9% 78.5%
Output Perturbation 69.7% 76.2%
Objective Perturbation 76.3% 78.2%

Marginals 68.9% 68.9%

ω = 11 77.6% 77.2%
ω = 10 77.7% 77.1%
ω = 9 77.5% 77.1%
ω ∈R [9− 11] 77.5% 76.9%
ω ∈R [5− 11] 77.7% 77.3%

Table 5: Distinguishing Game. Random Forest (RF)

and Classification Tree (Tree) can easily distinguish mar-

ginals from reals but perform significantly less well when

trying to distinguish synthetics from reals.

Reals Marginals
ω = or ∈R

11 10 9 [9− 11] [5− 11]

RF 50% 79.8% 62.3% 61.8% 63.0% 60.1% 61.4%
Tree 50% 73.2% 58.9% 58.6% 59.8% 57.9% 58.4%

6.4 Distinguishing Game
A different way to evaluate the quality of synthetic da-

tasets is to quantify the extent to which the synthetics can
“pass off” as real records. In other words, we can imagine
a game in which the participant is given a random record
either from a real dataset or a synthetic dataset (but doesn’t
know which) and is asked to distinguish between the two
possibilities. In this case, the utility is measured by how
likely a sophisticated participant (e.g., a well-established le-
arning algorithm) is to make a mistake, i.e., confuse a synt-
hetic record with a real record or vice-versa.

For our purpose the role of the participant is played by the
two best classifiers (those that best distinguish synthetics
from reals): Random Forest (RF) and Classification Tree
(Tree). Specifically, we provide 50, 000 records from both a
real dataset and a synthetic dataset (i.e., 100, 000 total) as
training examples to the (binary) classifier. We then evalu-
ate the accuracy on a 50% mix of real and synthetic records
which were not part the training set. Table 5 shows the
results: both classifiers obtain reasonably high (79.8% and
73.2%) accuracy in distinguishing marginals from real re-
cords. However, both classifiers obtain much lower accuracy
(i.e., 63%) when trying to distinguish synthetics from reals.

6.5 Performance Measures
In addition to how much utility they preserve, synthetics

also need to be easy to generate. The generation is a pa-
rallel process, so we measure the time taken for both the
learning of the privacy-preserving generative model (model
learning) and the synthetics generation (synthesis) itself. Fi-
gure 5 shows the time taken to produce various number of
synthetics records (totaling over 1 million). The parameters
max plausible and max check plausible (Section 5) were
set to 100 and 50000 respectively. The machine used for the
experiment runs Scientific Linux and is equipped with an
Intel Xeon E5-2670 processor (2.60GHz) with 32 processing
units and 128GB of RAM. We ran 96 instances (16 in pa-
rallel at a time) and picked a random maximum runtime for
each instance between 3 and 15 minutes.
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Figure 5: Synthetic Generation Performance. The pa-

rameters are: ω = 9, k = 50, γ = 4. The time to generate

10, 000 synthetic records on a single-core is less than 10

minutes. Thus, in the same time frame we can generate

1 million records with 100 parallel instances.

The generator outputs all synthetics produced regardless
of whether they pass the privacy test. Naturally, only those
which pass the test should to be released. Thus, the extent
to which we can synthesize large (privacy-preserving) data-
sets depends on how easy it is to find synthetics that pass
the privacy-test (Section 2). To evaluate this, we set γ = 2
and max check plausible = 100, 000, and vary k and ω. We
measure the proportion of synthetics which pass the privacy
test. The results are shown in Figure 6: even for stringent
privacy parameters (e.g., k = 100) a significant proportion
(i.e., over 50% for ω ∈R [5− 11]) of synthetics pass the test.

7. RELATED WORK
Data synthesis is the process of creating artificial data that

can be used to serve some key purposes of real data. For
example, it can be used to test software [50, 41] when there
is an inadequate supply of real tests available from operati-
ons. It can be used to evaluate the performance of database
systems [19] when obtaining real data at sufficient scale is
difficult or expensive. It can also be used to protect privacy.
In 1993, Rubin [44] proposed the idea of creating synthetic
data based on multiple imputation, that is, on repeated use
of a function that proposes values for missing fields in a re-
cord. The generative model we presented in Section 3.1 uses
a similar technique. This and related work have given rise
to a substantial body of research on the release of synthetic
data [25, 13]. Such techniques have achieved significant de-
ployment; for example, they have been adopted by the U.S.
Census Bureau [21, 28].

An alternative to data synthesis sometimes called syn-
tactic privacy protection transforms the sensitive data using
a combination of aggregation, suppression, and generali-
zation, to achieve criteria such as k-anonymity [45] or l-
diversity [34]. Although these techniques support privacy
protected data publishing without synthesis, the degree of
privacy protection they provide depends on the background
knowledge of adversaries. The key difference between (k, γ)-
plausible deniability and k-anonymity is that the latter is a
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Figure 6: Percentage of candidates which pass the pri-

vacy test for various values of k and ω (γ = 2). The per-

centage decreases for higher privacy (i.e., larger k) but

remains significant even for combinations of parameters

yielding high privacy. The conclusion is that (very) large

synthetic datasets can efficiently be generated.

syntactic condition on the output of a sanitization process,
whereas plausible deniability is a condition on a synthetic
generator mechanism with respect to its input data.

Plausible deniability as a privacy notion for synthetic data
was proposed by Bindschaedler and Shokri in [3] which des-
cribes a technique to synthesize location trajectories in a
privacy-preserving way. The use of plausible deniability
in [3] is specific to location privacy as it is defined in terms
of a semantic distance between two location trajectories. In
contrast, this work generalizes the notion of plausible de-
niability for general data synthesis by establishing it as a
privacy criterion in terms of the underlying synthesis pro-
babilities. Consequently, this criterion is applicable to any
system and any (kind of) data. The generative framework
described in this paper enables us to formally connect plau-
sible deniability to differential privacy (Theorem 1).

Differential privacy provides guarantees even against ad-
versaries with (almost) unlimited background knowledge.
However, popular differentially private mechanisms such as
the Laplacian mechanism target the release of aggregate sta-
tistics. By contrast, we focus on synthesizing data with the
same format as the (sensitive) input data. Preserving the
data format is valuable for many reasons, such as enabling
the use of applications and code that are targeted at raw
or sanitized data. There is a line of work on mechanisms
that are differentially private and provide data as an out-
put. Some of these techniques have theoretical properties
that may make them impractical in important cases [7].

A prominent example is the Exponential Mechanism [37].
Informally, the mechanism induces a distribution on the
space of output records by assigning a weight to each such
record and then producing output records by sampling from
that distribution. The mechanism is of great importance for
algorithm design due to its generality. However, as several
researchers have pointed out [12, 29, 6], a direct application
is too costly to be practical for high-dimensional datasets
due to the complexity of sampling, which grows exponen-
tially in the dimension of the data records. Concretely, a
straightforward implementation of the exponential mecha-

nism to generate synthetic records from the ACS dataset
(Section 4) would sample from a universe of records of size
roughly 239 (Table 2). This would require pre-computing
that many probabilities. If we assume we can store each va-
lue in four bytes this would require about 2TB of memory. In
contrast, the complexity of synthesizing a record with our
framework depends only on the number of records in the
dataset and on the complexity of our generative model and
thus the process is very efficient in practice (Section 6.5).

There is a growing collection of mechanisms and case stu-
dies for differentially private release of data [1, 9, 36, 33, 49,
11, 23], although some of these are based on a broad view
of data release, such as the release of histograms or con-
tingency tables. Our use of plausible deniability to achieve
differentially private data adds to this body of work. The
typical approach to protect privacy in this context is to add
noise directly to the generative model. For example, this
is the approach taken by [31, 8, 32, 52]. In particular, [52]
constructs a generative model based on Bayesian networks
similar to the generic generative model of Section 3.

Our work takes a novel approach: instead of trying to
achieve differential privacy directly, we design the generative
framework to achieve plausible deniability. A major step
towards achieving plausible deniability and a key novelty is
the idea of testing privacy. That is, instead of designing the
mechanism so it achieves that notion by design, we use a pri-
vacy test which rejects “bad” samples. As a side effect, the
generative model is decoupled from the framework. Privacy
is guaranteed in a way that is oblivious to the specifics of
the generative model used for synthesis. Furthermore, the
guarantee offered by our proposed (k, γ)-plausibly deniable
mechanism is surprisingly close to that of differential pri-
vacy, as evidenced by the fact that merely randomizing the
threshold yields a differentially private mechanism.

The idea of running data synthesis and then testing pri-
vacy has been used before. For example, Reiter et al. in [42]
and [43] use inference to evaluate privacy risk for a synthetic
data release. However, there is no proof of privacy, and it is
not efficient to run a set of inference attacks to estimate the
risk before releasing a dataset.

8. DISCUSSION
Regardless of whether one intends to release a set of ag-

gregate statistics or a synthetic dataset, there is no privacy
protection technique that can preserve utility for all mea-
ningful utility functions. However, one key feature of our
generative framework is that, unlike other approaches based
on differential privacy, any generative modelM can be used
while keeping the same privacy guarantees. As a result, de-
signingM is a data science problem which need not involve
considerations of the privacy of the seeds.

Parameter ω (Section 3) controls the closeness of synthe-
tics to their seeds. (Lower ω means more dependence on
the seed but it is harder to pass the privacy test.) A prag-
matic approach is to generate synthetics for various values
of ω and then randomly sample a subset of those synthetics
which pass the privacy test (this is evaluated in Section 6).
Note that no matter what the value of ω is, the privacy of
the seeds is ensured because of the privacy test.

In the special case where the generative model M is in-
dependent of the seed, the privacy guarantee applies to any
output from Mechanism 1 because the privacy test always
passes. However, for a seed-dependent generative model,



the privacy of the seeds is safeguarded by rejecting synthe-
tics which do not pass the privacy test. So, when generating
several synthetics using the same input dataset, the privacy
obtained depends on the number of synthetics released. In
fact, when Privacy Test 2 is used, the (ε, δ)-differential pri-
vacy guarantee applies to a single (released) synthetic re-
cord y. That said, the composition theorems for differential
privacy can be used to extend the guarantee to arbitrarily
large synthetic datasets, provided the privacy budget is ap-
propriately increased. We leave as future work the design of
improved composition strategies.

9. CONCLUSIONS
We have presented the first practical data synthesis tool

with strong privacy guarantees. We have formalized plausi-
ble deniability for generating generic data records, and have
proven that our mechanisms can achieve differential privacy
without significantly sacrificing data utility.
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