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Abstract—In this paper, we address the issue of type reduction
of multi-dimensional interval type-2 (IT2) fuzzy sets (FSs). We
utilize the Karnik-Mendel (KM) algorithm to estimate the cen-
troid boundary of a multi-dimensional footprint of uncertainty
(FOU). We deal with two-dimensional (2-D) fuzzy sets as we can
visualize the FOU using 3-D plots, thus making the illustration
of the methods simple. However, the basic idea can be extended
to multiple dimensions. We give a formal definition of the
centroid boundary of a 2-D IT2 fuzzy membership function
(FMF) and propose two methods for its estimation. The first
method computes embedded type-1 (T1) FSs whose centroids
constitute the centroid boundary. We obtain the embedded
sets by producing slices of the domain using different sets of
parallel planes and then apply the KM algorithm over each
slice, to obtain “embedded-curves.” For the second method, we
approximate our first method by restricting embedded-curves to
be “embedded-lines” thus enhancing computational speed. These
type reduction techniques can be applied to applications involving
multi-dimensional centroid estimation such as, clustering, sup-
port vector estimation for dimensionality reduction, fuzzy logic
controllers, to mention a few.

I. INTRODUCTION

Type reduction refers to the process of mapping a type-
2 (T2) fuzzy set (FS) to a type-1 (T1) fuzzy set. [1]. The
Karnik-Mendel (KM) algorithm is an iterative algorithm for
computing the centroid bound of an interval type-2 (IT2)
fuzzy membership function (FMF), which is used for type
reduction. The KM algorithm is a superexponentially fast [2]
method and is applied to one dimensional (1-D) fuzzy sets,
i.e. where the feature domain is a subset of R. Recent use of
T2 FSs in various applications involve fuzzy logic controllers
in aerospace [3] [4], information granule formation [5], and
clustering [6], to name a few.

There is an increasing need for multi-dimensional fuzzy sets
in several applications that involve modelling uncertainty of
datasets [7], dimensionality reduction [8], clustering [9] [10]
[11] [12], which require type reduction and defuzzification
as a part of output processing. Most of the current methods
accomplish this by calculating the centroid for each dimension
separately, ignoring the correlation among multiple dimen-

sions. In this paper, we propose two methods for computing
the centroid boundary of a two-dimensional (2-D) IT2 FMF,
which is essentially a type reduced map from the IT2 FMF to
a T1 FMF.

The remainder of the paper is organized as follows. In
Section II, we introduce multi-dimensional fuzzy sets and give
a formal definition of the centroid boundary of an IT2 FMF.
In Section III, we propose a method that extrapolates the
KM algorithm for computing the centroid boundary of a 2-
D IT2 FMF. We find points that constitute the boundary by
computing “embedded-curves” (and corresponding embedded
sets) which are obtained through multiple iterations of the KM
algorithm on 1-D slices of the domain. This method possesses
a significant computation overload due to the requirement
of the KM algorithm being performed a significant number
of times on multiple 1-D slices. To overcome this burden,
we introduce the concept of “embedded-lines” in Section IV
which replaces the embedded-curves in our previous method.
Approximating embedded-curves as straight lines approxi-
mates the previous method and enhances computational speed.
Instead of running the KM algorithm independently on each
of the 1-D slices considered, we illustrate a method which
combines multiple slices into a single entity on which the KM
algorithm shall be executed only once. Since both methods use
the KM algorithm internally, faster implementations such as
enhanced KM (EKM) [13], iterative algorithm with stopping
condition (IASC) [14], and enhanced IASC (EIASC) [15] can
also be considered.

II. MULTI-DIMENSIONAL FUZZY SETS AND
KARNIK-MENDEL ALGORITHM

A type-2 fuzzy set (T2 FS) with an n dimensional primary
variable, denoted as Ã, is a bivariate function on the Cartesian
product space represented by µÃ : X× [0, 1]→ [0, 1], where
X ⊂ Rn. The membership function is denoted by µÃ(x, u),
where x ∈ X and u ∈ U ⊂ [0, 1] [16]. In set builder notation,

978-1-5090-6034-4/17/$31.00 c©2017 IEEE

Authorized licensed use limited to: National University of Singapore. Downloaded on January 24,2021 at 06:32:19 UTC from IEEE Xplore.  Restrictions apply. 



a T2 FS is expressed as

Ã =
{(

(x, u), µÃ(x, u)
)
|∀x ∈ X,∀u ∈ U

}
, (1)

where 0 ≤ µÃ(x, u) ≤ 1. For the case when µÃ(x, u) =
1 ∀(x, u) ∈ X×U , the fuzzy set is called an interval type-2
fuzzy set (IT2 FS), and is commonly represented as

Ã =

∫

x∈X

∫

u∈U
1

/
(x, u). (2)

For an IT2 FS, µÃ(x) is called the secondary membership at
x. An embedded set of an IT2 FS with n dimensional primary
variable is a type-1 fuzzy set (T1 FS) expressed as

Ae =

∫

x∈X
µAe

(x)

/
x, and µAe

(x) ∈ µÃ(x), (3)

where µAe
is the membership function of the embedded set

Ae. In particular, the membership function of the uppermost
and lowermost embedded sets (i.e., the upper membership
function (UMF) and lower membership function (LMF)) of
the IT2 FS Ã are expressed as µÃ and µ

Ã
, respectively. The

centroid of an n dimensional T1 FS is an n dimensional vector
given by

c(Ae) =

∫
x∈X µAe(x) · x dx∫
x∈X µAe(x) dx

(4)

and the centroid of an IT2 FS is a subset of Rn comprising
of the centroids of constituting embedded fuzzy sets and can
be expressed in terms of centroids of its embedded sets as

C(Ã) = 1

/ ⋃

∀Ae∈Ã

c(Ae). (5)

The Karnik-Mendel (KM) algorithm is an iterative algo-
rithm that is used to find the centroid of a 1-D IT2 FS. The
algorithm converges monotonically and superexponentially
fast [2] to the centroid bounds of the IT2 FS. Since the
KM algorithm operates on only 1-D IT2 FSs, we obtain two
centroids namely left and right centroids as the bound of the
centroids of the embedded sets. These controids are computed
by the fast KM algorithm [17], using the converging switch
points L and R respectively, given by

cl(L) =

∫
x≤L xµÃ(x) dx+

∫
x>L

xµ
Ã
(x) dx∫

x≤L µÃ(x) dx+
∫
x>L

µ
Ã
(x) dx

(6)

and

cr(R) =

∫
x≤R xµÃ

(x) dx+
∫
x>R

xµÃ(x) dx∫
x≤R µÃ

(x) dx+
∫
x>R

µÃ(x) dx
. (7)

The current KM algorithms are used to find the centroid of
IT2 FSs with only 1-D primary variable. In the next sections,
we propose an algorithm to find the centroid of IT2 FSs with
2-D primary variable.

III. METHOD 1: COMPUTING CENTROID BOUNDARIES OF
TWO DIMENSIONAL IT2 FSS

In this section, we consider the most intuitive brute force
method to obtain the approximate bound for the centroid of a

(a)

(b)

Fig. 1. Illustration of (a) 2-D IT2 FMF Ã and (b) vertical
slices on Ã with a highlighted slice xθ,i.

Fig. 2. A 1-D IT2 FS created using the vertical slice and
corresponding left and right centroids cl,θ,i and cr,θ,i.

2-D IT2 FS Ã described above.
For a 1-D IT2 FS, the KM algorithm provides a good

approximation to the left and rightmost centroids bounds,
cl(L) and cr(R), given by (6) and (7), respectively. For a
2-D IT2 FS, analogous to centroid bounds (6) and (7), we
consider a closed contour that bounds the centroid which we
need to estimate. We express this contour as a subset of C(Ã)
where each element of this set has the maximum perpendicular
distance from the line having a normal vector θ̂ creating an
angle θ, for some θ ∈ [0, π], from a reference axis (say x̂1)
and passing through the origin. This is represented as cθ(Ã).
Essentially, the contour is the set of cθ(Ã) (θ ∈ [0, π]), where
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each cθ(Ã) is mathematically defined as

cθ(Ã) = c

(
argmax

µAe∈[µÃ
,µÃ]

c(Ae) ·
[
cos θ
sin θ

])
. (8)

For computing cθ(Ã), we consider vertical slices of a 2-D
IT2 FS, as shown in Fig. 1, and execute the KM algorithm on
each slice to obtain its centroid bounds (cl(L) and cr(R)), as
illustrated in Fig. 2.

We utilize these centroids in forming an “embedded-curve”
(explained later in this section). We define “slices” as subsets
of the domain which are obtained by taking points on the
domain between pairwise equidistant planes as shown in Fig.
1. For each θ, we collect slices that are formed by planes
having parallel normal vectors. Slice i of the domain of the
2-D IT2 FS is defined as

xθ,i = {x | iε−
ε

2
≤ x ·

[
− sin θ
cos θ

]
< iε+

ε

2
,x ∈ X}, (9)

where θ ∈ [0, π], and ε is a parameter that defines the thickness
of the slices. A corresponding 1-D IT2 FS is defined as

Ãθ,i =

∫

x∈xθ,i

∫

u∈µÃ(x)

1

/(
x ·
[
cos θ
sin θ

]
, u

)
. (10)

Each point on a slice xθ,i is represented as its distance from
the line passing through the origin creating an angle of π/2+θ
from the reference axis as

x ·
[
cos θ
sin θ

]
= 0. (11)

We now execute the KM algorithm on each Ãθ,i to obtain
its centroid. The two centroids cl,θ,i and cr,θ,i as shown in
Fig. 2, obtained by applying KM on Ãθ,i are 1-D transformed
points that need to be transformed back to their corresponding
2-D coordinates. This can be achieved by rotating them anti-
clockwise by an angle θ. The transformation is performed by
multiplying the coordinates with a rotation matrix expressed
as

x∗θ,i =
[
cr,θ,i iε

]
·
[
cos θ sin θ
− sin θ cos θ

]
(12)

and
x∗θ+π,i =

[
cl,θ,i iε

]
·
[

cos θ sin θ
− sin θ cos θ

]
. (13)

The 1-D embedded sets over the original 2-D domain cor-
responding to x∗θ,i and x∗θ+π,i are represented by Aθ,i and
Aθ+π,i, respectively. We define a curve formed by joining
the set of points {x∗θ,i : i ∈ Z} for some θ ∈ [0, π] as an
“embedded-curve” Sθ, and the corresponding embedded set
is defined as

Aθ =

∫

i∈Z

(∫

x|x·
[
cos θ sin θ

]ᵀ
≤cr,θ,i

µ
Ã
(x)

/
x

+

∫

x|x·
[
cos θ sin θ

]ᵀ
>cr,θ,i

µÃ(x)

/
x

)
,

(14)

(and similarly Aθ+π can be defined) as shown in the Fig. 3,

(a)

(b)

Fig. 3. Embedded set corresponding to an embedded-curve for
direction θ: (a) side view and (b) top view.

Fig. 4. Centroid bound computed using Method 1 for 2-D IT2
FS Ã.

and the centroid c(Aθ) is calculated using (4).

We now recapitulate the terms defined and propose our
method for computing the centroid boundary of a 2-D IT2
FS as follows. For each α ∈ [0, 2π], we obtain an embedded-
curve Sα and hence a corresponding embedded set (Aα). For
each embedded set Aα, we have a centroid given by c(Aα)
which we take as an approximation for cα(Ã). A curve joining
all the points in {c(Aα) : α ∈ [0, 2π]} is the required centroid
boundary. All the embedded-curves and the centroid boundary
are illustrated in Fig. 4.
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Now, we explain how c(Aθ) approximates cθ(Ã) i.e.

c(Aθ) ≈ cθ(Ã). (15)

Analogous to the way we obtain switch-points when execut-
ing the KM algorithm on a 1-D IT2 FS, likewise embedded-
curves are obtained in the case of 2-D IT2 FS. In the KM
algorithm, two switch-points, one for the leftmost centroid
and the other for the rightmost centroid, are obtained. Sim-
ilarly, for a 2-D IT2 FS we obtain embedded-curves for each
α ∈ [0, 2π]. The definition of an embedded set corresponding
to an embedded-curve is an extrapolation of a 1-D embedded
set giving centroid Cr from switch-point “R” in the case of a
1-D IT2 FS [2]. Points on the domain that are on one side of
an embedded-curve are assigned the upper membership value,
and points that are on the other side of the embedded-curve are
assigned the lower membership value. The reasoning is that an
embedded set with highest membership values for data patterns
lying farther away from the line, x ·

[
cosα sinα

]ᵀ
= 0, and

lowest membership values for data patterns lying closer to the
same line, gives a centroid that is farthest from the line, for
an initially considered α.

The centroid of a 2-D embedded FS by definition is the
weighted mean of the data points, and the weights are the
membership values of the points as given by the embedded set
[18]. We can observe that cθ(Ã) is essentially the weighted
average of the centroids x∗θ,i of all 1-D IT2 FSs generated
by the slices xθ,i, and the weights being the sum of the
membership values of the points for the slice, given by

Wθ,i =
∑

x

µAθ,i
(x). (16)

Thus, the centroid c(Aθ) is equal to the weighted average of
x∗θ,i given by

c(Aθ) =

∑
i∈Z x

∗
θ,iWθ,i∑

i∈ZWθ,i
. (17)

IV. METHOD 2: SPEED UP ALGORITHM FOR COMPUTING
CENTROID BOUNDARIES OF TWO DIMENSIONAL IT2 FSS

In this section, we propose a method to reduce the com-
putation time of Method 1 by restricting all embedded-curves
to be linear in 2-D. Enforcing this assumption simplifies the
estimation of cθ(Ã), as defined in (8). Instead of considering
multiple ε-thick slices and running the KM algorithm on each
slice, we project the entire 2-D domain to a single dimension
and run the KM algorithm only once. The 1-D embedded set
on which the KM algorithm is executed is expressed as

Ãθ =

∫

x∈X

∫

u∈µÃ(x)

1

/(
x ·
[
cos θ
sin θ

]
, u

)
. (18)

This equation is very similar to (10). By running the KM
algorithm on this 1-D IT2 FS, we approximate the estimation
of the embedded-line that best estimates cθ(Ã), for multiple
discrete θ ∈ [0, π].

By executing KM on the 1-D IT2 FS Ãθ, we obtain two
centroids cl,θ and cr,θ. The embedded-line corresponding to

(a)

(b)

Fig. 5. Embedded set corresponding to an embedded-line for
direction θ: (a) side view and (b) top view.

cr,θ is represented as Lθ(x) and is the line passing through
cr,θ that forms an angle π/2 + θ with the reference axis. The
embedded-line is illustrated in Fig. 5(b) and is given by

Lθ(x) ≡ x ·
[
cos(θ), sin(θ)

]
− cr,θ. (19)

Similarly, the embedded-line corresponding to cl,θ is repre-
sented as Lπ+θ(x) and given by

Lπ+θ(x) ≡ x ·
[
cos(π + θ), sin(π + θ)

]
+ cl,θ. (20)

The embedded set of the 2-D IT2 FS corresponding to an
embedded-line Lα(x) is shown in Fig. 5(a) and given by

Aα =

∫

x:Lα(x)≤0
µ
Ã
(x)

/
x+

∫

x:Lθ(x)>0

µÃ(x)

/
x, (21)

where µÃ (µ
Ã

) is the UMF (LMF) of the IT2 FS Ã. The
centroid c(Aθ) of this embedded set is computed using (4)
as shown in the Fig. 5. By connecting all points of the set
{c(Aα) : α ∈ [0, 2π]} where α takes discrete values in [0, 2π],
we obtain the required centroid boundary. All embedded-lines
and the centroid boundary are illustrated in Fig. 6.

It can be observed that this speed up method (with an
intrinsic restriction that embedded-curves be lines) is the same
as Method 1 when ε in (9) tends to infinity. When ε is infinity,
only one slice is considered throughout the domain and hence
there exists a single point that represents embedded-curve Sα
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Fig. 6. Illustration of centroid bound computed using the speed
up method for 2-D IT2 FS Ã.

for some α ∈ [0, 2π]. The final candidate for the centroid
boundary, as explained earlier, is given by (17). Likewise, for
this speed up method, we obtain the same approximation for
cθ(Ã) by forming an embedded-line as given in (19). This
is achieved by considering ε tending to infinity in Method 1
since the primary membership values of the embedded set that
approximates cθ(Ã) results in the same for both methods for
every point in the domain. Since this method requires only a
single execution of the KM algorithm per α ∈ [0, 2π], this
may be considered to be significantly faster than Method 1.

It is to be noted that in all the illustrations above, the UMF
and LMF of the 2-D IT2 FMF were obtained from gaussian
surfaces with no correlation between the two dimensions. In
the following example, we illustrate the results obtained by
our methods for a 2-D IT2 FMF whose UMF and LMF are
obtained from positively correlated 2-D gaussians, as shown
in Fig. 7(a). Fig. 7(b) illustrates the embedded-curves and the
centroid boundary produced by Method 1 described in Section
III. Fig. 7(c) illustrates the embedded-lines and the centroid
boundary produced by the speed up method.

V. CONCLUSION

In this paper, we proposed methods for computing the cen-
troid boundary of a 2-D IT2 FMF. We introduced a generalized
concept of a centroid boundary and formally defined it as a
collection of points with each point being the farthest centroid,
in a particular direction, of some embedded set. In Method
1, we incorporated a greedy approach by breaking down the
domain into “slices” and applied the KM algorithm to find
the centroid bound for each slice. The centroids of each slice
were joined together to form an “embedded-curve” which gave
rise to an embedded set, having the upper membership and
lower membership as the primary membership values on either
side of the embedded-curve. This method served as a good
approximation for obtaining the embedded set we were aiming
for, however a significant computation overload is inherent
due to the requirement of having the KM algorithm applied
numerously. In Method 2, we introduced “embedded-lines”
which replaced embedded-curves. We projected the 2-D IT2
FS onto a single dimension which significantly reduced the

(a)

(b)

(c)

Fig. 7. Proposed methods applied to an IT2 FMF generated
from skewed gaussian to obtain centroid bound: (a) 2-D IT2
FS generated from skewed gaussian, (b) result of Method 1,
and (c) result of Method 2.

computational complexity. Simulations showed that the de-
crease in computation load was profound when we used EKM
or EIASC. It is to be noted that the two proposed methods
involved parameter ε and the resolution for discretizing α in
the continuous range [0, 2π]. As these parameters affect the
accuracy and speed, their values need to be properly managed.

Type reduction of 2-D fuzzy sets is the first step of obtaining
2-D crisp sets. 2-D fuzzy sets can be used to model the uncer-
tainty in 2-D datasets [19] which are involved in applications
such as clustering [10] [11] [6], video traffic modeling [20],
pattern recognition [21], path estimation in maps [7] [22].
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In the methods proposed in this paper, it can be noted that
multiple 2-D points belonging to a thick ε slice may result in
the same 1-D transformed value. All such points are logically
considered distinct for the KM algorithm when the domain is
discrete (which is always the case in practical computations).
Future research may include revisiting different methods of
generating fuzzy sets from these slices to properly address this
issue, and empirical heuristics to tune the hyper-parameters
depending on the sparsity of data. It should also be noted that
these methods could as well be extended to higher dimensions
on similar lines, with analysis on the optimality of proposed
variants.
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