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Abstract

With the advent of multi-core architectures, worst case execution time (WCET) analysis has become an
increasingly difficult problem. In this paper, we propose a unified WCET analysis framework for multi-core
processors featuring both shared cache and shared bus. Compared to other previous works, our work differs
by modeling the interaction of shared cache and shared bus with other basic micro-architectural components
(e.g. pipeline and branch predictor). In addition, our framework does not assume a timing anomaly free multi-
core architecture for computing the WCET. A detailed experiment methodology suggests that we can obtain
reasonably tight WCET estimates in a wide range of benchmark programs.

I. INTRODUCTION

Hard real time systems require absolute guarantees on program execution time. Worst case execution
time (WCET) has therefore become an important problem to address. WCET of a program depends
on the underlying hardware platform. Therefore, to obtain a safe upper bound on WCET, the underly-
ing hardware need to be modeled. However, performance enhancing micro-architectural features of a
processor (e.g. cache, pipeline) make WCET analysis a very challenging task.

With the rapid growth of multi-core architectures, it is quite evident that multi-core processors are
soon going to be adopted for real time system design. Although multi-core processors are aimed for
improving performance, they introduce additional difficulties in WCET analysis. Multi-core processors
employ shared resources. Two meaningful examples of such shared resources are shared cache and
shared bus. The presence of a shared cache requires the modeling of inter-core cache conflicts. On the
other hand, the presence of a shared bus introduces variable bus access latency to accesses to shared
cache and shared main memory. The delay introduced by shared cache conflict misses and shared bus
accesses is propagated by different pipeline stages and affects the overall execution time of a program.
WCET analysis is further complicated by a commonly known phenomenon called timing anomalies
[1]. In presence of timing anomalies, a local worst case scenario may not lead to the WCET of the
overall program. As an example, a cache hit rather than a cache miss may lead to the WCET of the
entire program. Therefore, we cannot always assume a cache miss or maximum bus delay as the worst
case scenario, as the assumptions are not just imprecise, but they may also lead to an unsound WCET
estimation. A few solutions have already been proposed which model the shared cache and/or the shared
bus ([2], [3], [4], [5], [6]) in isolation, but all of these previous solutions ignore the interactions of shared
resources with important micro-architectural features such as pipelines and branch predictors.

In this paper, we propose a WCET analysis framework for multi-core platforms featuring both a
shared cache and a shared bus. In contrast to previous work, our analysis can efficiently model the
interaction of the shared cache and bus with different other micro-architectural features (e.g. pipeline,
branch prediction). A few such meaningful interactions include the effect of shared cache conflict



misses and shared bus delays on the pipeline, the effect of speculative execution on the shared cache
etc. Moreover, our analysis framework does not rely on a timing-anomaly free architecture and gives a
sound WCET estimate even in the presence of timing anomalies. In summary, the central contribution of
this paper is to propose a unified analysis framework that features most of the basic micro-architectural
components (pipeline, (shared) cache, branch prediction and shared bus) in a multi-core processor.

Our analysis framework deals with timing anomalies by representing each pipeline stage as an interval.
The interval covers all possible latencies of the corresponding pipeline stage. The latency of a pipeline
stage may depend on cache miss penalties and shared bus delays. On the other hand, cache and shared
bus analysis interact with the pipeline stages to compute the possible latencies of a pipeline stage. Our
analysis is context sensitive — it takes care of different procedure call contexts and different micro-
architectural contexts (i.e. cache and bus) when computing the WCET of a single basic block. Finally,
WCET of the entire program is formulated as an integer linear program (ILP). The formulated ILP can
be solved by any commercial solver (e.g. CPLEX) to get the whole program’s WCET.

We have implemented our framework in an extended version of Chronos [7], a freely available,
open-source, single-core WCET analysis tool. To evaluate our approach, we have also extended a cycle
accurate simulator [8] with both shared cache and shared bus support. Our experiments with moderate
to large size benchmarks from [9] show that we can obtain tight WCET estimates for most of the
benchmarks in a wide range of micro-architectural configurations.

II. RELATED WORK

Research in single-core WCET analysis has started a few decades ago. Initial works used only integer
linear programming (ILP) for both micro-architectural modeling and path analysis [10]. However, the
work proposed in [10] faces scalability problems due to the explosion in number of generated ILP
constraints. In [11], a novel approach has been proposed, which employs abstract interpretation for
micro-architectural modeling and ILP for path analysis. Subsequently, an iterative fixed-point analysis
has been proposed in [12] for modeling advanced micro-architectural features such as out-of-order and
superscalar pipelines. A different paper by the same set of authors [13] has proposed an ILP-based
modeling of branch predictors. Our baseline framework is built upon the technique proposed in [12],
[13].

Although there has been significant progress in single-core WCET analysis research, little has been
done so far in WCET analysis for multi-cores. Multi-core processors employ shared resources (e.g.
shared cache, shared bus), which gives rise to a new problem for modeling inter-core conflicts. A few
solutions have already been proposed for analyzing a shared cache [2], [3], [14]. All of these approaches
extend the abstract interpretation based cache analysis proposed in [11]. However, in contrast to our
proposed framework, these approaches model the shared cache in isolation, assume a timing-anomaly-
free architecture and ignore the interaction with different other micro-architectural features (e.g. pipeline
and branch prediction). On the other hand, separated shared bus analysis has been proposed in [15],
[5], [4]. None of these works model the interactions with pipeline and branch prediction. Additionally,
[15] and [4] both assume a timing-anomaly-free architecture.

A recent approach [6] has combined abstract interpretation and model checking for analyzing private
cache and shared bus, respectively. However, it is unclear whether such a combination would remain
scalable in presence of shared cache and other micro-architectural features (e.g. pipeline).

To eliminate the problem of pessimism in multi-core WCET analysis, researchers have proposed
predictable multi-core architectures [16] and predictable execution models by code transformations [17].
However, we argue that these approaches are orthogonal to the idea of this paper and our idea in this
paper can be used to pinpoint the source of overestimation in multi-core WCET analysis.
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Figure 1. Execution graph for the example program in a 2-way superscalar processor with 2-entry instruction fetch queue and 4-entry
reorder buffer. Solid edges show the dependency between pipeline stages, whereas the dotted edges show the contention relation.

In summary, there has been little progress on multi-core WCET analysis by modeling individual micro-
architectural components (e.g. shared cache, shared bus). Our work differs from all previous works by
proposing a unified framework, which is able to analyze most basic micro-architectural components and
their interactions in a multi-core processor.

III. BACKGROUND

Pipeline modeling through execution graphs: The central idea of pipeline modeling revolves around
the concept of the execution graph [12]. The execution graph is constructed for each basic block in the
program control flow graph (CFG). For each instruction in the basic block, the corresponding execution
graph contains a node for each of the pipeline stages. We assume a five stage pipeline — instruction
fetch (IF), decode (ID), execution (EX), write back (WB) and commit (CM). Edges in the execution
graph capture the dependencies among pipeline stages; either due to resource constraints (instruction
fetch queue size, reorder buffer size etc.) or due to data dependency (read after write hazard). The
timing of each node in the execution graph is represented by an interval, which covers all possible
latencies suffered by the corresponding pipeline stage.

Figure 1 shows a snippet of assembly code and the corresponding execution graph. The example
assumes a 2-way superscalar processor with 2-entry instruction fetch queue (IFQ) and 4-entry reorder
buffer (ROB). Since the processor is 2-way superscalar, instruction I3 cannot be fetched before the fetch
of I1 finishes. This explains the edge between IF nodes of I1 and I3. On the other hand, since IFQ size
is 2, IF stage of I3 cannot start before ID stage of I1 finishes (edge between ID stage of I1 and IF stage
of I3). Note that I3 is data dependent on I1 and similarly, I5 is data dependent on I4. Therefore, we
have edges from WB stage of I1 to EX stage of I3 and also from WB stage of I4 to EX stage of I5.
Finally, as ROB size is 4, I1 must be removed from ROB (i.e. committed) before I5 can be decoded.
This explains the edge from CM stage of I1 to ID stage of I5.

The dotted edges in the execution graph (e.g. edge between EX stage of I2 and I4) represent contention
relation (i.e. pair of instructions which may contend for same functional units). Since I2 and I4 may
contend for same functional unit (multiplier), they might delay each other due to contention. The
pipeline analysis is iterative. Analysis starts without any timing information and assumes that all pairs
of instructions which use same functional units and can coexist in the pipeline, may contend with each
other. In the example, therefore, the analysis starts with {(I1,I2),(I2,I4),(I1,I4), (I3,I5)} in the contention
relation. After one iteration, the timing information of each pipeline stage is obtained and the analysis
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may rule out some pairs from the contention relation if their timing intervals do not overlap. With
this new and refined contention relation, the analysis is repeated and subsequently, a refined timing
information is obtained for each pipeline stage. Analysis is terminated when no further elements can
be removed from the contention relation. WCET of the code snippet is then given by the worst case
completion time of CM node for I5.

IV. OVERVIEW OF OUR ANALYSIS

Figure 2 gives an overview of our analysis framework. Each processor core is analyzed at a time by
taking care of the inter-core conflicts generated by all other cores. Figure 2 shows the analysis flow for
some program A running on a dedicated processor core. The overall analysis can broadly be classified
into two separate phases: 1) micro-architectural modeling and 2) path analysis. In micro-architectural
modeling, the timing behavior of different hardware components is analyzed (as shown by the big dotted
box in Figure 2). We use abstract interpretation (AI) based cache analysis [11] to categorize memory
references as all-hit (AH) or all-miss (AM) in L1 and L2 cache. A memory reference is categorized AH
(AM) if the resulting access is always a cache hit (miss). If a memory reference cannot be categorized as
AH or AM, it is categorized as unclassified (NC). In the presence of a shared L2 cache, categorization
of a memory reference may change from AH to NC due to inter-core conflicts [3]. Moreover, as shown
in Figure 2, L1 and L2 cache analysis has to consider the effect of speculative execution when a branch
instruction is mispredicted (refer to Section VII for details). Similarly, the timing effects generated by
the mispredicted instructions are also taken into account during iterative pipeline modeling (refer to [12]
for details). The shared bus analysis computes the bus context under which an instruction can execute.
The outcome of cache analysis and shared bus analysis is used to compute the latency of different
pipeline stages during the analysis of the pipeline (refer to Section V for details). Pipeline modeling
computes the WCET of each basic block. WCET of the entire program is formulated as maximizing the
objective function of a single integer linear program (ILP). WCETs of individual basic blocks are used
to construct the objective function of the formulated ILP. The constraints of the ILP are generated from
the structure of the program control flow graph (CFG), micro-architectural modeling (branch predictor
and shared bus) and additional user given constraints (e.g. loop bound). The modeling of the branch
predictor generates constraints to bound the execution count of mispredicted branches (for details refer
to [13]). On the other hand, constraints generated for bus contexts bound the execution count of a
basic block under different bus contexts (for details refer to Section VI). Path analysis finds the longest
feasible program path from the formulated ILP through implicit path enumeration (IPET). Any ILP
solver (e.g. CPLEX) can be used for IPET and for deriving the whole program’s WCET.

System and application model: We assume a multi-core processor with each core having a private
L1 cache. Additionally, multiple cores share an L2 cache. The extension of our framework for more
than two levels of caches is straightforward. If a memory block is not found in L1 or L2 cache, it
has to be fetched from main memory. Any memory transaction to L2 cache or main memory has to
go through a shared bus. For shared bus, we assume a TDMA based round robin arbitration policy,
where a fixed length bus slot is assigned to each core. We also assume fully separated caches and
buses for instruction and data memory. Therefore, data references do not interfere with the instruction
references. In this work, we only model the effect of instruction caches. However, data cache effects can
be considered in a similar fashion. Since we consider only instruction caches, the cache miss penalty
(computed from cache analysis) directly affects the instruction fetch (IF) stage of the pipeline. We do
not consider self modifying code and therefore, we do not need to model coherence traffic. Finally, we
consider the LRU cache replacement policy and non-inclusive caches only.
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Figure 2. Overview of our analysis framework

V. INTERACTION OF SHARED RESOURCES WITH PIPELINE

Let us assume each node i in the execution graph is annotated with the following timing parameters,
which are computed iteratively:
• earliest[tready

i ] : Earliest ready time of node i.
• earliest[tstart

i ] : Earliest start time of node i.
• earliest[tfinish

i ] : Earliest finish time of node i.
• latest[tready

i ] : Latest ready time of node i.
• latest[tstart

i ] : Latest start time of node i.
• latest[tfinish

i ] : Latest finish time of node i.
Therefore, the active time span of node i can be represented by the interval [earliest[tready

i ], latest[tfinish
i ]].

In the following sections, we shall discuss how the presence of shared cache and shared bus affects the
timing information of different pipeline stages.

A. Interaction of shared cache with pipeline
Underlying technique for our cache analysis is abstract interpretation where each instruction is

classified as always hit (AH), always miss (AM) or unclassified (NC).
We use our previous work in [3] for shared cache analysis. In [3], a separate conflict analysis was

employed to model inter-core cache conflicts. The conflict analysis phase may change the categorization
of a memory reference in shared L2 cache from AH to NC due to the presence of inter-core conflicts.
Let us assume CHMCL1

i (CHMCL2
i ) denotes the AH/AM/NC cache hit-miss classification of an IF

node i in L1 (shared L2) cache. Further assume that Ei denotes the possible latencies of an IF node i
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without considering any shared bus delay. Ei can be defined as follows:

Ei =



1, if CHMCL1
i = AH;

LATL1 + 1,

if CHMCL1
i = AM ∧ CHMCL2

i = AH;

LATL1 + LATL2 + 1,

if CHMCL1
i = AM ∧ CHMCL2

i = AM ;

[LATL1 + 1, LATL1 + LATL2 + 1],

if CHMCL1
i = AM ∧ CHMCL2

i = NC;

[1, LATL1 + 1],

if CHMCL1
i = NC ∧ CHMCL2

i = AH;

[1, LATL1 + LATL2 + 1], otherwise.

(1)

where LATL1 and LATL2 represent the fixed L1 and L2 cache miss latencies respectively. Note that
the interval-based representation captures the possibilities of both a cache hit and a cache miss in case
of an NC categorized cache access. Therefore, the computation of Ei can also deal with architectures
that exhibit timing anomalies.

B. Interaction of shared bus with pipeline
Let us assume that we have a total of C cores and the TDMA based round robin scheme assigns a

slot length Sl to each core. Therefore, the length of one complete round is Sl × C. We begin with the
following definitions which are used throughout the paper:

Definition 5.1: (TDMA schedule length) A TDMA schedule length is defined as the length of one
complete round. Therefore, TDMA schedule length is defined by the term Sl × C.

Definition 5.2: (TDMA offset) A TDMA offset at a particular time T is defined as the relative distance
of T from the last scheduled round. Therefore, at time T , the TDMA offset can be precisely defined
as T mod (Sl × C).

Definition 5.3: (Bus context) A Bus context for a particular execution graph node i is defined as the
set of TDMA offsets reaching/leaving the corresponding node. For each execution graph node i, we
track the incoming bus context (denoted Oin

i ) and the outgoing bus context (denoted Oout
i ).

For a task executing in core p (where 0 ≤ p < C), latest[tfinish
i ] and earliest[tfinish

i ] are computed
for an IF execution graph node i as follows:

latest[tfinish
i ] = latest[tstart

i ] +max latp(Oin
i , Ei) (2)

earliest[tfinish
i ] = earliest[tstart

i ] +min latp(Oin
i , Ei) (3)

Note that max latp, min latp are not constants and depend on the incoming bus context (Oin
i ) and

the set of possible latencies of IF node i (Ei) in the absence of a shared bus. max latp and min latp
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are defined as follows:

max latp(Oin
i , Ei) =

1, if CHMCL1
i = AH;

max
o∈Oin

i ,t∈Ei

∆p(o, t), otherwise. (4)

min latp(Oin
i , Ei) =

1, if CHMCL1
i 6= AM ;

min
o∈Oin

i ,t∈Ei

∆p(o, t), otherwise. (5)

In the above, Ei represents the set of possible latencies of IF node i in the absence of shared bus delay
(refer to Equation 1). Given a TDMA offset o and latency t in the absence of shared bus delay, ∆p(o, t)
computes the total delay (including shared bus delay) faced by IF stage of the pipeline. ∆p(o, t) can be
defined as follows (similar to [4] or [5]):

∆p(o, t) =


t, if p× Sl ≤ o+ t ≤ (p+ 1)× Sl;
t+ pSl − o, if o < pSl;
t+ (C + p)Sl − o, otherwise.

(6)

In the following, we shall now show the computation of incoming and outgoing bus contexts (i.e. Oin
i

and Oout
i respectively) for an execution graph node i.

Computation of Oout
i from Oin

i : The computation of Oout
i depends on Oin

i , on the possible la-
tencies of execution graph node i (including shared bus delay) and on the contention suffered by the
corresponding pipeline stage. In the modeled pipeline, inorder stages (i.e. IF, ID, WB and CM) do not
suffer from contention. But the out-of-order stage (i.e. EX stage) may experience contention when it
is ready to execute (i.e. operands are available) but cannot start execution due to the unavailability of
a functional unit. Worst case contention period of an execution graph node i can be denoted by the
term latest[tstart

i ]− latest[tready
i ]. For best case computation, we conservatively assume the absence of

contention. Therefore, for a particular core p (0 ≤ p < C), we compute Oout
i from the value of Oin

i as
follows:

Oout
i =


u(Oin

i , Ei + [0, latest[tstart
i ]− latest[tready

i ]]), if i = EX;
u(Oin

i ,
⋃

o∈Oin
i ,t∈Ei

∆p(o, t)), if i = IF ;
u(Oin

i , Ei), otherwise.
(7)

Here, u denotes the update function on TDMA offset set with a set of possible latencies of node i and
is defined as follows:

u(O,X) =
⋃

o∈O,t∈X

{(o+ t) mod (Sl × C)} (8)

Note that Ei + [0, latest[tstart
i ] − latest[tready

i ]] captures all possible latencies suffered by execution
graph node i, taking care of contentions as well. Therefore, Oout

i captures all possible TDMA offsets
exiting node i, when the same node is entered with bus context Oin

i . More precisely, assuming that Oin
i

represents an over-approximation of incoming bus context at node i, the computation by Equation 7
ensures that Oout

i represents an over-approximation of outgoing bus context from node i.
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Computation of Oin
i : The value of Oin

i depends on the value of Oout
j , where j is a predecessor of

node i in the execution graph. If pred(i) denotes all the predecessors of node i, clearly, ∪j∈pred(i)O
out
j

gives a sound approximation of Oin
i . However, it is important to observe that not all predecessors in the

execution graph can propagate TDMA offsets to node i. Recall that the edges in the execution graph
represent dependency (either due to resource constraints or due to true data dependences). Therefore,
node i in the execution graph can only start when all the nodes in pred(i) have finished. Consequently,
the TDMA offsets are propagated to node i only from the predecessor j, which finishes immediately
before i is ready. Nevertheless, our static analyzer may not be able to compute a single predecessor
that propagates TDMA offsets to node i. However, for two arbitrary execution graph nodes j1 and j2,
if we can guarantee that earliest[tfinish

j2 ] > latest[tfinish
j1 ], we can also guarantee that j2 finishes later

than j1. By capturing this property, we can compute Oin
i as follows:

Oin
i =

⋃
{Oout

j | j ∈ pred(i) ∧ earliest[tfinish
pmax ] ≤ latest[tfinish

j ]}
(9)

where pmax is a predecessor of i such that latest[tfinish
pmax ] = maxj∈pred(i) latest[t

finish
j ]. Therefore, Oin

i

captures all possible outgoing TDMA offsets from the predecessor nodes that are possibly finished latest.
Given that the value of Oout

j is an over-approximation of outgoing bus context for each predecessor j of
i, Equation 9 gives an over-approximation of incoming bus context at node i. Finally, Equation 7 and
Equation 9 together ensure a sound computation of bus contexts at the entry and exit of each execution
graph node.

VI. WCET COMPUTATION OF A BASIC BLOCK

A. Execution context of a basic block
Computing bus context without loop: In previous section, we have discussed the pipeline modeling

of a basic block B in context insensitive fashion. More precisely, we have implicitly assumed that the
pipeline state at the entry of B is empty. However, to correctly compute the execution time of B, we need
to consider 1) contentions (for functional units) and data dependencies among instructions prior to B and
instructions in B; 2) contentions among instructions after B and instructions in B. Set of instructions
before (after) B which directly affect the execution time of B is called the prologue (epilogue) of B
[12]. It is important to note that a basic block B may contain more than one possible prologues and/or
epilogues due to the presence of multiple paths in program. Nevertheless, size of a prologue or epilogue
is bounded by the size of instruction fetch queue size and the size of reorder buffer. Therefore, to
distinguish the execution context of a basic block B, execution graphs are constructed for each possible
combination of prologues and epilogues of B. Each execution graph of B contains instructions from
B itself (called body) and the instructions from one possible prologue and epilogue. Pipeline modeling
proceeds on each such augmented execution graph (i.e. with prologue and epilogue). Let us assume
PLB (EPB) represents the set of all prologues (epilogues) of basic block B. Say Oin

i (p, e) (Oout
i (p, e))

be the set of incoming (outgoing) bus context to (from) body node i in presence of prologue p and
epilogue e. After finishing the analysis of B for all possible combinations of prologues and epilogues,
we obtain an over-approximation of Oin

i and Oout
i as follows:

Oin
i =

⋃
p∈PLB

⋃
e∈EPB

Oin
i (p, e) (10)

Oout
i =

⋃
p∈PLB

⋃
e∈EPB

Oout
i (p, e) (11)
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IF ID EX WB CM
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IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

from previous iteration

of loop

Body instructions
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Prologue instructions

nodes

nodesπout
l

πin
l

Instructions outside loop

Figure 3. πin
l and πout

l nodes shown with the example of a sample execution graph. Note that the nodes marked πin
l are the only pipeline

stages which may propagate TDMA offsets across loop iterations and thereby affecting the execution time of a basic block over different
iterations of loop. On the other hand, nodes marked πout

l are the only pipeline stages which may propagate TDMA offsets outside loop
and thereby affecting the execution time of a basic block outside loop.

Clearly, Oin
i (Oout

i ) captures an overapproximation of bus context at the entry (exit) of node i, irrespective
of any prologue or epilogue of B.

Computing bus context in the presence of loops: In the presence of loops, a basic block can be
executed with different bus contexts at different iterations of the loop. The bus contexts at different
iterations depend on the set of instructions which can propagate TDMA offsets across loop iterations.
For each loop l, we compute two sets of nodes — πin

l and πout
l . πin

l are the set of pipeline stages
which can propagate TDMA offsets across iterations, whereas, πout

l are the set of pipeline stages which
could propagate TDMA offsets outside of the loop. Therefore, πin

l corresponds to the pipeline stages
of instructions inside l which resolve loop carried dependency (due to resource constraints, pipeline
structural constraints or true data dependency). On the other hand, πout

l corresponds to the pipeline stages
of instructions inside l which resolve the dependency of instructions outside of l. Figure 3 demonstrates
the πout

l and πin
l nodes for a sample execution graph. The bus context at the entry of all non-first loop

iterations can be captured as (Oin
x1, O

in
x2, . . . , O

in
xn) where πin

l = {x1, x2, . . . , xn}. The bus context at the
first iteration is computed from the bus contexts of instructions prior to l (using the technique described
in Section V). Finally, Oout

xi for any xi ∈ πout
l can be responsible for affecting the execution time of

any basic block outside of l.
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B. WCET computation under multiple bus contexts
Foundation: As discussed in the preceding, a basic block inside some loop may execute under

different bus contexts. In this section, we shall show how the execution count of different bus contexts
can be bounded by generating additional ILP constraints. These additional ILP constraints are eventually
fed to the global ILP formulation. We begin with the following notations to discuss our technique:

Ωl: The set of all bus contexts that may reach loop l in any iteration.
Ωs

l : The set of all bus contexts that may reach loop l at first iteration. Clearly, Ωs
l ⊆ Ωl. Moreover,

if l is contained inside some outer loop, l would be invoked more than once. As a result, Ωs
l may contain

more than one element.
Gs

l : For each s0 ∈ Ωs
l , we build a flow graph Gs

l = (V s
l , F

s
l ) where V s

l ⊆ Ωl. The graph Gs
l captures

the transitions among different bus contexts across loop iterations. An edge fw1→w2 = (w1, w2) ∈ F s
l

exists (where w1, w2 ∈ Ωl) if and only if l can be entered with bus context w1 at some iteration n and
with bus context w2 at iteration n+ 1. Note that Gs

l cannot be infinite, as we have only finitely few bus
contexts that are the nodes of Gs

l .
Mw

l : Number of times the body of loop l is entered with bus context w ∈ Ωl in any iteration.
Mw1→w2

l : Number of times l can be entered with bus context w1 at some iteration n and with
bus context w2 at iteration n+ 1 (where w1, w2 ∈ Ωl). Clearly, if fw1→w2 /∈ F s

l for any flow graph Gs
l ,

Mw1→w2
l = 0.

Construction of Gs
l : For each loop l and for each s0 ∈ Ωs

l , we construct a flow graph Gs
l . Initially,

Gs
l contains a single node representing bus context s0 ∈ Ωs

l . After analyzing all the basic blocks inside l
(using the technique described in Section V), we may get new bus context at some node i ∈ πin

l (recall
that πin

l are the set of execution graph nodes that may propagate bus context across loop iterations). As
a byproduct of this process, we also get the WCET of all basic blocks inside l when the body of l is
entered with bus context s0. Let us assume that for any s ∈ Ωl \Ωs

l and i ∈ πin
l , s(i) represents the bus

context Oin
i . Suppose we get a new bus context s1 ∈ Ωl after analyzing the body of l once. Therefore,

we add an edge from s0 to s1 in Gs
l . We continue expanding Gs

l until sn(i) ⊆ sk(i) for all i ∈ πin
l and

for some 1 ≤ k ≤ n− 1 (where sn ∈ Ωl represents the bus context at the entry of l after it is analyzed
n times). In this case, we finish the construction of Gs

l by adding a backedge from sn−1 to sk. We also
stop expanding Gs

l if we have expanded as many times as the relative loop bound of l. Note that Gs
l

contains at least two nodes, as the bus context at first loop iteration is always distinguished from the
bus contexts in any other loop iteration.

It is worth mentioning that construction of Gs
l is much less computationally intensive than a full

unrolling of l. The bus context at the entry of l quickly reaches a fixed-point and we can stop expanding
Gs

l . In our experiments, we found that the number of nodes in Gs
l never exceeds ten.

Generating separate ILP constraints: Using each flow graph Gs
l for loop l, we generate ILP

constraints to distinguish different bus contexts under which a basic block can be executed. In an abuse
of notation, we shall use w.i to denote that the basic block i is reached with bus context w.i when
the immediately enclosing loop of i is reached with bus context w in any iteration. The following ILP
constraints are generated to bound the value of Mw

l :

∀w ∈ Ωl :
∑
x∈Ωl

Mx→w
l = Mw

l (12)

∀w ∈ Ωl : Mw
l − 1 ≤

∑
x∈Ωl

Mw→x
l ≤Mw

l (13)
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∑
w∈Ωl

Mw
l = Nl.h (14)

where Nl.h denotes the number of times the header of loop l is executed. Equations 12-13 generate
standard flow constraints from each graph Gs

l , constructed for loop l. Special constraints need to be
added for the bus contexts with which the loop is entered at the first iteration and at the last iteration.
If w is a bus context with which loop l is entered at the last iteration, Mw

l is more than the execution
count of outgoing flows (i.e. Mw→x

l ). Equation 13 takes this special case into consideration. On the
other hand, Equation 14 bounds the aggregate execution count of all possible contexts w ∈ Ωl with
the total execution count of the loop header. Note that Nl.h will further be involved in defining CFG
structural constraints, which relate the execution count of a basic block with the execution count of its
incoming and outgoing edges [11]. Equations 12-14 do not ensure that whenever loop l is invoked, the
loop must be executed at least once with some bus context in Ωs

l . We add the following ILP constraints
to ensure this:

∀w ∈ Ωs
l : Mw

l ≥ Nw.h
l.h (15)

Here Nw.h
l.h denotes the number of times the header of loop l is executed with bus context w. The value

of Nw.h
l.h is further bounded by CFG structural constraints.

The constraints generated by Equations 12-15 are sufficient to derive the WCET of a basic block in
the presence of non-nested loops. In the presence of nested loops, however, we need additional ILP
constraints to relate the bus contexts at different loop nests. Assume that the loop l is enclosed by an
outer loop l′. For each w′ ∈ Ωl′ , we may get a different element s0 ∈ Ωs

l and consequently, a different
Gs

l = (V s
l , E

s
l ) for loop l. Therefore, we have the following ILP constraints for each flow graph Gs

l :

∀Gs
l = (V s

l , E
s
l ) :

∑
w∈V s

l

Mw
l ≤ boundl ∗ (

∑
w′∈parent(Gs

l )

Mw′

l′ ) (16)

where boundl represents the relative loop bound of l and parent(Gs
l ) denotes the set of bus contexts in

Ωl′ for which the flow graph Gs
l is constructed at loop l. The left-hand side of Equation 16 accumulates

the execution count of all bus contexts in flow graph Gs
l . The total execution count of all bus contexts

in V s
l is bounded by boundl, for each construction of Gs

l (as boundl is the relative loop bound of l).
Since Gs

l is constructed
∑

w′∈parent(Gs
l ) M

w′

l′ times, the total execution count of all bus contexts in V s
l

is bounded by the right hand side of Equation 16.
Finally, we need to bound the execution count of any basic block i (immediately enclosed by loop

l), with different bus contexts. We generate the following two constraints to bound this value:∑
w∈Ωl

Nw.i
i = Ni (17)

∀w ∈ Ωl : Nw.i
i ≤Mw

l (18)

where Ni represents the total execution count of basic block i and Nw.i
i represents the execution count

of basic block i with bus context w.i. Equation 18 tells the fact that basic block i can execute with
bus context w.i at some iteration of l only if l is reached with bus context w at the same iteration (by
definition). Ni will be further constrained through the structure of program’s CFG, which we exclude
in our discussion.
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Computing bus contexts at loop exit: To derive the WCET of whole program, we need to estimate
the bus context exiting a loop l (say Oexit

l ). A recently proposed work ([5]) has shown the computation of
Oexit

l without a full loop unrolling. In this paper, we use a similar technique as in [5] with one important
difference: In [5], a single offset graph Goff is maintained, which tracks the outgoing bus context from
each loop iteration. Once Goff got stabilized, a separate ILP formulation on Goff derives the value
of Oexit

l . In the presence of pipelined architectures, Oout
i for any i ∈ πout

l could be responsible for
propagating bus context outside of l (refer to Figure 3). Therefore, a separate offset graph is maintained
for each i ∈ πout

l (say Gi
off ) and an ILP formulation for each Gi

off can derive an estimation of the bus
context exiting the loop (say Oexit

i ). In [5], it has been proved that the computation of Oexit
l is always

an over-approximation (i.e. sound). Given that the value of each Oout
i is sound, it is now straightforward

to see that the computation of each Oexit
i is also sound. For details of this analysis, readers are further

referred to [5].

VII. EFFECT OF BRANCH PREDICTION ON CACHE

Presence of branch prediction introduces additional complexity in WCET computation. If a conditional
branch is mispredicted, the timing of the mispredicted instructions need to be computed. On the other
hand, mispredicted instructions introduce additional conflicts in L1 and L2 cache which need to be
modeled for a safe WCET estimation. The timing of the mispredicted instructions are taken care of
during basic block level WCET computation exactly as described in [12]. In the following, we describe
how the abstract interpretation based cache analysis is modified to take care of speculative execution
during branch misprediction. We assume that there could be at most one unresolved branch at a time.
Therefore, number of mispredicted instructions is bounded by the number of instructions till the next
branch as well as the total size of instruction fetch queue and reorder buffer.

A. Effect on cache for speculative execution
Abstract interpretation based cache analysis produces a fixed point on abstract cache content at the

entry (denoted as ACSin
i ) and at the exit (denoted as ACSout

i ) of each basic block i. If a basic block
i has multiple predecessors, output cache states of the predecessors are joined to produce the input
cache state of basic block i. Consider an edge j → i in the program CFG. If j → i is an unconditional
edge, computation of ACSin

i does not require any change. However, if j → i is a conditional edge,
the condition could be correctly or incorrectly predicted during execution. For a correct prediction, the
cache state ACSin

i is still sound. On the other hand, for incorrect prediction, ACSin
i must be updated

with the memory blocks accessed at the mispredicted path. We assume that there could be at most one
unresolved branch at a time. Therefore, number of mispredicted instructions is bounded by the number
of instructions till the next branch as well as the total size of instruction fetch queue and reorder buffer.
To maintain a safe cache state at the entry of each basic block i, we join the two cache states arising
due to the correct and incorrect predictions of conditional edge j → i. We demonstrate the entire
scenario through an example in Figure 4. In Figure 4, we demonstrate the procedure for computing
the abstract cache state at the entry of a basic block i. If the basic block is unconditionally executed,
no change is required for the cache analysis. However, the basic block i is conditionally reached from
basic block j. To compute a safe cache content at the entry of basic block i, we combine two different
possibilities —- one when the respective branch is correctly predicted (Figure 4(a)) and the other when
the respective branch is incorrectly predicted (Figure 4(b)). The combination is performed through
abstract join operation, which on the other hand depends on the type of analysis (must or may) being
computed. A stabilization on the abstract cache contents at the entry and exit of each basic block is
achieved through conventional fixed point analysis.
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acsout
j

= Join(acsout
j , acsout

spec)

acsout
j

acsout
spec

acsout
spec

acsin
i

acsin
i = acsout

spec

(a) (b) (c)

j j j

i i i

acsin
i = acsout

j

Speculated
instructions

Figure 4. (a) Computation of acsin
i when the edge j → i is correctly predicted, (b) Computation of acsin

i when the edge j → i is
mispredicted, (c) A safe approximation of acsin

i by considering both correct and incorrect prediction of edge j → i.

B. Computing the number of mispredicted branches
In presence of a branch predictor, each conditional edge j → i in the program CFG can be correctly

or incorrectly predicted. Let us assume Ej→i denotes the total number of times control flow edge j → i
is executed and Ec

j→i (Em
j→i) denotes the number of times the control flow edge j → i is executed

due to correct (incorrect) branch prediction. Clearly, Ej→i = Ec
j→i + Em

j→i. Value of Ej→i is further
bounded by CFG structural constraints. On the other hand, value of Ec

j→i and Em
j→i depend on the type

of branch predictor. We use our prior work ([13]), where we have shown how to bound the values of
Ec

j→i and Em
j→i for history based branch predictors. The constraints generated on Ec

j→i and Em
j→i are

as well captured in the global ILP formulation to compute the whole program WCET. We exclude the
details of branch predictor modeling in this paper —- interested readers are referred to [13].

VIII. WCET COMPUTATION OF AN ENTIRE PROGRAM

We compute the WCET of entire program by using the following objective function:

Maximize T =
N∑

i=1

∑
j→i

∑
w∈Ωi

tc,wj→i ∗ E
c,w
j→i + tm,w

j→i ∗ E
m,w
j→i (19)

Ωi denotes the set of all bus contexts under which basic block i can execute. Basic block i can be
executed with different bus contexts. However, number of elements in Ωi is always bounded by the
number of bus contexts entering the loop immediately enclosing i (refer to Section VI). tc,wj→i denotes
the WCET of basic block i when the basic block i is reached from basic block j, the control flow
edge j → i is correctly predicted and i is reached with bus context w ∈ Ωi. Similarly, tm,w

j→i denotes
the WCET of basic block i under the same bus context but when the control flow edge j → i was
mispredicted. Note that both tc,wj→i and tc,wj→i are computed during the iterative pipeline modeling (with the
modifications proposed in Section V). Ec,w

j→i (Em,w
j→i ) denotes the number of times basic block i is reached

from basic block j with bus context w and when control flow edge j → i is correctly (incorrectly)
predicted. Therefore, we have the following two constraints:

Ec
j→i =

∑
w∈Ωi

Ec,w
j→i (20)
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Em
j→i =

∑
w∈Ωi

Em,w
j→i (21)

Constraints on Ec
j→i and Em

j→i are proposed by the ILP based formulation in [13]. On the other hand,
Ec,w

j→i and Em,w
j→i are further bounded by CFG structural constraints and the constraints proposed by

Equations 12-18 in Section VI.
Finally, the WCET of the program maximizes the objective function in Equation 19. Any commercial

ILP solver (e.g. CPLEX) can be used for the same purpose.

IX. SOUNDNESS AND TERMINATION OF ANALYSIS

In this section, we shall first provide the basic ideas for the proof of the soundness of our analysis
framework and subsequently, elaborate each point.

A. Overall idea about soundness
The heart of soundness guarantee follows from the fact that we represent the timing of each pipeline

stage as an interval. Recall that the active timing interval of each pipeline stage is captured by INTVi =
[earliest[tready

i ], latest[tfinish
i ]]. Therefore, as long as we can guarantee that INTVi is always an over-

approximation of the actual timing interval of the corresponding pipeline stage in any concrete execution,
we can also guarantee the soundness of our analysis. To ensure that the interval INTVi is always an
over-approximation, we have to consider all possible latencies suffered by any pipeline stage. The latency
of a pipeline stage, on the other hand, may be influenced by the following factors:

Cache miss penalty: Only NC categorized memory references may have variable latencies. Our
analysis represents this variable latency as an interval [lo, hi] (Equation 1) where lo (hi) represents the
latency of a cache hit (miss).

Functional unit latency: Some functional units may have variable latencies depending on operands
(e.g. multiplier unit). For such functional units, we consider the EX pipeline stage latency as an
interval [lo, hi] where lo (hi) represents the minimum (maximum) possible latency of the corresponding
functional unit.

Contention to access functional units: A pair of instructions may delay each other by contending
for the same functional unit. Since only EX stage may suffer from contention, two different instructions
may contend for the same functional unit only if the timing intervals of respective EX stages overlap.
For any pipeline stage i, an upper bound on contention (say CONTmax

i ) is computed by accounting
the cumulative effect of contentions created by all the overlapping pipeline stages (which access the
same functional unit as i). We do not compute a lower bound on contention and conservatively assume
a safe lower bound of 0. Finally, we add [0, CONTmax

i ] with the timing interval of pipeline stage i.
Clearly, [0, CONTmax

i ] covers all possible latencies suffered by pipeline stage i due to contention.
Bus access delay: Bus access delay of a pipeline stage depends on incoming bus contexts (Oin

i ).
Computation of Oin

i is always an over-approximation as evidenced by Equation 7 and Equation 9.
Therefore, we can always compute the interval spanning from minimum to maximum bus delay using
Oin

i (Equation 4 and Equation 5).
In the following description, we shall argue how our analysis maintain soundness for each of these

four scenarios.

B. Detailed proofs
Property 9.1: Functional unit latency considered during analysis is always sound. More precisely, any

functional unit latency that may appear in a concrete execution, is considered during WCET analysis.
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Proof: If a functional unit has fixed latency, the soundness follows trivially. However, a functional
unit may have variable latency (e.g. multiplier unit). Assume lo (hi) represents the minimum (maximum)
latency that could possibly be suffered by using functional unit f . Our WCET analysis uses an interval
[lo, hi] to represent the execution latency (i.e. the latency of EX stage in the pipeline) for all the
instructions which may use f . In this way, we are able to handle the worst case which may arise due
to a lower functional unit latency.

Property 9.2: Cache access latencies considered during analysis is always sound. Therefore, WCET
analysis considers all possible cache access latencies which may appear in a concrete execution.

Proof: Recall that memory references are classified as all-hit (AH), all-miss (AM) and unclassified
(NC) in L1 and (shared) L2 cache. The soundness of categorizing a memory reference either AH or
AM in L1 or (shared) L2 cache follows from the soundness of analyses proposed in [11] and [3]. On
the other hand, the soundness of our analysis directly follows from Equation 1. Note that the latency
considered for NC categorized memory reference (Equation 1) captures the entire interval — ranging
from cache hit latency to cache miss latency. Therefore, our analysis can handle the worst case which
may arise due to a cache hit (instead of a cache miss) for a particular memory reference.

We propose the following properties which are essential for understanding the soundness of shared
bus analysis.

Property 9.3: Consider an execution graph of a basic block B and assume INITB represents the set
of execution graph nodes without any predecessor. Assume two different execution contexts of basic block
B say c1 and c2. Further assume Oin

j (c1) (Oin
j (c2)) and Oout

j (c1) (Oout
j (c2)) represent the incoming and

outgoing bus context, respectively, at any execution graph node j with execution context c1 (c2). Finally
assume that each EX stage in the execution context c2 experiences at least as much contention as in the
execution context c1. For any execution graph node j, the following property holds: if Oin

j (c1) * Oin
j (c2),

then Oin
i (c1) * Oin

i (c2) for at least one i ∈ INITB.

Proof: For j ∈ INITB, our claim trivially follows. Therefore, assume j /∈ INITB. We prove our
claim by contradiction. We assume that Oin

i (c1) ⊆ Oin
i (c2) for all i ∈ INITB, but Oin

j (c1) * Oin
j (c2).

Note that any execution graph is acyclic and consequently, it has a valid topological ordering. We
prove that the contradiction is invalid (i.e. Oin

j (c1) ⊆ Oin
j (c2)) by induction on the topological order n

of execution graph nodes.
Base case: n = 1. These are the nodes in INITB. Therefore, the claim directly follows from our

assumption.
Induction step: Assume all nodes in the execution graph which have topological order ≤ k validates

our claim. We prove that any node j having topological order ≥ k + 1 validates our claim as well. If
we assume a contradiction then Oin

j (c1) * Oin
j (c2). However, it is only possible if one of the following

conditions hold for some predecessor p′ of j (refer to Equation 9):
• earliest[tfinish

p′ ](c1) < earliest[tfinish
p′ ](c2) or

• latest[tfinish
p′ ](c1) > latest[tfinish

p′ ](c2) or
• Oout

p′ (c1) * Oout
p′ (c2).

where earliest[tfinish
i ](c1) (latest[tfinish

i ](c1)) and earliest[tfinish
i ](c2) (latest[tfinish

i ](c2)) represent the
earliest (latest) finish time of node i in the execution contexts c1 and c2, respectively. As any EX stage in
the execution context c2 experiences more contention than in the execution context c1 (our assumption),
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any of the above three conditions can hold only if Oin
p′ (c1) * Oin

p′ (c2). Following the same argument and
going backward in the topological order of the execution graph, we must have a predecessor p0 which
has topological order ≤ k and Oin

p0
(c1) * Oin

p0
(c2). This contradicts our induction hypothesis. Therefore,

our initial claim was invalid.
This property ensures that the bus contexts reaching at basic block B can precisely be encoded by

the set of bus contexts reaching at INITB, ignoring functional unit contentions (since the bus context
at any node in the execution graph can grow only if the bus context at some node i ∈ INITB grows).
The following property ensures that the same is true even in the presence of functional unit contentions.

Property 9.4: Consider an execution graph of a basic block B and assume INITB represents the
set of execution graph nodes without any predecessor. Assume two different execution contexts of basic
block B say c1 and c2. Further assume Oin

j (c1, n) (Oin
j (c2, n)) and Oout

j (c1, n) (Oout
j (c2, n)) represent the

incoming and outgoing bus context, respectively, at any execution graph node j with execution context
c1 (c2) and at the n-th iteration of pipeline modeling. Finally assume CRn(c1) (CRn(c2)) represents the
contention relation in the execution context c1 (c2) and at the n-th iteration of pipeline modeling. For
any execution graph node j, the following property holds: if Oin

i (c1, n) ⊆ Oin
i (c2, n) for all i ∈ INITB

then Oin
j (c1, n) ⊆ Oin

j (c2, n) for any execution graph node j and CRn(c1) ⊆ CRn(c2) over different
iterations n of pipeline modeling.

Proof: Assume earliest[tready
i , n](c1) (earliest[tready

i , n](c2)) represents the earliest ready time of
execution graph node i in the execution context c1 (c2) and at n-th iteration of pipeline modeling.
Similarly, latest[tfinish

i , n](c1) (latest[tfinish
i , n](c2)) represents the latest finish time of execution graph

node i in the execution context c1 (c2) and at n-th iteration of pipeline modeling. We prove our claim
by an induction on the number of iterations (n) of pipeline modeling.

Base case: n = 1. We start with all possible pairs of instructions in the contention relation (i.e.
we assume that every pair of instructions which may use same functional unit, can potentially delay
each other). Therefore, CR1(c1) = CR1(c2). Property 9.3 ensures that Oin

j (c1, 1) ⊆ Oin
j (c2, 1) for any

execution graph node j. Consequently, for any execution graph node j, we can conclude that
• earliest[tready

j , 1](c1) ≥ earliest[tready
j , 1](c2)

• latest[tfinish
j , 1](c1) ≤ latest[tfinish

j , 1](c2)

Therefore, CR2(c1) ⊆ CR2(c2) as the timing interval of any execution graph node is coarser in the
execution context c2 compared to the corresponding timing interval in the execution context c1.

Induction step: We assume that CRn(c1) ⊆ CRn(c2) and Oin
j (c1, n) ⊆ Oin

j (c2, n) for any execution
graph node j. We shall prove that CRn+1(c1) ⊆ CRn+1(c2) and Oin

j (c1, n + 1) ⊆ Oin
j (c2, n + 1) for

any execution graph node j. We shall prove the same by contradiction (i.e. assume that CRn+1(c1) *
CRn+1(c2)). Informally, we have at least two execution graph nodes i and j which have disjoint timing
intervals in the execution context c1 but have overlapping timing intervals in the execution context c2.
This is only possible if one of the following conditions hold:
• earliest[tready

i , n+ 1](c1) < earliest[tready
i , n+ 1](c2)

• earliest[tready
j , n+ 1](c1) < earliest[tready

j , n+ 1](c2).
• latest[tfinish

i , n+ 1](c1) > latest[tfinish
i , n+ 1](c2)

• latest[tfinish
j , n+ 1](c1) > latest[tfinish

j , n+ 1](c2)

However, above situation may arise only if one of the following two conditions hold: 1) Oin
k (c1, n+1) *

Oin
k (c2, n + 1) for some execution graph node k. Since CRn(c1) ⊆ CRn(c2), Property 9.3 ensures
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Oin
p (c1, n+ 1) * Oin

p (c2, n+ 1) for at least one node p which does not have any predecessor. This is a
contradiction as Oin

p (c1, n+ 1) = Oin
p (c1, n) and Oin

p (c2, n+ 1) = Oin
p (c2, n) and therefore, Oin

p (c1, n+
1) = Oin

p (c1, n) ⊆ Oin
p (c2, n) = Oin

p (c2, n+ 1).
2) CRn(c1) * CRn(c2), which may increase latest[tfinish

i , n+ 1](c1) compared to latest[tfinish
i , n+

1](c2) for some node i. However, this is a contradiction of our induction hypothesis.
This property generalizes the previous Property 9.3 by considering functional unit contentions.

Property 9.5: Consider an execution graph of a basic block B and assume INITB represents the
set of execution graph nodes without any predecessor. Assume two different execution contexts of basic
block B say c1 and c2. Further assume Oin

j (c1) (Oin
j (c2)) and Oout

j (c2) (Oout
j (c2)) represent the incoming

and outgoing bus context, respectively, at any execution graph node j with execution context c1 (c2). If
Oin

i (c1) ⊆ Oin
i (c2) for all i ∈ INITB, WCET of basic block B in the execution context c2 is always at

least equal to the WCET of basic block B in the execution context c1.

Proof: This claim follows directly from Properties 9.3-9.4. If Oin
i (c1) ⊆ Oin

i (c2) for all nodes
i ∈ INITB, then according to Properties 9.3-9.4, Oin

j (c1) ⊆ Oin
j (c2) for any execution graph node j.

Since the bus context at any execution graph node with the execution context c2 subsumes the respective
bus contexts with the execution context c1, we can conclude that the WCET of basic block B with the
execution context c2 is at least equal to the WCET of basic block B with the execution context c1.

Property 9.6: Consider any non-nested loop l. Assume Oin
i (m) represents the incoming bus context

of any execution graph node i at m-th iteration of loop. Consider two different iterations m′ and m′′ of
loop l. If Oin

xi(m
′) ⊆ Oin

xi(m
′′) for all xi ∈ πin

l , Oin
xi(m

′ + 1) ⊆ Oin
xi(m

′′ + 1) for all xi ∈ πin
l . Moreover,

WCET of any basic block inside loop l at iteration m′′ must be at least equal to the WCET of the
corresponding basic block at iteration m′.

Proof: By definition, πin
l corresponds to the set of pipeline stages which resolve loop carried

dependency (either due to resource constraints, pipeline structural constraints or true data dependency).
This direct dependency is specified through directed edges in the execution graph (as shown in Figure
3). We first prove that Oin

j (m′) ⊆ Oin
j (m′′) for any execution graph node j that corresponds to some

instruction inside l. We prove our claim by induction on the topological order n of basic blocks in l.
Base case: n = 1. This is the loop header H . By using an exactly similar proof as in properties

9.3-9.4, we can show that if Oin
xi(m

′) ⊆ Oin
xi(m

′′) for all xi ∈ πin
l , Oin

i (m′) ⊆ Oin
i (m′′) for any node i

in the execution graph of H .
Induction step: Assume our claim holds for all basic blocks having topological order ≤ k. We

shall prove that our claim holds for all basic blocks having topological order ≥ k + 1. However, using
our methodology for proving Properties 9.3-9.4, we can easily show that if the bus context for some
basic block (having topological order ≥ k + 1) at iteration m′′ is not an over-approximation of the bus
context of the same basic block at iteration m′, it could be either of two following reasons:
• The bus context at iteration m′′ is not an over-approximation of the bus context at iteration m′ for

some basic block having topological order ≤ k, contradicting our induction hypothesis;
• For some xi ∈ πin

l , Oin
xi(m

′) * Oin
xi(m

′′), contradicting our assumption.
Since the bus contexts computed at each basic block at iteration m′′ subsume the corresponding bus

contexts at iteration m′, Oin
xi(m

′ + 1) ⊆ Oin
xi(m

′′ + 1) for all xi ∈ πin
l . For the same reason, WCET of

any basic block inside l at m′′-th iteration is at least equal to the WCET of the corresponding basic
block at iteration m′.
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Recall that to track the bus contexts at different loop iterations, we construct a flow graph Gs
l . We

terminate the construction of Gs
l after k (k ≥ 1) iterations only if for all i ∈ πin

l , Oin
i (k) ⊆ Oin

i (j)
where 1 ≤ j < k. We add a backedge from k − 1-th bus context to j-th bus context to terminate the
construction of Gs

l . The bus context at some loop iteration n is computed from Gs
l by following a path

of length n from the initial node. In case n is less than the number of nodes in Gs
l , it is straightforward

to see that the computed bus context is always an over-approximation (as evidenced by Equation 7 and
Equation 9). In case n is more than the number of nodes in Gs

l (i.e. backedge in Gs
l is followed at

least once to compute the bus context), the above property ensures that the bus context computed by
the flow graph is always an over-approximation.

In the following property, we shall generalize the result for any loop (nested or non-nested).

Property 9.7: Consider any loop l. Assume Oin
i (m) represents the incoming bus context of any

execution graph node i at m-th iteration of loop. Consider two different iterations m′ and m′′ of
loop l. If Oin

xi(m
′) ⊆ Oin

xi(m
′′) for all xi ∈ πin

l , Oin
xi(m

′+1) ⊆ Oin
xi(m

′′+1) for all xi ∈ πin
l . Moreover, if

l contains some loop l′, Oexit
xj computed at m′′-th iteration of l always over-approximates Oexit

xj computed
at m′-th iteration of l, for every xj ∈ πout

l′ .

Proof: Let us first consider some loop l which contains only non-nested loops. Let us assume
a topological order of all inner loops inside l and assume lx represents the inner loop contained in
l, which is preceded by x − 1 other inner loops inside l, in topological order. We first prove that
Oin

j (m′) ⊆ Oin
j (m′′) for any execution graph node j that corresponds to some instruction inside l. We

also prove that for any inner loop lx and for all j ∈ πout
lx , Oexit

j computed at m′′-th iteration of l is
always an over-approximation of Oexit

j computed at m′-th iteration of l.
For any basic block i inside l, assume that ni is the number of loop exit edges appearing prior in

topological order of i. We assume that each loop has a single exit node. If some loop has multiple exits,
we can assume an empty node which post-dominates all the exit nodes of the loop. We prove our claim
by induction on ni.

Base case: ni = 0. Therefore, we have the two following possibilities:
• (Case I) i is a basic block which is immediately enclosed by loop l.
• (Case II) i is a basic block which is immediately enclosed by loop l1 and l1 is the first loop

contained inside l, following a topological order.
For Case I, Property 9.6 ensures that Oin

j (m′) ⊆ Oin
j (m′′) for all nodes j that corresponds to the

instructions in basic block i.
For Case II, basic block i may have different bus contexts at different iterations of loop l1. We shall

prove that the bus context computed for basic block i at any iteration of l1 validates our claim. Assume
Oin

j (x, x′) (Oout
j (x, x′)) represents the incoming (outgoing) bus context at the execution graph node j

at x-th iteration of l and at x′-th iteration of l1. Properties 9.3-9.4 ensure that Oin
xj(m

′, 1) ⊆ Oin
xj(m

′′, 1)
for all xj ∈ πin

l1 . Therefore, applying Property 9.6 on loop l1, for any execution graph node j and for
any iteration n of loop l1, we get Oin

j (m′, n) ⊆ Oin
j (m′′, n) . Therefore, Oexit

i for any i ∈ πout
l1 (recall

that Oexit
i represents the bus context exiting the loop l1 from node i) computed at m′′-th iteration of

loop l is an over-approximation of Oexit
i computed at m′-th iteration of loop l.

Induction step: Assume our claim holds for all basic blocks i having ni ≤ k. Therefore, Oin
j (m′) ⊆

Oin
j (m′′) for any execution graph node j that corresponds to the instructions of any basic block i (having

ni ≤ k). Moreover, for any inner loop lk and for all j ∈ πout
lk

, Oexit
j computed at m′′-th iteration of l is

always an over-approximation of Oexit
j computed at m′-th iteration of l,
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We shall prove that our claim holds for all basic blocks having ni = k + 1. As described in the
preceding, we have the two following cases:
• (Case I) i is a basic block which is immediately enclosed by loop l.
• (Case II) i is a basic block which is immediately enclosed by some loop lk+1, where lk+1 is the

loop contained inside l and k different loops inside l precedes lk+1 in topological order.
For Case I, using our methodology for proving Properties 9.3-9.4, we can easily show that if the bus

context for some basic block i (having ni = k + 1) at iteration m′′ is not an over-approximation of
the bus context of the same basic block at iteration m′, it could be due to any of the three following
reasons:
• The bus context at iteration m′′ is not an over-approximation of the bus context at iteration m′ for

some basic block j having nj ≤ k, contradicting our induction hypothesis;
• There exists some loop lx which appears prior to i in topological order but Oexit

i computed at
m′′-th iteration of loop l is not an over-approximation of Oexit

i computed at m′-th iteration of loop
l for some i ∈ πout

lx . Since lx appears prior in topological order of i, x ≤ k. This also violates our
induction hypothesis.

• For some xi ∈ πin
l , Oin

xi(m
′) * Oin

xi(m
′′), contradicting our assumption.

Now consider Case II. Assume Oin
j (x, x′) (Oout

j (x, x′)) represents the incoming (outgoing) bus context
at the execution graph node j at x-th iteration of l and at x′-th iteration of lk+1. According to our
induction hypothesis and the argument provided above, we get Oin

j (m′, 1) ⊆ Oin
j (m′′, 1) for all j ∈ πin

lk+1 .
Therefore, applying Property 9.6 on loop lk+1, for any execution graph node j and for any iteration n
of loop lk+1, we get Oin

j (m′, n) ⊆ Oin
j (m′′, n) . Consequently, for any i ∈ πout

lk+1 , Oexit
i computed at

m′′-th iteration of loop l is an over-approximation of Oexit
i computed at m′-th iteration of loop l. This

completes our induction.
Finally, we conclude that Oin

j (m′) ⊆ Oin
j (m′′) for any execution graph node j that corresponds to

some instruction in l. Consequently, Oin
xi(m

′ + 1) ⊆ Oin
xi(m

′′ + 1) for all xi ∈ πin
l .

From the above argument, it is now straight-forward to see that the property also holds for any nested
loop by proving the claims in a bottom up fashion of loop nests (i.e. an induction on the level of loop
nests starting from the innermost loop).

Property 9.8: (Termination Property) Consider two instructions p and q of basic block B. (p, q) ∈ CR
if and only if p and q may contend for the same functional unit. CR is called the contention relation.
Assume CRn represents the contention relation at n-th iteration of pipeline modeling. Set of elements
in CRn monotonically decreases across different iterations n of pipeline modeling.

Proof: We prove the above claim by induction on number of iterations taken by the pipeline
modeling. For some execution graph node i, assume Oin

i (n) (Oout
i (n)) represents the incoming (outgoing)

bus context at iteration n. Also assume earliest[tready
i , n] (latest[tfinish

i , n]) represents the earliest (latest)
ready (finish) time of execution graph node i at iteration n.

Base case: n = 1. We start with all possible pairs of instructions in the contention relation (i.e.
we assume that every pair of instructions which may use same functional unit can potentially delay
each other). Therefore, the set of elements in the contention relation trivially decreases after the first
iteration (i.e. CR2 ⊆ CR1).

Induction step: We assume that CRn ⊆ CRn−1 and we shall prove that CRn+1 ⊆ CRn. We prove
the same by contradiction (i.e. assume that CRn+1 * CRn). Informally, we have at least two execution
graph nodes i and j which have disjoint timing intervals at iteration n but overlapping timing intervals
at iteration n+ 1. This is only possible if one of the following conditions hold:
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• earliest[tready
i , n+ 1] < earliest[tready

i , n] (or earliest[tready
j , n+ 1] < earliest[tready

j , n]).
• latest[tfinish

i , n+ 1] > latest[tfinish
i , n] (or latest[tfinish

j , n+ 1] > latest[tfinish
j , n]).

However, above situation may arise only if one of the following two conditions hold: 1) Oin
k (n +

1) * Oin
k (n) for some execution graph node k. Since CRn ⊆ CRn−1, Property 9.4 ensures Oin

p (n +
1) * Oin

p (n) for at least one node p which does not have any predecessor. This is a contradiction as
Oin

p (n+ 1) = Oin
p (n). 2) CRn * CRn−1, which leads to more contention at n-th iteration and thereby

increasing latest[tfinish
i , n + 1] for some node i. However, this is a contradiction of our induction

hypothesis.
This property ensures that our iterative framework always terminates in the presence of shared cache

and shared bus.

Property 9.9: Computation of Oin
i and Oout

i is always sound.

Proof: This follows directly from the previous properties. Property, 9.6 ensures that we include all
possible contexts for a basic block inside loop. Equation 10 and Equation 11 ensure that we include
all possible TDMA offsets from different program paths. As contention decreases monotonically over
different iterations of pipeline modeling (Property 9.8), Equation 9 and Equation 7 ensure that the value
of Oin

i and Oout
i are sound over-approximations of respective bus contexts. Finally, the soundness of

the analysis presented in [5] guarantees that we always compute an overapproximation of bus contexts
at loop exit.

Essentially, we show that the search space of possible bus contexts is never pruned throughout the
program. Therefore, our analysis maintain soundness when a lower bus delay may lead to global worst
case scenario.

Finally, we conclude that the longest acyclic path search in the execution graph always results in a
sound estimation of basic block WCET. Moreover, we are able to consider an over-approximation of
all possible bus contexts if a basic block executes with multiple bus contexts (Properties 9.6 -9.7). The
IPET approach, on the other hand, searches for the longest feasible program path to ensure a sound
estimation of whole program’s WCET.

X. EXPERIMENTAL EVALUATION

We have chosen moderate to large size benchmarks from [9], which are generally used for timing
analysis. Individual benchmarks are compiled into simplescalar PISA (Portable Instruction Set Architec-
ture) [8] — a MIPS like instruction set architecture. The control flow graph (CFG) of each benchmark
is extracted from its PISA compliant binary and is used as an input to our analysis framework.

To validate our analysis framework, the simplescalar toolset [8] was extended to support the simulation
of shared cache and shared bus. The simulation infrastructure is used to compare the estimated WCET
with the observed WCET. Observed WCET is measured by simulating the program for a few program
inputs. Nevertheless, we would like to point out that the presence of a shared cache and a shared bus
makes the realization of the worst case scenario extremely challenging. In the presence of a shared cache
and a shared bus, the worst case scenario depends on the interleavings of threads, which are running
on different cores. Consequently, the observed WCET result in our experiments may sometimes highly
underapproximate the actual WCET.

For all of our experiments, we present the WCET overestimation ratio Estimated WCET
Observed WCET

. Our analysis
uses the default system configuration in Table I.

To check the dependency of WCET overestimation on the type of conflicting task (being run in
parallel on a different core), we use two different tasks to generate the inter-core conflicts — 1)
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Component Default settings Perfect settings
Number of cores 2 NA

1-way, inorder
pipeline 4-entry instruction fetch queue NA

8-entry reorder buffer
L1 cache 2-way associative, 1 KB All accesses

miss penalty = 6 cycles are L1 hit
L2 cache 4-way associative, 4 KB NA

miss penalty = 30 cycles
Shared bus slot length = 50 cycles Zero bus delay

Branch predictor 2 level predictor, Branch prediction
L1 size=1, L2 size=4, is always correct

history size=2

Table I
DEFAULT MICRO-ARCHITECTURAL SETTING FOR EXPERIMENTS

jfdctint, which is a single path program and 2) statemate, which has a huge number of paths.
In our experiments (Figure 5(a)-(d)), we use jfdctint to generate inter-core conflicts to the first
half of the tasks (i.e. matmult to nsichneu). On the other hand, we use statemate to generate
inter-core conflicts to the second half of the tasks (i.e. edn to st). Due to the absence of any infeasible
program path, inter-core conflicts generated by a single path program (e.g. jfdctint) can be more
accurately modeled compared to a multi-path program (e.g. statemate). Therefore, in the presence
of a shared cache, we expect a better WCET overestimation ratio for the first half of the benchmarks
(i.e. matmult to nsichneu) compared to the second half (i.e. edn to st).

To measure the WCET overestimation due to cache sharing, we compare the WCET result with two
different design choices, where the level 2 cache is partitioned. For a two-core system, two different
partitioning choices are explored: first, each partition has same number of cache sets but has half number
of ways compared to the original shared cache (called vertical partitioning). Secondly, each partition
has half number of cache sets but has same number of ways compared to the original shared cache
(called horizontal partitioning). In our default configuration, therefore, each core is assigned a 2-way
associative, 2 KB L2 cache in vertical partitioning, whereas each core is assigned a 4-way associative,
2 KB L2 cache in horizontal partitioning.

Finally, to pinpoint the source of WCET overestimation, we can selectively turn off the analysis
of different micro-architectural components. We say that a micro-architectural component has perfect
setting if the analysis of the same is turned off (refer to column “Perfect settings” in Table I).

Effect of caches: Figure 5(a) shows the WCET overestimation ratio with respect to different
L1 and L2 cache settings in the presence of a perfect branch predictor and a perfect shared bus.
Results show that we can reasonably bound the WCET overestimation ratio except for nsichneu.
The main source of WCET overestimation in nsichneu, however, comes from path analysis and not
due to micro-architectural modeling. This is expected, as nsichneu contains more than two hundred
branch instructions and many infeasible paths. These infeasible paths require very careful annotations,
which can be provided through additional user constraints into our framework to improve the result.
Another observation we can make from the result that partitioned L2 caches may lead to a better WCET
overestimation compared to shared L2 caches, with the vertical L2 cache partitioning working as the
best choice in most cases. The positive effect of vertical cache partitioning is visible in edn and adpcm,
where the overestimation in the presence of a shared cache rises. This is due to the difficulty in modeling
the inter-core cache conflicts from statemate (which has a huge number of paths and is being run
in parallel).
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Effect of speculative execution: As we explained in Section VII, the presence of a branch predictor
and speculative execution may introduce additional computation cycles for executing a mispredicted
path. Moreover, speculative execution may introduce additional cache conflicts from a mispredicted
path. The results in Figure 5(b) and Figure 5(c) show the effect of speculation in L1 and L2 cache
respectively. Mostly, we do not observe any sudden spikes in WCET overestimation just due to spec-
ulation. adpcm shows some reasonable increase in WCET overestimation with L2 caches and in the
presence of speculation (Figure 5(c)). This increase of the overestimation ratio can be explained from
the overestimation arising in the modeling of the effect of speculation in cache (refer to Section VII).
Due to the abstract join operation to combine the cache states in correct and mispredicted path, we
may introduce some spurious cache conflicts. Nevertheless, our approach for modeling the speculation
effect in cache is scalable and produces tight WCET estimates for most of the benchmarks.

Effect of shared bus: Figure 5(d) shows the WCET overestimation in the presence of a shared cache
and a shared bus. We observe that our shared bus analysis can reasonably control the overestimation
due to the shared bus. Except for edn and nsichneu, the overestimation in the presence of a shared
cache and a shared bus is mostly equal to the overestimation when shared bus analysis is turned off
(i.e. a perfect shared bus). Experiments with nsichneu shows some interesting result. We observe
that the WCET overestimation ratio decreases by a large factor when shared bus analysis is enabled.
As we inspect the cause, we found that the execution time of nsichneu is dominated by shared bus
delay, which is most accurately computed by our analysis for this benchmark. On the other hand, we
observed in Figure 5(a) that the main source of WCET overestimation in nsichneu is path analysis,
due to the presence of many infeasible paths. Consequently, when shared bus analysis is turned off, the
overestimation arising from path analysis dominates and we obtain a high WCET overestimation ratio.
Average WCET overestimation in the presence of both a shared cache and a shared bus is around 50%.

WCET sensitivity with respect to L1 cache size: Figure 6(b) and Figure 6(c) show the average
WCET overestimation for different L1 cache sizes, with and without speculation, respectively. Average
WCET overestimation is measured by taking the average of the term Estimated WCET

Observed WCET
over all the

benchmarks. Naturally, in presence of speculation, the overestimation is slightly higher. However, our
framework is able to maintain an average overestimation ratio around 20% without speculation and
around 40% with speculation.

WCET sensitivity with respect to L2 cache size: Figure 7(a) and Figure 7(b) show the average
WCET overestimation for different L2 cache sizes, with and without speculation, respectively. On
average, WCET overestimation in presence of shared L2 cache is higher compared to partitioned L2
cache architectures. As pointed out earlier, this is due to the inherent difficulties in modeling the inter-
core cache conflicts. Nevertheless, our analysis framework captures an average overestimation around
40% (50%) without (with) speculation over different L2 cache settings.

WCET sensitivity with respect to different pipelines: We have done experiments for different
pipelines. Figure 7(c) (without speculation) and Figure 8(a) (with speculation) show the WCET overes-
timation sensitivity for inorder, out-of-order and superscalar pipelines. Superscalar pipelines increase the
instruction level parallelism and so as the performance of entire program. However, it also becomes dif-
ficult to model the inherent instruction level parallelism in presence of superscalar pipelines. Therefore,
Figure 7(c) and 8(a) both show an increase in WCET overestimation with superscalar pipelines. However,
it is clear from both the figures that the additional overestimation mostly comes from the superscalar
pipeline modeling (results marked by “without cache” and “2lev without cache” respectively) and not
from the modeling of caches.

WCET sensitivity with respect to bus slot length: Finally, we show how the WCET overestimation
is affected with respect to bus slot length. Figure 8(b) shows the WCET overestimation sensitivity with
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respect to different bus slot lengths. With very high bus slot lengths (e.g. 70 or 80 cycles), WCET
overestimation normally increases (as shown in the 8(b)). This can be explained from the fact that with
higher bus slot lengths, the search space for possible bus contexts (or set of TDMA offsets) increase. As
a result, it is less probable to expose the worst case scenario in simulation with higher bus slot lengths.

Analysis time: We have performed all the experiments in an 8 core, 2.83 GHz Intel Xeon machine
having 4 GB of RAM and running Fedora Core 4 operating systems. Most of the cases, our analysis
finishes within a few seconds. ILP solver time dominates when branch prediction is enabled. When all
the micro-architectural features are analyzed (pipeline, L1 and shared L2 cache, shared bus and branch
prediction), our analysis takes maximum time (around 300 seconds) for the program nsichneu, with
an average of 20-30 seconds over all other programs.

XI. CONCLUSION

In this paper, we have proposed a sound WCET analysis framework by modeling different micro-
architectural components and their interactions in a multi-core processor. Our analysis framework is
also sound in presence of timing anomaly. Our experiments suggest that we can obtain tight WCET
estimates for the majority of benchmarks in a variety of micro-architectural configurations. Apart from
design space exploration, we believe that our framework can be used to figure out the major sources of
overestimation in multi-core WCET analysis. As a result, our framework can be used to help designing
predictable hardware for real time applications and it can also help writing real time applications for
predictable execution in multi-cores.

In future release of the tool, we are planning to integrate the data cache modeling into our framework.
Current version of the tool can be downloaded from [18].
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Figure 5. Effect of different micro-architectural parameters in WCET overestimation
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Figure 6. WCET overestimation in presence of shared bus and WCET overestimation sensitivity with respect to L1 cache size
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Figure 7. WCET overestimation sensitivity with respect to different micro-architectural parameters
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Figure 8. WCET overestimation sensitivity with respect to different micro-architectural parameters
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