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Abstract—In this paper, we propose a novel method for
visualizing two-dimensional interval type-2 fuzzy membership
functions (2-D IT2 FMFs) using one-dimensional general type-2
fuzzy membership functions (1-D GT2 FMFs), and also describe
the procedure for extending our method to fuzzy sets representing
higher dimensional data. Then we present a type reduction
method for mapping 2-D IT2 fuzzy sets into 2-D type-1 fuzzy
sets that uses alpha-plane representation of general fuzzy sets.
We discuss the problem of “multiple membership values for the
same element,” which violates set properties, in an IT2 Fuzzy C-
means (FCM) algorithm for clustering and propose a solution
that uses transformations in the visualization method. These
techniques can be applied to applications involving fuzzy sets
that represent multidimensional data for proper visualization
and type reduction, such as image segmentation, classification
and prediction, to name a few.

Keywords—Interval type-2 fuzzy sets, general type-2 fuzzy sets,
two-dimensional type-2 fuzzy sets, footprint of uncertainty, type
reduction, fuzzy C-means clustering.

I. INTRODUCTION

Type-1 (T1) fuzzy sets (FSs) are used to model uncertainties
in data and mimic the process followed by the human mind
for processing in fuzzy logic systems (FLSs) [1]. Type-2 (T2)
FSs are used to model the uncertainty of the T1 fuzzy mem-
bership function (FMF). Over the decades, there have been
a wide range of applications of T1 and T2 FSs. Some well-
known applications include control systems for navigation [5],
robotics [6], and industrial automation [7].

Depending on the application, the input data to an FLS
may not always be of a single dimension. For example,
while clustering multidimensional data using interval type-
2 (IT2) fuzzy C-means (FCM) clustering [11], the input to
the defuzzification stage is a multidimensional fuzzy set that
needs to be processed to obtain crisp centroids. However,
the Karnik-Mendel (KM) algorithm [15] that is used for type

reduction is applicable only for one-dimensional (1-D) fuzzy
sets. Hence, this gives rise to the need of techniques for
visualizing multidimensional IT2 fuzzy sets as multiple 1-D
FSs. While there may be multiple methods of visualization
multi-dimensional fuzzy sets [17], defuzzification and type
reduction should not affect the accuracy of the algorithm. It
is easy to visualize a two-dimensional (2-D) T2 FMF as two
overlapping 2-D T1 FMF surfaces, as shown in Fig. 1. Hence,
in this paper we deal with 2-D IT2 FMFs for the sake of visual
explanation.

In Section II, we give formal definitions of 2-D T2 FSs and
their membership functions, namely, interval type-2 (IT2) and
general type-2 (GT2) FMFs. In Section III, we describe the
method for visualizing IT2 FSs representing n-D data using
multiple GT2 FSs representing n 1-D data. We illustrate our
method by working with an IT2 FS representing 2-D data, and
visualizing it using two 1-D GT2 fuzzy sets. In Section IV,
we describe a method of type reduction for 2-D IT2 FSs using
GT2 FSs to obtain 2-D T1 FSs. In Section V, we describe the
problem of having multiple membership values for the same
element in IT2 FCM clustering [11] and demonstrate how our
methods can be used to resolve the issue. We conclude by
discussing various applications of these techniques.

II. TWO-DIMENSIONAL TYPE-2 FUZZY SETS

A T2 FS with 2-D primary variable, denoted as Ã, is a
bivariate function on the Cartesian product µÃ : X× [0, 1]→
[0, 1], where X ⊂ R2 and its membership function is denoted
by µÃ(x, u) where x ∈ X and u ∈ U ⊂ [0, 1] [2] [3]. In set
builder notation, a T2 FS is expressed as

Ã =
{(

(x, u), µÃ(x, u)
)
|∀x ∈ X,∀u ∈ U

}
, (1)
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Fig. 1. A typical 2-D T2 FMF.

where 0 ≤ µÃ(x, u) ≤ 1. When µÃ(x, u) = 1 ∀(x, u) ∈
X×U , the fuzzy set is called an IT2 FS, as illustrated in Fig.
1, and is commonly represented as

Ã =

∫
x∈X

∫
u∈U

1

/
(x, u). (2)

An embedded set of a 2-D IT2 FS is a T1 FS expressed as

Ae =

∫
x∈X

µAe
(x)

/
x, µAe

(x) ∈ µÃ(x), (3)

where µÃ(x) is the secondary-set of x and µAe
is the

membership function of the embedded set Ae. In particular,
the membership function of the uppermost and the lowermost
embedded sets (i.e. the upper membership function (UMF) and
the lower membership function (LMF)) of the IT2 FS Ã are
expressed as µÃ and µ

Ã
, respectively.

A T2 FS G̃ is called a GT2 FS when it is represented as

G̃ =

∫
x∈X

∫
u∈U

µG̃(x, u)

/
(x, u), (4)

where µG̃(x, u) ∈ [0, 1], X ⊂ R2 and U ⊂ [0, 1].

III. OBTAINING GENERAL TYPE-2 FMF FROM 2-D
INTERVAL TYPE-2 FMF

In this section we propose a novel method for visualizing
a 2-D IT2 FMF as a pair of GT2 FMFs. That is, we generate
two GT2 FMFs, one corresponding to each dimension. The
2-D IT2 FMF Ã is as given in (2) and the 1-D GT2 FMFs
G̃1 and G̃2 corresponding to the axes x1 and x2, respectively,
are given as

G̃i =

∫
x∈Xi

∫
u∈U

µ
G̃i

(x, u)

/
(x, u) i = 1, 2, (5)

where Xi ⊂ R is an interval on R, and U ⊂ [0, 1]. Since Xi

is an interval, we can define its length as l(Xi), where l(·) is
a length metric.

The upper and lower bounds of the footprint of uncertainty
(FOU) of the GT2 FMF G̃i are given by

µG̃i
(x) = max

xi=x
µÃ(x) (6)

Fig. 2. FOUs projected on the feature axes, along with the
interval (shown in red) over which integration is performed to
calculate the secondary membership.

and
µ
G̃i

(x) = min
xi=x

µ
Ã
(x), (7)

∀x ∈ X, respectively, where x ∈ Xi. Each point on the feature
domain i (x ∈ Xi) obtains its upper (lower) membership as
the maximum (minimum) of the upper (lower) memberships,
of all points on the 2-D domain whose feature i is equal to the
point (x ∈ Xi) being considered. The FOUs thus generated
are illustrated in Fig. 2.

The secondary membership of G̃1, µG̃1
(x, u) : X1 ×

[0, 1] → [0, 1], is given as the primary membership for each
tuple (x, u), x ∈ X1, u ∈ U , and can be expressed as

µG̃1
(x, u) =

1

l(X2)

∫
{x2 | µ

Ã
(x)≤u≤µÃ(x), x1=x}

dx2. (8)

A similar expression can be written for the secondary mem-
bership of G̃2. The above equation introduces the 1-D set
{x2 | µÃ

(x) ≤ u ≤ µÃ(x), x1 = x} ⊂ R (illustrated in
Fig. 2) over which we integrate a constant to obtain a value
representing the length of this set. This set is a collection
of points from X, where each point has the same value for
feature 1. The set contributes to the primary membership value
u of the GT2 FS, since for each point, u lies between its
upper membership and lower membership. Thus, the length of
this set may be considered as the membership of the primary
membership u, or in other words the secondary membership
of some x ∈ X1. The calculated secondary memberships are
illustrated in Fig. 3.

Working with discrete IT2 FMF

For use in practical applications, we give the above ex-
plained method for a discrete IT2 FMF as well. The feature
axes and the primary membership axis are discretized into bins
of finite size, and for each bin only the starting point of the
bin is considered in forming the GT2 fuzzy sets. We define
“bins” over a 1-D domain to be intervals on R as

bm = [mε, (m+ 1)ε), (9)

where ε > 0 ∈ R is the length of each bin. Each bin is
indexed with an integer m since over R the number of bins
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Fig. 3. Secondary memberships over the FOU of the GT2 FS
G̃i.

are countably infinite.

For generating the GT2 FMF i, we project all points of the
domain onto the xi feature axis. To construct the FOU of G̃i,
the UMF and LMF for each bin bim ⊂ Xi as

UMF(bim) = max
xi∈bim

µÃ(x) (10)

and
LMF(bim) = min

xi∈bim
µ
Ã
(x), (11)

∀x ∈ X, where xi is feature (dimension) i of x. Note that in
the discrete case, the set X is a discrete set. Each bin on feature
i axis obtains its upper (lower) membership as the maximum
(minimum) of the upper (lower) memberships, of all points
on the 2-D domain whose dimension i lies in that bin. Hence,
the upper and lower bounds of the FOU of the GT2 FMF G̃i

are given as
µG̃i

(x) = UMF(bim) (12)

and
µ
G̃i

(x) = LMF(bim), (13)

respectively, where x ∈ Xi and m = bx/εc. The set Xi is a
set consisting of xi, for all x ∈ X.

The secondary membership of G̃i, given as µG̃i
(x, u) :

Xi × [0, 1] → [0, 1], is calculated for discrete values of u ∈
[0, 1] and x ∈ Xi lying between µG̃i

(x) and µ
G̃i

(x) using
the following method, which resembles the continuous case.

We divide the primary membership axis (U ) into bins and
give the secondary membership of G̃i, µG̃i

(x, u), where u ∈
U , as the T1 memberships of these bins. A bin of size δ over
the primary membership axis is given by the expression hj ,
where j ∈ [0, 1/δ) and j is an iterator over the bins. Bin hj
is a subset of [0, 1], and is given as

hj = [jδ, (j + 1)δ), (14)

where δ > 0 ∈ R is the length of each bin.

We obtain the secondary membership of G̃1, or the primary
membership for each tuple (x, u), x ∈ X1 and u ∈ U , to be
same for all x and u belonging to the same bin combination

Fig. 4. Centroid of a GT2 FS G̃i as a type-1 fuzzy set.

bm and hj . The secondary membership is given as

µG̃1
(x, u) =

∑
{x | x∈b1m,u∈hj ,µ

Ã
(x)≤u≤µÃ(x)} 1∑

{x | x∈b1m}
1

, (15)

where m = bx/εc and j = bu/δc. A similar expression can
be written for the secondary membership of G̃2. The above
expression essentially provides the normalized number of ele-
ments in the set {x | x ∈ b1m, u ∈ hj , µÃ

(x) ≤ u ≤ µÃ(x)},
and hence the secondary membership.

The above described procedure can be extended to n-D IT2
FMFs by generating n 1-D GT2 FMFs, one for each feature
axis. In that case, for computing the 1-D GT2 FMF G̃i, the
FOU for some x ∈ Xi is calculated by using the maximum
UMF and minimum LMF of all points of the domain having
dimension i as x. The secondary membership is calculated by
obtaining the normalized size of a set, similar to that given in
(8), containing n-D points whose dimension i is fixed.

IV. TYPE REDUCTION OF IT2 FMF USING GT2 FMF

Type reduction refers to the process of finding a proper
mapping from a T2 FS to a T1 FS. In this section, we propose
a method for type reduction of a 2-D IT2 FS Ã (as given in
Fig. 1). We apply the method given in Section III to generate
two 1-D GT2 FMFs, G̃1 and G̃2, one corresponding to each
feature axis, x1 and x2. We then calculate the centroid of G̃1

and G̃2, which are T1 FSs [3] and represented as CG̃1
and

CG̃2
respectively, by taking the union of centroids of all the

α-planes [4] of IT2 FS [22]. Fig. 4 illustrates the centroid of
a GT2 FS.

The type reduced membership function representing the 2-D
T1 FS is given as

µÃ(x1, x2) = min

(
CG̃1

(x1), CG̃2
(x2)

)
. (16)

The type-reduced FMF is illustrated in Fig. 5.
In general, when the domain of data-points is n-D, the FMF

representing the type reduced n-D T1 FS is given by

µÃ(x1, x2, ..., xn) = min

(
CG̃1

(x1), CG̃2
(x2), ..., CG̃n

(xn)

)
.

(17)
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Fig. 5. Type reduced FMF of the 2-D IT2 FMF Ã.

V. APPLICATION

A. Interval Type-2 Fuzzy C-means Clustering

IT2 FCM algorithm [13] [14] is a fuzzy clustering algorithm
used to cluster n-D data points into c different clusters. In
each iteration of this algorithm, each data-point is assigned
c membership values that describe its belongingness to the c
clusters, respectively. The algorithm then updates the centroids
of the clusters, followed by updating the membership function
of each of the c clusters. These updated membership functions
are used in the next iteration to compute the c new membership
values for the data-points. The update iterations continue
till the cluster centres converge (within an ε tolerance). The
equations for updating the membership values given by 18 and
19.

µj(x) =

{
1∑C

k=1(dji/dki)2/(m1−1) , if 1∑C
k=1(dji/dki)

< 1
C

1∑C
k=1(dji/dki)2/(m2−1) , otherwise

(18)

µ
j
(x) =

{
1∑C

k=1(dji/dki)2/(m1−1) , if 1∑C
k=1(dji/dki)

≥ 1
C

1∑C
k=1(dji/dki)2/(m2−1) , otherwise

(19)
where i is the index of data-point x, dji represents the eu-

clidean distance of point i from cluster j, m1 and m2 are fuzzi-
fiers that represent different fuzzy degrees. Assigning a single
cluster to each data-point is done by hard-partitioning [11], in
which the type reduced membership values of the points are
compared. If µj(x) > µk(x) for all k ∈ {1, 2, ..., C} \ j then
x is assigned to cluster j.

B. Problem of multiple membership values

The Karnik-Mendel (KM) algorithm requires every element
of the IT2 FS to be one-dimensional. Thus, we utilize the
KM algorithm independently for each dimension, and the final
membership values are determined based on the equations

µj(x) = (µRj (x) + µLj (x))/2, j = 1, 2, . . . , C (20)

∀x ∈ X, where

Fig. 6. All points on the red line with their respective mem-
bership values being projected to V on the x1 feature axis.

µRj (x) =
M∑
l=1

µRjl(x)/M (21)

and

µLj (x) =

M∑
l=1

µLjl(x)/M. (22)

Here, M is the total number of features, and µRjl(x) and µLjl(x)
are the type reduced values of x obtained after applying the
KM algorithm on the dimension l. As an illustration, for
finding µj1(x), x ∈ X, a new 1-D IT2 FS is created by
projecting all data-points onto a 1-D line, which is same as
using a transformation which considers only the x1 feature of
each data-point.

In the process of projecting all data-points onto the x1 axis,
all points having the same x1 coordinate is transformed to the
same point on the x1 axis as shown, even though each of these
points can have a different membership value, as illustrated in
Fig. 6. In set builder form, the fuzzy set over which KM shall
be applied is given as

G̃1 =
∑
x∈X

∑
u:µ

Ã
(x)≤u≤µÃ(x)

1

/
(x1, u) (23)

where xi represents the feature i of x ∈ X, and Ã is the 2-D
IT2 FS.

From the definition of fuzzy sets [18], a fuzzy set is
associated with a membership function. But the definition of a
function: a one to one relation, restricts each element in a fuzzy
set to have only one membership value. So, the set in (23) may
not be considered a proper fuzzy set, and hence KM algorithm
cannot be applied for type reduction. This problem is often
ignored as the domain of data-points is generally discrete and
the probability of two points having the same x1 coordinate
is considered very less. Nevertheless, this problem may have
serious implications in the case of continuous domains with
dense data-points, such as in image segmentation where the
domain data can be very dense.
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C. Solution

The above illustrated problem can be solved using the
visualization techniques proposed in Section III. As shown in
Fig. 6, when points are projected onto the x1 axis, all points
with the same (say V ) x1 coordinate are represented with a
single point at V on the x1 axis, and the membership values of
all such points (with x1 co-ordinate as V ) are used in modeling
the secondary membership function for G̃1. Hence, G̃1 is no
longer an IT2 FS, but a GT2 FS. The fuzzy set formed by
considering the projections onto the x1 axis is given by

G̃1 =
∑
x∈X1

∑
u∈U⊂[0,1]

µ
G̃1

(x, u)

/
(x, u), (24)

where the cardinality of U is given by the value of δ as
defined in (14), and µ

G̃1
(x, u) is given by (15).

We can see that the FMF modeled in (24) does not violate
the definition of “functions” as the domain of the first sum-
mation is X1 in (24) unlike X as in (23), and hence is a valid
fuzzy set.

VI. CONCLUSION

In this paper, we presented a way of visualizing 2-D IT2
FS using 1-D GT2 FS. We projected data-points onto the
feature axes and all the points that were projected to the same
feature value contributed to the secondary membership for that
feature. The KM algorithm for GT2 FSs [22] using alpha slice
notation was then applied to obtain type reduced 1-D T1 FS.
Using the type reduced version of the GT2 FS, we presented
a method for type reduction of a 2-D IT2 FS to a 2-D T1 FS.

T2 FS modeling is used in various applications involving
classification [9], image segmentation [19], predictive analysis
[8], and signal processing [10], to name few. They use type
reduction as a part of output processing, but the current
procedures face problems when the data involves dense data-
points or a continuous domain. We pointed out such a problem
in the existing IT2 FCM clustering algorithm [11] [12] [16]
and suggested ways of resolving this issue using the new
method introduced in this paper. As a part of future research,
we intend to work on visualizing 2-D GT2 FSs using multiple
1-D GT2 fuzzy sets.
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