
Optimal Swarm RL: An Improved Deep Exploration Strategy

A B. Tech Project Report Submitted
in Partial Fulfillment of the Requirements

for the Degree of

Bachelor of Technology

by

Rishav Chourasia
(140101086)

under the guidance of

Dr. Rashmi Dutta Baruah

to the

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI
GUWAHATI - 781039, ASSAM

CERTIFICATE

This is to certify that the work contained in this thesis entitled “Optimal Swarm RL: An Im-

proved Deep Exploration Strategy” is a bonafide work of Rishav Chourasia (Roll No. 140101086),

carried out in the Department of Computer Science and Engineering, Indian Institute of Technology

Guwahati under my supervision and that it has not been submitted elsewhere for a degree.

Supervisor: Dr. Rashmi Dutta Baruah

Assistant Professor,

Apr, 2018 Department of Computer Science & Engineering,

Guwahati. Indian Institute of Technology Guwahati, Assam.

i

Acknowledgements

Foremost I would like to thank Prof. Rashmi Dutta Baruah for her patience, motivation and

time. Her guidance helped me in my research and in writing this thesis. My sincere thanks goes to

my department professors for getting me interested in research. I thank my fellow batch mates for

indulging me in insightful and stimulating discussions, for working together before deadlines and

for all the fun we had. Last but not the least, I would like to thank my family for supporting me

spiritually throughout my life.

ii

Contents

List of Figures iii

List of Tables iv

1 Introduction 1

1.1 Organization of The Report . 2

2 Notation and Background Concepts 5

2.1 Notation . 5

2.2 Exact Set Cover . 7

2.3 Bootstrapped DQN . 8

3 Swarm Update Strategy 11

4 Swarm RL Algorithms 15

5 Regret Bounds and Optimal Swarm RL 19

6 Optimal Swarm DQN algorithm 23

7 Experiments and Results 25

8 Conclusion 29

References 31

iii

List of Figures

2.1 Neural Network Architecture with |K| = 3 heads. 8

6.1 Pictorial flow of Agglomerate function computation. 23

7.1 Neural Network Architecture with |K| = 5 heads. 26

iv

List of Tables

7.1 Parameter Table for Optimal Swarm DQN implementation on ALE environments. 25

7.3 Comparison of maximal mean rewards achieved by agents. Maximal mean reward

is calculated in a window of 100 consecutive episodes. Bold denotes the highest

value in each row. (Table lists incomplete training results. Optima RL DQN was

trained only for 200,000/20,000,000 steps) . 27

1

Abstract

The proper balance between exploration and exploitation has been a deeply researched topic

in literature, and some interesting ways of achieving it [McF] have been proposed. Some of the

recently established technique achieves it via use of an Ensemble of Q-function approximators

[OBPVR16]. Instead of taking exploratory actions by using Boltzman or Gibbs strategy, manifest-

ing exploratory behaviour via model parameters directly has rightly gained considerable attention

recently [SOR+10]. For Bootstrapped DQN, deep exploration is achieved based on the random

initialization of an ensemble of function approximators’ weights. Based on similar lines, other

kinds of ensemble algorithms exists [WvH08] that attempt to improve exploration-exploitation

balance. We attempt to come up with an optimal exploration strategy in terms of expected regret,

for a class of RL algorithms we call Swarm RL. Some notable algorithms including Bootstrapped

DQN and Ensemble Voting DQN belong to this class, implying that the optimal exploration strat-

egy effectively achieves better exploration-exploitation balance. For the empirical comparison, we

have presented a comparison on standard 49 ALE environments.

2

Chapter 1

Introduction

Various exploration strategy like parameter perturbation, Boltzmann strategy, ε-greedy strategy

are unable to cope up with reinforcement learning environments with considerably sparse reward

distribution. Techniques to enable effective explorations in these conditions have been proposed,

such as maintaining a probability distribution on actions for handling uncertainty like Bayesian Q-

learning[DFR98] or maintaining a probability distribution on MDPs itself like in PSRL[OVRR13].

These however suffer form the curse of dimentionality, and lead to intractable solutions for most

real life RL environments. One efective way of handling intractability in maintaining probabilistic

distribution over MDPs is to maintain a sample(ensemble) of Q-function approximators instead.

Bootstrapped DQN uses this methodology and have shown significant increase in performance

which is tantamount to a decrease in net expected regret of the algorithm.

The reason for an improvement, as stated in their work, was due to information exchange

between ensemble heads, via a shared memory buffer. Other ensemble algorithms also achieve

sharing via some form of communication or another. Averaged DQN[ABS16], for instance

proposes sharing of learning via averaging of ensemble head estimates for error calculation.

Voting ensemble DQN[WvH08] suggests sound action decision with majority consensus as the

mode of learning exchange. An important question arises here is how to measure benefit of

1

shared learning. In our opinion, the best way to measure benefit due to information sharing is via

estimating the net ensemble regret accrued in the whole duration of training for the RL algorithm.

Based on method for error calculation and action decision for training an ensemble using

heads’ estimates, a class of algorithms can be formulated with guaranteed convergence as well

as preserved optimality[BOG+16] provided the update strategy has some improvement property.

Ensemble algorithms such as Voting ensemble DQN and Bootstrapped DQN can be verified to

belong in this class of RL algorithms, we call Swarm RL. All such algorithm employ sharing of

knowledge for deep exploration[MR17].

Among Swarm RL algorithms, we are interested in is Optimal Swarm RL algorithm, the

one that achieves best exploration, and consequently has the least expected regret overall. By

developing regret bounds on an arbitrary Swarm RL algorithm, important insights on what

constitutes as the best algorithm in this class can be developed. Moreover, it can help in determining

the number of ensemble heads to employ for best performance guarantees. Following the results,

ensembles can be trained effectively to perform considerably better than some known Ensemble

learning algorithms.

Our intuition is that in Optimal Swarm RL, an effective communication between heads would

be established by colluding similar agents into sets, and training them using in-sync next-actions

for error computation. Moreover, these collusions would be different in each training step and will

depend on the agents’ net returns estimates.

1.1 Organization of The Report

After a brief background on notation 2.1, Exact Set Cover problem 2.2 and bootstrapped DQN

2.3(we use same architecture for efficiency), we introduce a swarm update strategy 3 for a set of

agents with a provably convenient property of being asymptotically not worse than each of the

present agent policies. Then using the constraints of the update strategy, we formalize a class of

Swarm RL algorithms 4, and prove their asymptotic Q-function’s convergence to Bellman update

strategy’s converged Q-function. Next, we compute a bound on step-wise ensemble-regret bound

2

and show it’s dependence 5 on sizes of agent agglomeration generated. Using it we develop a

clustering mechanism which reduces to optimal set cover 5. Using an approximate optimal greedy

set-cover, we present our Optimal Swarm DQN algorithm 6 and show it’s results for 49 standard

ALE Atari environments 7.

3

4

Chapter 2

Notation and Background Concepts

2.1 Notation

We consider a typical RL environment as a Markov Decision Process(MDP) M := (S , A,T,R, γ),

where S is the state space, A is the action space and γ is the discount factor belonging in the range

[0, 1). For any s, s′ ∈ S and a ∈ A, R(s, a) gives the finite reward of taking action a at state s and

T (s′|s, a) gives the environment’s transition probability of going to state s′ on taking action a at

state s. Without any loss in generality, we assume that the range of the bounded reward function

R is [0, 1 − γ] to make the maximum discounted returns independent of γ. Any other bounded

reward function can always be linearly scaled down to this range without affecting the action

decisions. We also denote the space for all bounded functions with range [0, 1] on S × A and on S

as Q := QS ,A andV := VS respectively. This bound on range reflects the bound on net returns any

policy can get when facing R reward function.

A mapping π : S → A is referred to as a deterministic policy. Every policy π has a correspond-

ing Q function Qπ ∈ Q computed from the Bellman equation

Qπ(s, a) = R(s, a) + γEs′∼T (·|s,a)[Qπ(s′, π(s′)]. (2.1)

From now on, we’ll represent Es′∼T (·|s,a) as ET for convenience. This Qπ(s, a) function is interpreted

5

as the expected discounted net returns an agent receives on starting with action a on states and

following policy π thereafter. The value function

Vπ(s) = Qπ(s, π(s)) (2.2)

can similarly be interpreted as the discounted net returns on following policy π right from the

first state s. An optimal policy π∗ is defined as a policy mapping that accrues maximum expected

discounted returns on MDP M, whose Q-table Q∗ was shown (Bertsekas and Tsitsiklis 1996) to

be the unique identity solution of the Bellman operator T |Q → Q defined point-wise as

TQ(s, a) = R(s, a) + γET [max
b

Q(s′, b)]. (2.3)

Starting from any Q function Q0 ∈ Q, a sequence of application of T leads to convergence to

the optimal Q function Q∗[K+12] i.e.

Q∗(s, a) = lim
t→∞
T tQ0(s, a). (2.4)

and corresponding value function i.e.

V∗(s) = max
a

Q∗(s, a). (2.5)

Dealing with an ensemble of K agents, we denote the initial Q-functions as Q(i)
0 ∈ Q ∀i ∈

K := {1, 2..K}. Let Ht = (s0, a0,R(s0, a0), s1, a1, ..., st−1, at−1,R(st−1, at−1)) denote the history of

observations made before tth update step. Depending on the RL algorithm, say represented by the

operator T ′, the returns estimates Q(i)
t ,∀i ∈ K at tth step for a history Ht, could be said to have

been sampled from the posterior distribution over Q[OVRR13][AJ17], i.e.

Q(i)
t |Ht ∼ PT ′(Q|Ht) ∀i ∈ K . (2.6)

6

For a distribution on MDPs, respective Q∗ and V∗ are stochastic and follow some distribution

depending upon M’s distribution. For such a stochastic environment, we denote ensemble regret

Regretπ(·) for an ensemble policy π(·) as

Regretπ(·)(s) =
∑
i∈K

∑
a∈A

1{π(i)(s) = a}∆s,a, (2.7)

where π(i) is the policy for agent i and ∆s,a is the action regret given by

∆s,a = E[V∗(s) − Q∗(s, a)], (2.8)

and ∆s,a ∈ [−1, 1] because of range of any Q ∈ Q.

2.2 Exact Set Cover

Given a collection S of subsets of a universe setU, a subset C ⊂ S that covers all the elements

of the universeU is called an exact cover of the collection S. Mathematically, a valid cover is

expressed as

U =
⋃
X∈C

X, C ⊂ S. (2.9)

An optimal set cover is defined as a cover C∗ such that for any other cover C, |C∗| <= |C|. The

problem of finding optimal exact set cover has been shown to be in NP-complete. However, many

polynomial time approximate algorithms exists that can be used when finding a close to optimal

cover suffices the requirements.

In our algorithm presented later, the task of clustering of agents at each time step essentially

reduces to finding exact cover for universeU = K , and collection S consisting of a set of agents

for all action a ∈ A, i.e. |S| = |A|. Though for our examples, the sizes are conveniently small to

use exponential time solutions to the set cover problem, we nonetheless incorporate an efficient

implementation of log(|U|)-approximate set cover algorithm, adapted from greedy set cover.

7

2.3 Bootstrapped DQN

An adaptation of Posterior Sampling for Reinforcement Learning(PSRL) for practical environ-

ments is Bootstrapped DQN. A sample of |K| Q-function estimates Q(i)
t , parameterized in form

of neural network heads as shown in 2.3, are maintained in place of a distribution over Q-

functions like in Bayesian Q-Learning [DFR98]. A common experience buffer is used for all

the heads, and experience tuples of the form (st, at,R(st, at), st+1) are shared among a random

subset of agents by storing a probability p Bernoulli mask vector M = (m(1),m(2)..,m(|K|)), where

m(i) ∼ Ber(p),∀i ∈ K .

Fig. 2.1 Neural Network Architecture with |K| = 3 heads.

In the beginning of an episode, a random neural network head is sampled and the corresponding

greedy policy if followed throughout the episode to generate experience tuples, which are then

randomly shared with a subset of heads using the sampled mask M. Frequently enough, batches

of experience tuples are sampled from the replay and used to train the network optimizing for the

following loss

L = E
[(

(Y (.)
t − Q(.)

t (s, a)) · M
)2]
, (2.10)

where

Y (.)
t = R(s, a) + γ × Q(.)

t (s′, π(.)
t (s′)), (2.11)

and (s, a,R(s, a), s′,M) is sampled from experience buffer. The major deviation of proposed

Optimal Swarm DQN from bootstrapped DQN is in the selection of π(.)
t (s′) for the loss term

8

calculation. For bootstrapped DQN,

π(i)
t (s′) = argmax

b
Q(i)

t (s′, b), i ∈ K . (2.12)

Similar to Double DQN’s policy update, Bootstrapped DQN’s update can be stabilized in

terms of overestimation by using a target and a current network, with swiping on regular intervals.

9

10

Chapter 3

Swarm Update Strategy

Instead of greedily selecting π(i)
t (s′) using equation (2.12), we propose a Swarm Update Strategy

for ensembles that considers the expected returns Q(j)
t of other agents j ∈ K . By accounting

for the the expectations of other agents, Swarm Update Strategy enjoys robustness due to lesser

uncertainty. Any update strategy qualifies as a Swarm Update Strategy if for any state s and agent

i, a subset of agents Ii(s) including i deems it’s update policy’s action ωi(s) preferable to current

policy action πi, i.e.

Qπ j(s, ωi(s)) ≥ Qπ j(s, π j(s)), ∀ j ∈ Ii(s). (3.1)

For a valid Swarm Update strategy, it’s update policy must choose from a set of preferable

actions, denoted as

Ai(s) = {a|Qπi(s, a) ≥ Qπi(s, πi(s))}. (3.2)

Such an update strategy improves upon the current policy, as established by the following

theorem.

Theorem 3.0.1 (Policy Improvement Theorem). If πi,∀i ∈ K be agent policies, then a set of

swarm update policies Ωi,∀i ∈ K defined such that for any ωi ∈ Ωi and state s ∈ S , an agent

11

subset Ii(s) ⊂ K containing agent i exists such that

Qπ j(s, ωi(s)) ≥ Qπ j(s, π j(s)) ∀s ∈ S , j ∈ Ii(s), (3.3)

then it has the property that

Qωi(s, a) ≥ Qπi(s, a) ∀s ∈ S , a ∈ A, i ∈ K . (3.4)

Proof. We will prove this using induction on the horizon depth h. For every h, we have a

corresponding Q-function for following policy πi deterministically on each step of the horizon.

This is given by the equation

Qh
πi

(s, a) = R(s, a) + γET [Qh−1
πi

(s′, πi(s′))],

Q1
πi

(s, a) = R(s, a).
(3.5)

where s′ ∼ T (·|s, a). For agent i, we represent the depth-h arbitary swarm policy ωh
i on a subset

of K , Ih
i constructed such that for all s ∈ S , i ∈ Ih

i (s) and

Qh
π j

(s, ωh
i (s)) ≥ Qh

π j
(s, π j(s)),∀ j ∈ Ih

i (s). (3.6)

The Q-function of agent i for following the optimal policy ωh
i on corresponding horizon depth

h is represented as Qh
ωh

i
and given by the equation

Qh
ωh

i
(s, a) = R(s, a) + γET [Qh−1

ωh−1
i

(s′, ωh−1
i (s′))],

Qh
ω1

i
(s, a) = R(s, a).

(3.7)

By subtracting (3.5) from (3.7), we get

Qh
ωh

i
(s, a) − Qh

πi
(s, a) = γET [Qh−1

ωh−1
i

(s′, ωh−1
i (s′)) − Qh−1

πi
(s′, πi(s′))]. (3.8)

12

Induction Hypothesis: For all horizon depth h, Qh
ωh

i
(s, a) ≥ Qh

πi
(s, a),∀s ∈ S , a ∈ A.

Limiting step: For h=1 case, it is clear that Q1
ω1

i
(s, a) ≥ Q1

πi
(s, a), as both are equal to R(s, a).

Inductive step: Assuming the induction inequality is true for depth h − 1, we need to show

that it is also true for depth h. From (3.8), the inequality for depth h is true if

Qh−1
ωh−1

i
(s′, ωh−1

i (s′)) − Qh−1
πi

(s′, πi(s′)) ≥ 0,∀s′ ∈ S . (3.9)

Consider two cases.

Case 1. If ωh−1
i (s′) = πi(s′) = a′(say), then the above inequality follows from the induction

hypothesis on h − 1.

Case 2. If ωh−1
i (s′) , πi(s′), then we have

Qh−1
ωh−1

i
(s′, ωh−1

i (s′)) ≥ Qh−1
πi

(s′, ωh−1
i (s′)),∀s′ ∈ S , (3.10)

from the induction hypothesis and

Qh−1
πi

(s′, ωh−1
i (s′)) ≥ Qh−1

πi
(s′, πi(s′)),∀s′ ∈ S , (3.11)

from the definition of agent i swarm policy ωh−1
i for depth h− 1. Combining both (3.10) and (3.11)

we get the required inequity (3.9).

Thus the induction hypothesis is true for all depth h. On applying limh→∞ to both the sides of

the induction hypothesis, we get

lim
h→∞

Qh
ωh

i
(s, a) ≥ lim

h→∞
Qh
πi

(s, a), (3.12)

which is same as

Qωi(s, a) ≥ Qπi(s, a). (3.13)

13

�

The Swarm Update strategy introduces a family of policies and their corresponding clustering

Ii(s) of agents based on expected estimates of net returns.

This strategy when applied on ensemble DQN adds one more level of communication among

heads in comparison to Bootstrapped version, i.e. in addition to experience sharing, taking group

consensus actions instead of greedy best actions allows for an improved sharing of learning.

14

Chapter 4

Swarm RL Algorithms

The manifestation of the Swarm update strategy as a class of RL algorithms can be expressed as a

transformation Operator similar to Bellman’s operator in (2.3). Following the notation in 2.1, we

define Swarm operator T (i)
t and the corresponding update for agent i ∈ K and time t as

Q(i)
t+1(s, a) = T

(i)
t Q(i)

t (s, a) = R(s, a) + γET [Q(i)
t (s′, π(i)

t (s′)], (4.1)

where the π(i)
t is analogous to ωi in sense that for a subset of agents I(i)

t (s′) ⊂ K it satisfies

i ∈ I(i)
t (s′) and

Q(j)
t (s′, π(i)

t (s′)) ≥ Q(j)
t (s′, g(j)

t−1(s′)), ∀ j ∈ I(i)
t (s′), (4.2)

g(j)
t−1 being the greedy strategy,

g(j)
t−1(s′) = argmax

b
Q(j)

t−1(s′, b). (4.3)

Consistent with the notation, the set of preferable actions similar to (3.2) would be

A
(i)
t (s) = {a|Q(i)

t (s, a) ≥ Q(i)
t (s, g(i)

t−1(s))}. (4.4)

15

It is clear from comparing Y t in (2.11) and definition of T (i)
t that Bootstrapped RL belongs to

the set of Swarm RL algorithms because π(i)
t if defined as (2.12) satisfies the condition (4.2) and

has a corresponding cluster I(i)
t (s′) = {i}. Implication of this observation is that the best Swarm

RL algorithm in terms of regret bound would be not worse than Bootstrapped RL.

Using the swarm operator definition (4.1) it can be shown that all Swarm RL algorithm

converges and the asymptotic Q-function is optimal.

Theorem 4.0.1. Swarm RL algorithms are optimal, i.e. for any random initialization Qi
0 ∈ Q and

subsequent swarm operators T (i)
t , the asymptotic Q-function Q̃(i) is optimal, i.e. Q∗ = Q̃(i), ∀i ∈ K ,

Q̃(i)(s, a) = lim
t→∞
T

(i)
t Q(i)

t (s, a) = lim
t→∞
T

(i)
t T

(i)
t−1...T

(i)
0 Q(i)

0 (s, a). (4.5)

Proof. On subtracting (2.3) from (4.1), we get

T
(i)
t Q(i)

t (s, a) − TQ(i)
t (s, a) = γET [Q(i)

t (s′, π(i)
t (s′)) −max

b
Q(i)

t (s′, b)]. (4.6)

Applying limiting infimum conditions to L.H.S,

L.H.S = lim inf
t→∞

T
(i)
t Q(i)

t (s, a) − lim inf
t→∞

TQ(i)
t (s, a)

= Q̃
(i)

(s, a) − T lim inf
t→∞

Q(i)
t (s, a)

= Q̃
(i)

(s, a) − T Q̃
(i)

(4.7)

Applying limiting infimum conditions to R.H.S

R.H.S = lim inf
t→∞

γET [Q(i)
t (s′, π(i)

t (s′)) −max
b

Q(i)
t (s′, b)]

≥ γET
[
lim inf

t→∞

(
Q(i)

t (s′, π(i)
t (s′))

)
− lim inf

t→∞

(
max

b
Q(i)

t (s′, b)
)]

(from Fatou’s lemma)

= γET
[
Q̃

(i)
(s′, lim inf

t→∞
π(i)

t (s′)) −max
b

Q̃
(i)

(s′, b)
]

= γET
[
Q̃

(i)
(s′, argmax

b
Q̃

(i)
(s′, b)) −max

b
Q̃

(i)
(s′, b)

]
(from t → ∞ on (4.2))

= 0.

(4.8)

16

From (4.1) and (4.5) we have

Q̃
(i)

(s, a) = lim sup
t→∞

T
(i)
t Q(i)

t (s, a)

≤ lim sup
t→∞

TQ(i)
t (s, a) (from comparing (2.3) and (4.1))

= R(s, a) + γ
[
lim sup

t→∞
ET [max

b
Q(i)

t (s′, b)]
]

≤ R(s, a) + γET [lim sup
t→∞

max
b

Q(i)
t (s′, b)] (from Jensen’s inequality)

= R(s, a) + γET [max
b

lim sup
t→∞

Q(i)
t (s′, b)]

= R(s, a) + γET [max
b

Q̃
(i)

(s′, b)]

= T Q̃
(i)

(s, a).

(4.9)

So we get

Q̃
(i)

(s, a) ≥ T Q̃
(i)
,

Q̃
(i)

(s, a) ≤ T Q̃
(i)
.

(4.10)

Now we will see that all swarm operators T (i)
t are contractions and therefore Q̃(i) = Q̃

(i)
= Q̃

(i)

[K+12]. We show contraction for infinity norm that is

‖T
(i)
t Q − T (i)

t Q′‖∞ ≤ α‖Q − Q′‖∞, (4.11)

17

for some α ∈ [0, 1] and any Q,Q′ ∈ Q.

‖T
(i)
t Q − T (i)

t Q′‖∞ = max
s∈S ,a∈A

|T
(i)
t Q(s, a) − T (i)

t Q′(s, a)|

= max
s∈S ,a∈A

|γET
(
Q(s′, π(i)

t (s′)) − Q(s′, π(i)
t (s′))

)
|

= max
s∈S ,a∈A

γ|
∑
s′∈S

T (s′|s, a)
(
Q(s′, π(i)

t (s′)) − Q(s′, π(i)
t (s′))

)
|

≤ max
s∈S ,a∈A

γ|
∑
s′∈S

T (s′|s, a) max
s′∈S

(
Q(s′, π(i)

t (s′)) − Q(s′, π(i)
t (s′))

)
|

= max
s∈S ,a∈A

γ|max
s′∈S

(
Q(s′, π(i))t(s′) − Q(s′, π(i)

t (s′))
)∑

s′∈S

T (s′|s, a)|

= max
s′∈S

γ|
(
Q(s′, π(i)

t (s′)) − Q(s′, π(i)
t (s′))

)
× 1|

≤ max
s′∈S ,a′∈A

γ|
(
Q(s′, a′) − Q(s′, a′)

)
|

= γ‖Q − Q′‖∞

(4.12)

Therefore from (4.10) and Q̃
(i)

= Q̃
(i)

(convergence due to contraction property), we get

Q̃(i)(s, a) = T Q̃(i). (4.13)

Since the fixed point value for Bellman operator is unique and equal to Q∗, the above results to

Q̃(i) = Q∗. (4.14)

�

18

Chapter 5

Regret Bounds and Optimal Swarm RL

Among all Swarm RL algorithms, we are interested in the regret-optimal Swarm RL algorithm. By

trying to upper-bound (2.7) for Swarm RL, we hope to derive an update policy π(i)
t and clustering

I
(i)
t of agents. From the definition of ensemble-regret, based on the action recommended by π(i)

t

for a state s, agglomerations of agents based on unique actions can be created. We add on to the

notations defined in 2.1 by adding

J
(a)
t (s) = {i|π(i)

t (s) = a},∀a ∈ A, (5.1)

which represents these agglomerations.

Theorem 5.0.1. For a swarm RL algorithm, ensemble regret Regretπ(·)
t

(s) at step t for state s is

upper-bounded as

E[Regretπ(·)
t

(s)] ≤
∑

J∈J
(·)
t (s)

∑
a∈A

|J|∆s,a

e
1
2 |J|∆

2
s,a
. (5.2)

Proof. Similar to PSRL[OVRR13], an important observation to note is that for Swarm RL, Q∗

and Q(i)
t are identically distributed. Therefore, from the posterior sampling lemma 5.0.2 that states

Lemma 5.0.2 (posterior sampling). If f is the distribution of Q∗, then for any σ(Ht) measurable

function g,

E[g(Q∗)|Ht] = E[g(Q(i)
t)|Ht]. (5.3)

19

On taking expectation over Ht shows Eg([Q∗)] = E[g(Q(i)
t)] through the tower property. Using

this property for a given state s and action a on R.H.S of 4.2 gives

E[Q(j)
t (s, g(j)

t−1(s))] = E[max
b∈A

Q∗(s, b)], (5.4)

and on L.H.S gives

E[Q(j)
t (s, a)] = E[Q∗(s, a)]. (5.5)

From the definition of ensemble regret,

Regretπ(·)(s) =
∑
i∈K

∑
a∈A

1{π(i)(s) = a}∆s,a

=
∑

J∈J
(.)
t (s)

∑
a∈A

1{π(J)
t (s) = a}|J|∆s,a (As per (5.1))

≤
∑

J∈J
(.)
t (s)

∑
a∈A

1{
∑
j∈J

(
Q(j)

t (s, a) − Q(j)
t (s, g(j)

t−1(s))
)
≥ 0}|J|∆s,a

(From the condition (4.2)) on swarm update strategy)

=
∑

J∈J
(.)
t (s)

∑
a∈A

1{
∑
j∈J

χ
(j)
t (s, a) ≥ 0}|J|∆s,a,

(5.6)

where χ(j)
t is a random variable defined as

χ
(j)
t (s, a) = Q(j)

t (s, a) − Q(j)
t (s, g(j)

t−1(s)). (5.7)

From (5.4) and (5.5), expectation of χ(j)
t (s, a) is given by

E[χ(j)
t (s, a)] = E[Q(j)

t (s, a) − Q(j)
t (s, g(j)

t−1(s))]

= E[Q∗(s, a)] − E[max
b∈A

Q∗(s, b)]

= E[Q∗(s, a) − V∗(s)]

= −∆s,a.

(5.8)

20

Lemma 5.0.3 (Chernoff-Hoffending Bound). Let Z1,Z2, ...,Zn be independent random variables

on R such that ai ≤ Zi ≤ bi with probability one. If S n =
∑n

i=1, then for all t ≥ 0

Pr(S n − E[S n] ≥ t) ≤ e−2t2/
∑

(bi−ai)2
(5.9)

and

Pr(S n − E[S n] ≤ −t) ≤ e−2t2/
∑

(bi−ai)2
. (5.10)

Probability Pr(
∑

j∈J χ
(j)
t (s, a) ≥ 0) can now be bound using the above stated Chernoff-

Hoeffding Inequality as follows

Pr(
∑
j∈J

χ
(j)
t (s, a) ≥ 0) = Pr(

∑
j∈J

χ
(j)
t (s, a) + |J|∆s,a ≥ |J|∆s,a)

(On subtracting E[
∑
j∈J

χ
(j)
t (s, a)] on both sides and using (5.8))

≤ e
−2(|J|∆s,a)2

|J|×22

(Using (5.9). Range of any ∆s,a is [−1, 1])

= e−
1
2 |J|∆

2
s,a

(5.11)

Using the above bound, we can now bound E[Regretπ(·)(s)] as

E[Regretπ(·)(s)] ≤
∑

J∈J
(.)
t (s)

∑
a∈A

E[1{
∑
j∈J

χ
(j)
t (s, a) ≥ 0}]|J|∆s,a

(Taking E inside summation)

=
∑

J∈J
(.)
t (s)

∑
a∈A

Pr(
∑
j∈J

χ
(j)
t (s, a) ≥ 0)|J|∆s,a

≤
∑

J∈J
(.)
t (s)

∑
a∈A

e−
1
2 |J|∆

2
s,a |J|∆s,a

(From (5.11))

=
∑

J∈J
(.)
t (s)

∑
a∈A

|J|∆s,a

e
1
2 |J|∆

2
s,a

(5.12)

21

�

From the regret bound, it is clear that the regret-optimal Swarm RL algorithm’s update strategy

must be such that minimizes the number of agglomerations |J (·)t(s)|, in-turn maximizing individual

agglomeration sizes |J (i)
t (s)|. In other words, our π(.)

t (s) must be such that number of unique actions

are minimized. The restriction imposed by (4.2) coupled with the above observation induces the

requirements

π
(j)
t (s) = π(i)

t (s),∀ j ∈ I(i)
t (s), (5.13)

I
(i)
t (s) = { j|π(i)

t (s) ∈ A(i)
t }, (5.14)

for all agent i ∈ K and state s ∈ S . As mentioned in section 2.2, it can be seen that the above

requirements can be satisfied by applying optimal set cover to a collection S =
⋃
i∈K
�

(i)
t (s) to obtain

a cover C∗ ⊂ S on a universe U = K . The action corresponding to each set in C∗ is the action

decision for all agents in that set.

22

Chapter 6

Optimal Swarm DQN algorithm

Double DQN utilizes a target and a current policy network for removing positive bias. We use

the target network to do away with need of maintaining previous iteration’s Q-function estimate.

Adaptation of the Optimal Swarm RL as a DQN is summarized by the following pseudo code. For

a pictorial representation of the Agglomerate function, refer to 6.

Fig. 6.1 Pictorial flow of Agglomerate function computation.

The Agglomerate(s,T (·),Q(·)) procedure is used both while making action decision for an

23

Algorithm 1 Optimal Swarm DQN algorithm.
procedure Agglomerate(state s, Target Network T (·), Current Network Q(·))

Find Target best actions g(i) = argmaxa∈A T (i)(st, a)
Construct preferred action setsA(j) = {a|Q(j)

st (st, a) ≥ Q(j)
st (st, g(i))}

Revert preferred actions sets to get J (a) = { j|a ∈ A(j)}

Get optimal set cover of K from J (·). Delete sets in J (·) that were not in cover
Return J (·)

Initialize K current Q(i)
0 and target T (i) heads T (i) = Q(i)

0 with random weights.
Initialize step t → 0
for Each episode do

Pick an agent at random using i ∼ Uni f orm(K)
for Each step observation st of episode do
J (·) ← Agglomerate(s, T (·),Q(i)

t)
Take action at = a, s.t. i ∈ J (a), and observe rt and st+1.
Store experience (st, at, rt, st+1) in replay memory D.
for (st′ , at′ , rt′ , st′+1) in SampleBatch(D) do
J (·) ← Agglomerate(s, T (·),Q(i)

t)
Compute A(j) = a, s.t. j ∈ J (a),∀ j ∈ K
Train using error = Y (·) → rt′ + γ × T (·)(st′+1, A(·)) − Q(·)(st′ , at′)

if t % UpdateFreq = 0 then T (·) ← Q(·)
t

t ← t + 1.

observation, as well as error calculation while training on a sampled batch. This procedure

uses exponential time Optimal Set Cover algorithm for generating a cover of heads, which isn’t

computationally restrictive as long as the number of heads in the ensemble are small. As increasing

number of heads directly increase neural network architecture complexity, usually the ensemble

head count is kept small. For large number of heads, log(N) approximation greedy algorithm for

set cover can be used, without affecting performance significantly.

24

Chapter 7

Experiments and Results

In this section we list the simulation result compression for 49 ALE environments. Table

7.3 lists the scores of Double DQN[VHGS16], Ensemble Voting DQN[WvH08], Bootstrap

DQN[OBPVR16] and Optimal Swarm DQN on these environments. Table 7.1 list the parameters

used for Optimal Swarm DQN, and table 7.3 compares the performance in different ALE environ-

ments. The exact Neural Network Architecture is shown in figure 7. Source code is available at

github.com/Rishav1/Atari.

Parameter Name Value
Number of Frames 20,000,000

Experience Replay Size 200,000
Training Begin Step 50,000

Target Update Frequency 10,000
Sample Batch Size 32

Frames per observation 4
Memory Sample Frequency 4

Optimizer RMSprop
RMS Epsilon 0.1

RMS Momentum 0.95
RMS Learning Rate 0.0000625

Ensemble heads 5

Table 7.1 Parameter Table for Optimal Swarm DQN implementation on ALE envi-
ronments.

25

github.com/Rishav1/Atari

Fig. 7.1 Neural Network Architecture with |K| = 5 heads.

26

Bootstrapped DQN Double DQN Ensemble Voting Optimal RL DQN
Alien 1445.1 2059.7 2282.8 720.0

Amidar 430.58 667.5 683.72 128.0
Assault 2519.06 2820.61 3213.58 399.2
Asterix 3829.0 7639.5 8740.0 1050.1

Asteroids 1009.5 1002.3 1149.3 1410.6
Atlantis 1314058.0 1982677.0 1786305.0 18100.0

Bank Heist 795.1 789.9 869.4 52.1
Battle Zone 26230.0 24880.0 27430.0 14380.0
Beam Rider 8006.58 7743.74 7991.9 801.4

Bowling 28.62 30.92 32.92 70.4
Boxing 85.91 94.07 94.47 18.2

Breakout 400.22 467.45 426.78 3.72
Centipede 5328.77 5177.51 6153.28 6749.23

Chopper Command 2153.0 3260.0 3544.0 1483.0
Crazy Climber 110926.0 124456.0 126677.0 49500.0
Demon Attack 9811.45 23562.55 30004.4 925.2
Double Dunk -10.82 -14.58 -11.94 -12.22

Enduro 1314.31 1439.59 1999.88 697.31
Fishing Derby 21.89 23.69 30.02 -61.96

Freeway 33.57 32.93 33.92 27.53

Table 7.3 Comparison of maximal mean rewards achieved by agents. Maximal
mean reward is calculated in a window of 100 consecutive episodes. Bold denotes the
highest value in each row. (Table lists incomplete training results. Optima RL DQN
was trained only for 200,000/20,000,000 steps)

27

28

Chapter 8

Conclusion

We introduced a class of ensemble RL algorithms, namely Swarm RL, and analyzed it’s con-

vergence and optimality properties. We formulated a regret bound for an arbitrary Swarm RL

algorithm and used it to come up with regret-optimal Swarm RL algorithm. The adaptation

of Optimal Swarm RL as a DQN was presented and an empirical analysis of it’s performance

in comparison to Double DQN, Ensemble Voting DQN and Bootstrapped DQN was shown to

establish it’s efficacy.

29

30

References

[ABS16] O. Anschel, N. Baram, and N. Shimkin. Averaged-DQN: Variance Reduction and

Stabilization for Deep Reinforcement Learning. ArXiv e-prints, November 2016.

[AJ17] S. Agrawal and R. Jia. Posterior sampling for reinforcement learning: worst-case

regret bounds. ArXiv e-prints, May 2017.

[BOG+16] M.G. Bellemare, G. Ostrovski, A. Guez, P. Thomas, and R. Munos. Increasing

the action gap: New operators for reinforcement learning. pages 1476–1483, 2016.

cited By 8.

[DFR98] Richard Dearden, Nir Friedman, and Stuart Russell. Bayesian q-learning. pages

761–768, 1998. cited By 157.

[K+12] Takashi Kamihigashi et al. Existence and uniqueness of a fixed point for the bellman

operator in deterministic dynamic programming. Technical report, 2012.

[McF] Roger McFarlane. A survey of exploration strategies in reinforcement learning.

[MR17] Rakesh R. Menon and Balaraman Ravindran. Shared learning : Enhancing rein-

forcement in q-ensembles. CoRR, abs/1709.04909, 2017.

[OBPVR16] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep

exploration via bootstrapped dqn. In D. D. Lee, M. Sugiyama, U. V. Luxburg,

I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing

Systems 29, pages 4026–4034. Curran Associates, Inc., 2016.

31

[OVRR13] I. Osband, B. Van Roy, and D. Russo. (more) efficient reinforcement learning via

posterior sampling. 2013. cited By 24.

[SOR+10] Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex Graves, Jan Peters,

and Jürgen Schmidhuber. Parameter-exploring policy gradients. Neural Networks,

23(4):551–559, 2010.

[VHGS16] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double

q-learning. pages 2094–2100, 2016. cited By 38.

[WvH08] M. A. Wiering and H. van Hasselt. Ensemble algorithms in reinforcement learn-

ing. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

38(4):930–936, Aug 2008.

32

	List of Figures
	List of Tables
	Introduction
	Organization of The Report

	Notation and Background Concepts
	Notation
	Exact Set Cover
	Bootstrapped DQN

	Swarm Update Strategy
	Swarm RL Algorithms
	Regret Bounds and Optimal Swarm RL
	Optimal Swarm DQN algorithm
	Experiments and Results
	Conclusion
	References

