
A Unified WCET Analysis Framework for
Multi-core Platforms

SUDIPTA CHATTOPADHYAY

National University of Singapore

LEE KEE CHONG

National University of Singapore

ABHIK ROYCHOUDHURY

National University of Singapore

TIMON KELTER

Technical University of Dortmund

PETER MARWEDEL

Technical University of Dortmund

HEIKO FALK

Ulm University

June, 2012

abstract

With the advent of multi-core architectures, worst case execution time (WCET) analysis has

become an increasingly difficult problem. In this paper, we propose a unified WCET analysis

framework for multi-core processors featuring both shared cache and shared bus. Compared to

other previous works, our work differs by modeling the interaction of shared cache and shared

bus with other basic micro-architectural components (e.g. pipeline and branch predictor). In

addition, our framework does not assume a timing anomaly free multi-core architecture for com-

puting the WCET. A detailed experiment methodology suggests that we can obtain reasonably

tight WCET estimates in a wide range of benchmark programs.

0.1 Introduction

Hard real-time systems require absolute guarantees on program execution time. Worst case

execution time (WCET) has therefore become an important problem to address. WCET of a

program depends on the underlying hardware platform. Therefore, to obtain a safe upper bound

on WCET, the underlying hardware need to be modeled. However, performance-enhancing

micro-architectural features of a processor (e.g. cache, pipeline) make WCET analysis a very

challenging task.

With the rapid growth of multi-core architectures, it is quite evident that the multi-core

processors are soon going to be adopted for real-time system design. Although multi-core pro-

cessors are aimed for improving performance, they introduce additional challenges in WCET

analysis. Multi-core processors employ shared resources. Two meaningful examples of such

shared resources are shared caches and shared buses. The presence of a shared cache requires

the modeling of inter-core cache conflicts. On the other hand, the presence of a shared bus

introduces variable bus access latency to accesses to shared cache and shared main memory.

The delay introduced by shared cache conflict misses and shared bus accesses is propagated by

different pipeline stages and affects the overall execution time of a program. WCET analysis

is further complicated by a commonly known phenomenon called timing anomalies Lundqvist

and Stenström [1999]. In the presence of timing anomalies, a local worst case scenario may not

lead to the WCET of the overall program. As an example, a cache hit rather than a cache miss

may lead to the WCET of the entire program. Therefore, we cannot always assume a cache miss

or maximum bus delay as the worst case scenario, as the assumptions are not just imprecise,

1

but they may also lead to an unsound WCET estimation. A few solutions have been proposed

which model the shared cache and/or the shared bus (Yan and Zhang [2008]; Li et al. [2009];

Chattopadhyay et al. [2010]; Kelter et al. [2011]; Lv et al. [2010]) in isolation, but all of these

previous solutions ignore the interactions of shared resources with important micro-architectural

features such as pipelines and branch predictors.

In this paper, we propose a WCET analysis framework for multi-core platforms featuring

both a shared cache and a shared bus. In contrast to previous work, our analysis can efficiently

model the interaction of the shared cache and bus with different other micro-architectural fea-

tures (e.g. pipeline, branch prediction). A few such meaningful interactions include the effect

of shared cache conflict misses and shared bus delays on the pipeline, the effect of speculative

execution on the shared cache etc. Moreover, our analysis framework does not rely on a timing-

anomaly free architecture and gives a sound WCET estimate even in the presence of timing

anomalies. In summary, the central contribution of this paper is to propose a unified analysis

framework that features most of the basic micro-architectural components (pipeline, (shared)

cache, branch prediction and shared bus) in a multi-core processor.

Our analysis framework deals with timing anomalies by representing the timing of each

pipeline stage as an interval. The interval covers all possible latencies of the corresponding

pipeline stage. The latency of a pipeline stage may depend on cache miss penalties and shared

bus delays. On the other hand, cache and shared bus analysis interact with the pipeline stages

to compute the possible latencies of a pipeline stage. Our analysis is context sensitive — it

takes care of different procedure call contexts and different micro-architectural contexts (i.e.

cache and bus) when computing the WCET of a single basic block. Finally, WCET of the entire

program is formulated as an integer linear program (ILP). The formulated ILP can be solved by

any commercial solver (e.g. CPLEX) to get the whole program’s WCET.

We have implemented our framework in an extended version of Chronos Li et al. [2007], a

freely available, open-source, single-core WCET analysis tool. To evaluate our approach, we

have also extended a cycle-accurate simulator Austin et al. [2002] with both shared cache and

shared bus support. Our experiments with moderate to large size benchmarks from Gustafsson

et al. [2010] show that we can obtain tight WCET estimates for most of the benchmarks in a

wide range of micro-architectural configurations.

2

0.2 Related work

WCET analysis in single core Research in single-core WCET analysis has started a few

decades ago. Initial works used only integer linear programming (ILP) for both micro-architectural

modeling and path analysis Li et al. [1999]. However, the work proposed in Li et al. [1999] faces

scalability problems due to the explosion in number of generated ILP constraints. In Theiling

et al. [2000], a novel approach has been proposed, which employs abstract interpretation for

micro-architectural modeling and ILP for path analysis. Subsequently, an iterative fixed-point

analysis has been proposed in Li et al. [2006] for modeling advanced micro-architectural fea-

tures such as out-of-order and superscalar pipelines. A different paper by the same set of authors

Li et al. [2005] has proposed an ILP-based modeling of branch predictors. Our baseline frame-

work is built upon the techniques proposed in Li et al. [2006, 2005].

Timing analysis of shared cache Although there has been a significant progress in single-

core WCET analysis research, little has been done so far in WCET analysis for multi-cores.

Multi-core processors employ shared resources (e.g. shared cache, shared bus), which gives rise

to a new problem for modeling inter-core conflicts. A few solutions have already been proposed

for analyzing a shared cache Yan and Zhang [2008]; Li et al. [2009]; Hardy et al. [2009]. All

of these approaches extend the abstract interpretation based cache analysis proposed in Theil-

ing et al. [2000]. However, in contrast to our proposed framework, these approaches model the

shared cache in isolation, assume a timing-anomaly-free architecture and ignore the interaction

of shared cache with different other micro-architectural features (e.g. pipeline and branch pre-

diction). A recent approach Chattopadhyay and Roychoudhury [2011] has enhanced the abstract

interpretation based shared cache analysis with a gradual and controlled use of model checking.

In Chattopadhyay and Roychoudhury [2011], abstract interpretation is used as a baseline analy-

sis. Subsequently, a model checking pass is applied to improve the result generated by abstract

interpretation. Since abstract interpretation is inherently path insensitive, it generates some spu-

rious cache conflicts due to the presence of infeasible program paths. However, due to the path

sensitive search process employed by a model checker, it eliminates certain spurious shared

cache conflicts that can never be realized in any real execution. Chattopadhyay and Roychoud-

hury [2011] does not model the shared bus and any improvement generated by the approach

proposed in Chattopadhyay and Roychoudhury [2011] will directly improve the precision of

WCET prediction using our framework.

3

Timing analysis of shared bus Shared bus analysis introduces several difficulties in accu-

rately analyzing the variable bus delay. It has been shown in Wilhelm et al. [2009] that a time

division multiple access (TDMA) scheme would be useful for WCET analysis due to its stati-

cally predictable nature. Subsequently, the analysis of TDMA based shared bus was introduced

in Rosen et al. [2007]. In Rosen et al. [2007], it has been shown that a statement inside a loop

may exhibit different bus delays in different iterations. Therefore, all loop iterations are virtually

unrolled for accurately computing the bus delays of a memory reference inside loop. As loop

unrolling is sometimes undesirable due to its inherent computational complexity, Chattopad-

hyay et al. [2010] proposed a TDMA bus analysis technique which analyzes the loop without

unrolling it. However, Chattopadhyay et al. [2010] requires some fixed alignment cost for each

loop iteration so that a particular memory reference inside some loop suffers exactly same bus

delay in any iteration. The analysis proposed in Chattopadhyay et al. [2010] is fast, as it avoids

loop unrolling, however imprecise due to the alignment cost added for each loop iteration. Fi-

nally, Kelter et al. [2011] proposes an efficient TDMA-based bus analysis technique which

avoids full loop unrolling, but it is almost as precise as Rosen et al. [2007]. The analysis time

in Kelter et al. [2011] significantly improves compared to Rosen et al. [2007]. However, none

of the works (Rosen et al. [2007]; Chattopadhyay et al. [2010]; Kelter et al. [2011]) model the

interaction of shared bus with pipeline and branch prediction. Additionally, Rosen et al. [2007]

and Chattopadhyay et al. [2010] assume a timing-anomaly-free architecture. A recent approach

Lv et al. [2010] has combined abstract interpretation and model checking for WCET analysis

in multi-cores. The micro-architecture analyzed by Lv et al. [2010] contains a private cache for

each core and it has a shared bus connecting all the cores to access main memory. The frame-

work uses abstract interpretation (Theiling et al. [2000]) for analyzing the private cache and it

uses model checking to analyze the shared bus. However, Lv et al. [2010] ignores the interac-

tion of shared bus with pipeline and branch prediction. It is also unclear whether the proposed

framework would remain scalable in the presence of shared cache and other micro-architectural

features (e.g. pipeline).

Time predictable micro-architecture and execution model To eliminate the problem of pes-

simism in multi-core WCET analysis, researchers have proposed predictable multi-core archi-

tectures Paolieri et al. [2009] and predictable execution models by code transformations Pel-

lizzoni et al. [2011]. The work in Paolieri et al. [2009] proposes several micro-architectural

4

modifications (e.g. shared cache partitioning among cores, TDMA round robin bus) so that the

existing WCET analysis methodologies for single cores can be adopted for analyzing the hard

real-time software running on such system. On the other hand, Pellizzoni et al. [2011] proposes

compiler transformations to partition the original program into several time-predictable inter-

vals. Each such interval is further partitioned into memory phase (where memory blocks are

prefetched into cache) and execution phase (where the task does not suffer any last level cache

miss and it does not generate any traffic to the shared bus). As a result, any other bus traffic

scheduled during the execution phases of all other tasks does not suffer any additional delay due

to the bus contention. We argue that the above mentioned approaches are orthogonal to the idea

of this paper and our idea in this paper can be used to pinpoint the sources of overestimation in

multi-core WCET analysis.

In summary, there has been little progress on multi-core WCET analysis by modeling the

different micro-architectural components (e.g. shared cache, shared bus) in isolation. Our work

differs from all previous works by proposing a unified framework, which is able to analyze the

most basic micro-architectural components and their interactions in a multi-core processor.

0.3 Background

In this section, we introduce the basic background behind our WCET analysis framework. Our

WCET analysis framework for multi-core is based on the pipeline modeling of Li et al. [2006].

Pipeline modeling through execution graphs The central idea of pipeline modeling revolves

around the concept of the execution graph Li et al. [2006]. The execution graph is constructed

for each basic block in the program control flow graph (CFG). For each instruction in the ba-

sic block, the corresponding execution graph contains a node for each of the pipeline stages.

We assume a five stage pipeline — instruction fetch (IF), decode (ID), execution (EX), write

back (WB) and commit (CM). Edges in the execution graph capture the dependencies among

pipeline stages; either due to resource constraints (instruction fetch queue size, reorder buffer

size etc.) or due to data dependency (read after write hazard). The timing of each node in the

execution graph is represented by an interval, which covers all possible latencies suffered by the

corresponding pipeline stage.

Figure 1 shows a snippet of assembly code and the corresponding execution graph. The

example assumes a 2-way superscalar processor with 2-entry instruction fetch queue (IFQ) and

5

IF

IF

IF

IF

IF

ID

ID

ID

ID

ID

EX

EX

EX

EX

EX

WB

WB

WB

WB

WB

CM

CM

CM

CM

CM

I2

I1

I3

I4

I5

mult r1 r7 r8

mult r1 r2 r3

mult r4 r5 r6

add r2 r1 r2

add r9 r1 r6

I1:

I2:

I3:

I4:

I5:

Figure 1: Execution graph for the example program in a 2-way superscalar processor with
2-entry instruction fetch queue and 4-entry reorder buffer. Solid edges show the dependency
between pipeline stages, whereas the dotted edges show the contention relation

4-entry reorder buffer (ROB). Since the processor is a 2-way superscalar, instruction I3 cannot

be fetched before the fetch of I1 finishes. This explains the edge between IF nodes of I1 and

I3. On the other hand, since IFQ size is 2, IF stage of I3 cannot start before ID stage of I1

finishes (edge between ID stage of I1 and IF stage of I3). Note that I3 is data dependent on I1

and similarly, I5 is data dependent on I4. Therefore, we have edges from WB stage of I1 to EX

stage of I3 and also from WB stage of I4 to EX stage of I5. Finally, as ROB size is 4, I1 must

be removed from ROB (i.e. committed) before I5 can be decoded. This explains the edge from

CM stage of I1 to ID stage of I5.

A dotted edge in the execution graph (e.g. the edge between EX stage of I2 and I4) represents

contention relation (i.e. a pair of instructions which may contend for the same functional unit).

Since I2 and I4 may contend for the same functional unit (multiplier), they might delay each

other due to contention. The pipeline analysis is iterative. Analysis starts without any timing

information and assumes that all pairs of instructions which use same functional units and can

coexist in the pipeline, may contend with each other. In the example, therefore, the analysis

starts with {(I1,I2), (I2,I4), (I1,I4), (I3,I5)} in the contention relation. After one iteration, the

timing information of each pipeline stage is obtained and the analysis may rule out some pairs

from the contention relation if their timing intervals do not overlap. With this updated contention

relation, the analysis is repeated and subsequently, a refined timing information is obtained for

each pipeline stage. Analysis is terminated when no further elements can be removed from the

contention relation. WCET of the code snippet is then given by the worst case completion time

of the CM node for I5.

6

0.4 Overview of our analysis

Figure 2 gives an overview of our analysis framework. Each processor core is analyzed at a

time by taking care of the inter-core conflicts generated by all other cores. Figure 2 shows the

analysis flow for some program A running on a dedicated processor core. The overall analysis

can broadly be classified into two separate phases: 1) micro-architectural modeling and 2) path

analysis. In micro-architectural modeling, the timing behavior of different hardware compo-

nents is analyzed (as shown by the big dotted box in Figure 2). We use abstract interpretation

(AI) based cache analysis Theiling et al. [2000] to categorize memory references as all-hit (AH)

or all-miss (AM) in L1 and L2 cache. A memory reference is categorized AH (AM) if the re-

sulting access is always a cache hit (miss). If a memory reference cannot be categorized as AH

or AM, it is categorized as unclassified (NC). In the presence of a shared L2 cache, categoriza-

tion of a memory reference may change from AH to NC due to the inter-core conflicts Li et al.

[2009]. Moreover, as shown in Figure 2, L1 and L2 cache analysis has to consider the effect

of speculative execution when a branch instruction is mispredicted (refer to Section 0.7 for de-

tails). Similarly, the timing effects generated by the mispredicted instructions are also taken into

account during the iterative pipeline modeling (refer to Li et al. [2006] for details). The shared

bus analysis computes the bus context under which an instruction can execute. The outcome

of cache analysis and shared bus analysis is used to compute the latency of different pipeline

stages during the analysis of the pipeline (refer to Section 0.5 for details). Pipeline modeling is

iterative and it finally computes the WCET of each basic block. WCET of the entire program

is formulated as maximizing the objective function of a single integer linear program (ILP).

WCETs of individual basic blocks are used to construct the objective function of the formu-

lated ILP. The constraints of the ILP are generated from the structure of the program’s control

flow graph (CFG), micro-architectural modeling (branch predictor and shared bus) and addi-

tional user-given constraints (e.g. loop bounds). The modeling of the branch predictor generates

constraints to bound the execution count of mispredicted branches (for details refer to Li et al.

[2005]). On the other hand, constraints generated for bus contexts bound the execution count

of a basic block under different bus contexts (for details, refer to Section 0.6). Path analysis

finds the longest feasible program path from the formulated ILP through implicit path enumer-

ation (IPET). Any ILP solver (e.g. CPLEX) can be used for IPET and for deriving the whole

program’s WCET.

7

basic blocks

Program A

binary

L1 cache

analysis

Program running

on different cores

conflicts

Inter−core
cache

L2 cache

analysis

modeling

Pipeline

Branch predictor

modeling

Branch predictor
Speculative
execution

of WCET

constraints

analysis

Shared bus

Bus context
constraints

Micro−architectural modeling

User
constraints

ILP

formulating

WCET

program

CFG
flow

constraints

WCET of

A

Figure 2: Overview of our analysis framework

System and application model We assume a multi-core processor with each core having a

private L1 cache. Additionally, multiple cores share a L2 cache. The extension of our framework

for more than two levels of caches is straightforward. If a memory block is not found in L1 or L2

cache, it has to be fetched from the main memory. Any memory transaction to L2 cache or main

memory has to go through a shared bus. For shared bus, we assume a TDMA-based round robin

arbitration policy, where a fixed length bus slot is assigned to each core. We also assume fully

separated caches and buses for instruction and data memory. Therefore, the data references do

not interfere with the instruction references. In this work, we only model the effect of instruction

caches. However, the data cache effects can be considered in a similar fashion. Since we

consider only instruction caches, the cache miss penalty (computed from cache analysis) directly

affects the instruction fetch (IF) stage of the pipeline. We do not consider self modifying code

and therefore, we do not need to model the coherence traffic. Finally, we consider the LRU

cache replacement policy and non-inclusive caches only. Later in Section 0.11, we shall extend

our framework for FIFO cache replacement policy and we shall also discuss the extension of

our framework for other cache replacement policies (e.g. PLRU) and other cache hierarchies

(e.g. inclusive).

0.5 Interaction of shared resources with pipeline

Let us assume each node i in the execution graph is annotated with the following timing param-

eters, which are computed iteratively:

• earliest[treadyi], earliest[tstarti], earliest[tfinishi] : Earliest ready, earliest start and earli-

8

est finish time of node i, respectively.

• latest[treadyi], latest[tstarti], latest[tfinishi] : Latest ready, latest start and latest finish time

of node i, respectively.

For each pipeline stage i, earliest[treadyi] and earliest[tstarti] are initialized to zero, whereas,

earliest[tfinishi] is initialized to the minimum latency suffered by the pipeline stage i. On the

other hand, latest[treadyi], latest[tstarti] and latest[tfinishi] are all initialized to ∞ for each

pipeline stage i. The active time span of node i can be captured by the following timing interval:

[earliest[treadyi], latest[tfinishi]]. Therefore, each node of the execution graph is initialized with

a timing interval [0,∞].

Pipeline modeling is iterative. The iterative analysis starts with the coarse interval [0,∞]

for each node and subsequently, the interval is tightened in each iteration. The computation of

a precise interval takes into account the analysis result of caches and shared bus. The iterative

analysis eliminates certain infeasible contention among the pipeline stages in each iteration,

thereby leading to a tighter timing interval after each iteration. The iterative analysis starts

with a contention relation. Such a contention relation contains pairs of instructions which may

potentially delay each other due to contention. Initially, all possible pairs of instructions are

included in the contention relation and after each iteration, pairs of instructions whose timing

intervals do not overlap, are removed from this relation. If the contention relation does not

change in some iteration, the iterative analysis terminates. Since the number of instructions in

a basic block is finite, the contention relation contains a finite number of elements and in each

iteration, at least one element is removed from the relation. Therefore, this analysis is guaranteed

to terminate. Moreover, if the contention relation does not change, the timing interval of each

node reaches a fixed-point after the analysis terminates. In the following, we shall discuss how

the presence of a shared cache and a shared bus affects the timing information of different

pipeline stages.

0.5.1 Interaction of shared cache with pipeline

Let us assume CHMCL1
i (CHMCL2

i) denotes the AH/AM/NC cache hit-miss classification

of an IF node i in L1 (shared L2) cache. Further assume that Ei denotes the possible latencies

9

of an IF node i without considering any shared bus delay. Ei can be defined as follows:

Ei =



1, if CHMCL1
i = AH;

LATL1 + 1, if CHMCL1
i = AM ∧ CHMCL2

i = AH;

LATL1 + LATL2 + 1, if CHMCL1
i = AM ∧ CHMCL2

i = AM ;

[LATL1 + 1, LATL1 + LATL2 + 1], if CHMCL1
i = AM ∧ CHMCL2

i = NC;

[1, LATL1 + 1], if CHMCL1
i = NC ∧ CHMCL2

i = AH;

[1, LATL1 + LATL2 + 1], otherwise.

(1)

where LATL1 and LATL2 represent the fixed L1 and L2 cache miss latencies respectively.

Note that the interval-based representation captures the possibilities of both a cache hit and a

cache miss in case of an NC categorized cache access. Therefore, the computation of Ei can

also deal with the architectures that exhibit timing anomalies.

0.5.2 Interaction of shared bus with pipeline

Let us assume that we have a total of C cores and the TDMA-based round robin scheme assigns

a slot length Sl to each core. Therefore, the length of one complete round is SlC. We begin with

the following definitions which are used throughout the paper:

Definition 0.5.1. (TDMA offset) A TDMA offset at a particular time T is defined as the relative

distance of T from the beginning of the last scheduled round. Therefore, at time T , the TDMA

offset can be precisely defined as T mod SlC.

Definition 0.5.2. (Bus context) A Bus context for a particular execution graph node i is defined

as the set of TDMA offsets reaching/leaving the corresponding node. For each execution graph

node i, we track the incoming bus context (denoted Oini) and the outgoing bus context (denoted

Oouti).

For a task executing in core p (where 0 ≤ p < C), latest[tfinishi] and earliest[tfinishi] are

computed for an IF execution graph node i as follows:

latest[tfinishi] = latest[tstarti] +max latp(O
in
i , Ei) (2)

earliest[tfinishi] = earliest[tstarti] +min latp(O
in
i , Ei) (3)

10

Note that max latp, min latp are not constants and depend on the incoming bus context (Oini)

and the set of possible latencies of IF node i (Ei) in the absence of a shared bus. max latp and

min latp are defined as follows:

max latp(O
in
i , Ei) =


1, if CHMCL1

i = AH;

max
o∈Oin

i ,t∈Ei

∆p(o, t), otherwise.
(4)

min latp(O
in
i , Ei) =


1, if CHMCL1

i 6= AM ;

min
o∈Oin

i ,t∈Ei

∆p(o, t), otherwise.
(5)

In the above, Ei represents the set of possible latencies of an IF node i in the absence of shared

bus delay (refer to Equation 1). Given a TDMA offset o and latency t in the absence of shared

bus delay, ∆p(o, t) computes the total delay (including shared bus delay) faced by the IF stage

of the pipeline. ∆p(o, t) can be defined as follows (similar to Chattopadhyay et al. [2010] or

Kelter et al. [2011]):

∆p(o, t) =


t, if pSl ≤ o+ t ≤ (p+ 1)Sl;

t+ pSl − o, if o < pSl;

t+ (C + p)Sl − o, otherwise.

(6)

In the following, we shall now show the computation of incoming and outgoing bus contexts

(i.e. Oini and Oouti respectively) for an execution graph node i.

Computation of Oouti from Oini The computation of Oouti depends on Oini , on the possible

latencies of execution graph node i (including shared bus delay) and on the contention suffered

by the corresponding pipeline stage. In the modeled pipeline, inorder stages (i.e. IF, ID, WB and

CM) do not suffer from contention. But the out-of-order stage (i.e. EX stage) may experience

contention when it is ready to execute (i.e. operands are available) but cannot start execution

due to the unavailability of a functional unit. Worst case contention period of an execution graph

node i can be denoted by the term latest[tstarti]− latest[treadyi]. For best case computation, we

conservatively assume the absence of contention. Therefore, for a particular core p (0 ≤ p < C),

11

we compute Oouti from the value of Oini as follows:

Oouti =


u(Oini , Ei + [0, latest[tstarti]− latest[treadyi]]), if i = EX;

u(Oini ,
⋃
o∈Oin

i ,t∈Ei
∆p(o, t)), if i = IF ;

u(Oini , Ei), otherwise.

(7)

Here, u denotes the update function on TDMA offset set with a set of possible latencies of node

i and is defined as follows:

u(O,X) =
⋃

o∈O,t∈X
{(o+ t) mod SlC} (8)

Note that Ei + [0, latest[tstarti]− latest[treadyi]] captures all possible latencies suffered by the

execution graph node i, taking care of contentions as well. Therefore, Oouti captures all possible

TDMA offsets exiting node i, when the same node is entered with bus context Oini . More

precisely, assuming that Oini represents an over-approximation of the incoming bus context at

node i, the computation by Equation 7 ensures that Oouti represents an over-approximation of

the outgoing bus context from node i.

Computation ofOini The value ofOini depends on the value ofOoutj , where j is a predecessor

of node i in the execution graph. If pred(i) denotes all the predecessors of node i, clearly,

∪j∈pred(i)O
out
j gives a sound approximation of Oini . However, it is important to observe that

not all predecessors in the execution graph can propagate TDMA offsets to node i. Recall that

the edges in the execution graph represent dependency (either due to resource constraints or due

to true data dependences). Therefore, node i in the execution graph can only start when all

the nodes in pred(i) have finished. Consequently, the TDMA offsets are propagated to node

i only from the predecessor j, which finishes immediately before i is ready. Nevertheless, our

static analyzer may not be able to compute a single predecessor that propagates TDMA offsets

to node i. However, for two arbitrary execution graph nodes j1 and j2, if we can guarantee that

earliest[tfinishj2] > latest[tfinishj1], we can also guarantee that j2 finishes later than j1. The

computation of Oini captures this property:

Oini =
⋃
{Ooutj | j ∈ pred(i) ∧ earliest[tfinishpmax] ≤ latest[tfinishj]} (9)

12

where pmax is a predecessor of i such that latest[tfinishpmax] = maxj∈pred(i) latest[t
finish
j].

Therefore,Oini captures all possible outgoing TDMA offsets from the predecessor nodes that are

possibly finished latest. Given that the value of Ooutj is an over-approximation of the outgoing

bus context for each predecessor j of i, Equation 9 gives an over-approximation of the incoming

bus context at node i. Finally, Equation 7 and Equation 9 together ensure a sound computation

of the bus contexts at the entry and exit of each execution graph node.

0.6 WCET computation under multiple bus contexts

0.6.1 Execution context of a basic block

Computing bus context without loops In the previous section, we have discussed the pipeline

modeling of a basic block B in isolation. However, to correctly compute the execution time

of B, we need to consider 1) contentions (for functional units) and data dependencies among

instructions prior to B and instructions in B; 2) contentions among instructions after B and

instructions in B. Set of instructions before (after) B which directly affect the execution time

of B is called the prologue (epilogue) of B Li et al. [2006]. B may have multiple prologues and

epilogues due to the presence of multiple program paths. However, the size of any prologue or

epilogue is bounded by the total size of IFQ and ROB. To distinguish the execution contexts of

a basic block B, execution graphs are constructed for each possible combination of prologues

and epilogues of B. Each execution graph of B contains the instructions from B itself (called

body) and the instructions from one possible prologue and epilogue. Assume we compute the

incoming (outgoing) bus context Oini (p, e) (Oouti (p, e)) at body node i for prologue p and epi-

logue e (using the technique described in Section 0.5). After we finish the analysis of B for all

possible combinations of prologues and epilogues, we compute an over-approximation of Oini

(Oouti) by merge operation as follows:

Oini =
⋃
p,e

Oini (p, e) (10)

Oouti =
⋃
p,e

Oouti (p, e) (11)

Clearly, Oini (Oouti) captures an over-approximation of the bus context at the entry (exit) of node

i, irrespective of any prologue or epilogue of B.

13

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

from previous iteration

of loop

Body instructions
inside the loop

Prologue instructions

nodes

nodesπout
l

πin
l

Instructions outside loop

Figure 3: πinl and πoutl nodes shown with the example of a sample execution graph. πinl nodes
propagate bus contexts across iterations, whereas, πoutl nodes propagate bus contexts outside of
loop.

Computing bus context in the presence of loops In the presence of loops, a basic block can

be executed with different bus contexts at different iterations of the loop. The bus contexts at

different iterations depend on the set of instructions which can propagate TDMA offsets across

loop iterations. For each loop l, we compute two sets of nodes — πinl and πoutl . πinl are the

set of pipeline stages which can propagate TDMA offsets across iterations, whereas, πoutl are

the set of pipeline stages which could propagate TDMA offsets outside of the loop. Therefore,

πinl corresponds to the pipeline stages of instructions inside l which resolve loop carried depen-

dency (due to resource constraints, pipeline structural constraints or true data dependency). On

the other hand, πoutl corresponds to the pipeline stages of instructions inside l which resolve the

dependency of instructions outside of l. Figure 3 demonstrates the πoutl and πinl nodes for a sam-

ple execution graph. The bus context at the entry of all non-first loop iterations can be captured

as (Oinx1, O
in
x2, . . . , O

in
xn) where πinl = {x1, x2, . . . , xn}. The bus context at the first iteration

is computed from the bus contexts of instructions prior to l (using the technique described in

Section 0.5). Finally, Ooutxi for any xi ∈ πoutl can be responsible for affecting the execution time

of any basic block outside of l.

14

0.6.2 Bounding the execution count of a bus context

Foundation As discussed in the preceding, a basic block inside some loop may execute un-

der different bus contexts. For all non-first iterations, a loop l is entered with bus context

(Oinx1, O
in
x2, . . . , O

in
xn) where {x1, x2, . . . , xn} are the set of πinl nodes as described in Figure

3. These bus contexts are computed during an iterative analysis of the loop l (described below).

On the other hand, the bus context at the first iteration of l is a tuple of TDMA offsets propagated

from outside of l to some pipeline stage inside l. Note that the bus context at the first iteration

of l is computed by following the general procedure as described in Section 0.5.

In this section, we shall show how the execution count of different bus contexts can be

bounded by generating additional ILP constraints. These additional constraints are added to a

global ILP formulation to find the WCET of the entire program. We begin with the following

notations:

Ωl The set of all bus contexts that may reach loop l in any iteration.

Ωs
l The set of all bus contexts that may reach loop l at first iteration. Clearly, Ωs

l ⊆ Ωl.

Moreover, if l is contained inside some outer loop, l would be invoked more than once. As

a result, Ωs
l may contain more than one element. Note that Ωs

l can be computed as a tuple of

TDMA offsets propagated from outside of l to some pipeline stage inside l. Therefore, Ωs
l can be

computed during the procedure described in Section 0.5. If l is an inner loop, an element of Ωs
l

is computed (as described in Section 0.5) for each analysis invocation of the loop immediately

enclosing l.

Gsl For each s0 ∈ Ωs
l , we build a flow graph Gsl = (V s

l , F
s
l) where V s

l ⊆ Ωl. The graph Gsl

captures the transitions among different bus contexts across loop iterations. An edge fw1→w2 =

(w1, w2) ∈ F sl exists (where w1, w2 ∈ Ωl) if and only if l can be entered with bus context w1 at

some iteration n and with bus context w2 at iteration n+ 1. Note that Gsl cannot be infinite, as

we have only finitely few bus contexts that are the nodes of Gsl .

Mw
l Number of times the body of loop l is entered with bus context w ∈ Ωl in any iteration.

Mw1→w2
l Number of times l can be entered with bus context w1 at some iteration n and with

bus context w2 at iteration n + 1 (where w1, w2 ∈ Ωl). Clearly, if fw1→w2 /∈ F sl for any flow

15

graph Gsl , M
w1→w2
l = 0.

Construction of Gsl For each loop l and for each s0 ∈ Ωs
l , we construct a flow graph Gsl .

Initially, Gsl contains a single node representing bus context s0 ∈ Ωs
l . After analyzing all the

basic blocks inside l (using the technique described in Section 0.5), we may get a new bus

context at some node i ∈ πinl (recall that πinl are the set of execution graph nodes that may

propagate bus context across loop iterations). As a byproduct of this process, we also get the

WCET of all basic blocks inside l when the body of l is entered with bus context s0. Let us

assume that for any s ∈ Ωl \ Ωs
l and i ∈ πinl , s(i) represents the bus context Oini . Suppose we

get a new bus context s1 ∈ Ωl after analyzing the body of l once. Therefore, we add an edge

from s0 to s1 in Gsl . We continue expanding Gsl until sn(i) ⊆ sk(i) for all i ∈ πinl and for some

1 ≤ k ≤ n − 1 (where sn ∈ Ωl represents the bus context at the entry of l after it is analyzed

n times). In this case, we finish the construction of Gsl by adding a backedge from sn−1 to sk.

We also stop expanding Gsl if we have expanded as many times as the relative loop bound of

l. Note that Gsl contains at least two nodes, as the bus context at first loop iteration is always

distinguished from the bus contexts in any other loop iteration.

It is worth mentioning that the construction of Gsl is much less computationally intensive

than a full unrolling of l. The bus context at the entry of l quickly reaches a fixed-point and

we can stop expanding Gsl . In our experiments, we found that the number of nodes in Gsl never

exceeds ten. For very small loop bounds (typically less than 5), the construction ofGsl continues

till the loop bound. For larger loop bounds, most of the time, the construction of Gsl reaches the

diverged bus context [0, . . . , SlC − 1] quickly (in less than ten iterations). As a result, through

a small node count in Gsl , we are able to avoid the computationally intensive unrolling of every

loop.

Generating separate ILP constraints Using each flow graph Gsl for loop l, we generate ILP

constraints to distinguish different bus contexts under which a basic block can be executed. In

an abuse of notation, we shall use w.i to denote that the basic block i is reached with bus context

w.i when the immediately enclosing loop of i is reached with bus context w in any iteration.

The following ILP constraints are generated to bound the value of Mw
l :

∀w ∈ Ωl :
∑
x∈Ωl

Mx→w
l = Mw

l (12)

16

∀w ∈ Ωl : Mw
l − 1 ≤

∑
x∈Ωl

Mw→x
l ≤Mw

l (13)

∑
w∈Ωl

Mw
l = Nl.h (14)

where Nl.h denotes the number of times the header of loop l is executed. Equations 12-13 gen-

erate standard flow constraints from each graph Gsl , constructed for loop l. Special constraints

need to be added for the bus contexts with which the loop is entered at the first iteration and at

the last iteration. If w is a bus context with which loop l is entered at the last iteration, Mw
l is

more than the execution count of outgoing flows (i.e. Mw→x
l). Equation 13 takes this special

case into consideration. On the other hand, Equation 14 bounds the aggregate execution count

of all possible contexts w ∈ Ωl with the total execution count of the loop header. Note that Nl.h

will further be involved in defining the CFG structural constraints, which relate the execution

count of a basic block with the execution count of its incoming and outgoing edges Theiling

et al. [2000]. Equations 12-14 do not ensure that whenever loop l is invoked, the loop must be

executed at least once with some bus context in Ωs
l . We add the following ILP constraints to

ensure this:

∀w ∈ Ωs
l : Mw

l ≥ Nw.h
l.h (15)

Here Nw.h
l.h denotes the number of times the header of loop l is executed with bus context w.

The value of Nw.h
l.h is further bounded by the CFG structural constraints.

The constraints generated by Equations 12-15 are sufficient to derive the WCET of a basic

block in the presence of non-nested loops. In the presence of nested loops, however, we need

additional ILP constraints to relate the bus contexts at different loop nests. Assume that the loop

l is enclosed by an outer loop l′. For each w′ ∈ Ωl′ , we may get a different element s0 ∈ Ωs
l

and consequently, a different Gsl = (V s
l , E

s
l) for loop l. Therefore, we have the following ILP

constraints for each flow graph Gsl :

∀Gsl = (V s
l , E

s
l) :

∑
w∈V s

l

Mw
l ≤ boundl ∗ (

∑
w′∈parent(Gs

l)

Mw′
l′) (16)

where boundl represents the relative loop bound of l and parent(Gsl) denotes the set of bus

contexts in Ωl′ for which the flow graph Gsl is constructed at loop l. The left-hand side of

17

Equation 16 accumulates the execution count of all bus contexts in the flow graph Gsl . The total

execution count of all bus contexts in V s
l is bounded by boundl, for each construction of Gsl (as

boundl is the relative loop bound of l). Since Gsl is constructed
∑

w′∈parent(Gs
l)M

w′
l′ times, the

total execution count of all bus contexts in V s
l is bounded by the right hand side of Equation 16.

Finally, we need to bound the execution count of any basic block i (immediately enclosed

by loop l), with different bus contexts. We generate the following two constraints to bound this

value: ∑
w∈Ωl

Nw.i
i = Ni (17)

∀w ∈ Ωl : Nw.i
i ≤Mw

l (18)

whereNi represents the total execution count of basic block i andNw.i
i represents the execution

count of basic block i with bus context w.i. Equation 18 tells the fact that basic block i can

execute with bus context w.i at some iteration of l only if l is reached with bus context w at the

same iteration (by definition). Ni will be further constrained through the structure of program’s

CFG, which we exclude in our discussion.

Computing bus contexts at loop exit To derive the WCET of the whole program, we need

to estimate the bus context exiting a loop l (say Oexitl). A recently proposed work (Kelter et al.

[2011]) has shown the computation ofOexitl without a full loop unrolling. In this paper, we use a

similar technique as in Kelter et al. [2011] with one important difference: In Kelter et al. [2011],

a single offset graph Goff is maintained, which tracks the outgoing bus context from each loop

iteration. Once Goff got stabilized, a separate ILP formulation on Goff derives the value of

Oexitl . In the presence of pipelined architectures, Oouti for any i ∈ πoutl could be responsible

for propagating bus context outside of l (refer to Figure 3). Therefore, a separate offset graph

is maintained for each i ∈ πoutl (say Gioff) and an ILP formulation for each Gioff can derive

an estimation of the bus context exiting the loop (say Oexiti). In Kelter et al. [2011], it has

been proved that the computation of Oexitl is always an over-approximation (i.e. sound). Given

that the value of each Oouti is sound, it is now straightforward to see that the computation of

each Oexiti is also sound. For details of this analysis, readers are further referred to Kelter et al.

[2011].

18

0.7 Effect of branch prediction

Presence of branch prediction introduces additional complexity in WCET computation. If a

conditional branch is mispredicted, the timing of the mispredicted instructions need to be com-

puted. Mispredicted instructions introduce additional conflicts in L1 and L2 cache which need

to be modeled for a sound WCET computation. Similarly, branch misprediction will also affect

the bus delay suffered by the subsequent instructions. In the following, we shall describe how

our framework models the interaction of branch predictor on cache and bus. We assume that

there could be at most one unresolved branch at a time. Therefore, the number of mispredicted

instructions is bounded by the number of instructions till the next branch as well as the total size

of instruction fetch queue and reorder buffer.

0.7.1 Effect on cache for speculative execution

Abstract-interpretation-based cache analysis produces a fixed point on abstract cache content at

the entry (denoted as ACSini) and at the exit (denoted as ACSouti) of each basic block i. If a

basic block i has multiple predecessors, output cache states of the predecessors are joined to

produce the input cache state of basic block i. Consider an edge j → i in the program’s CFG. If

j → i is an unconditional edge, computation of ACSini does not require any change. However,

if j → i is a conditional edge, the condition could be correctly or incorrectly predicted during

the execution. For a correct prediction, the cache state ACSini is still sound. On the other

hand, for incorrect prediction, ACSini must be updated with the memory blocks accessed at

the mispredicted path. We assume that there could be at most one unresolved branch at a time.

Therefore, the number of mispredicted instructions is bounded by the number of instructions

till the next branch as well as the total size of instruction fetch queue and reorder buffer. To

maintain a safe cache state at the entry of each basic block i, we join the two cache states arising

due to the correct and incorrect predictions of conditional edge j → i. We demonstrate the

entire scenario through an example in Figure 4. In Figure 4, we demonstrate the procedure for

computing the abstract cache state at the entry of a basic block i. Basic block i is conditionally

reached from basic block j. To compute a safe cache content at the entry of basic block i, we

combine two different possibilities —- one when the respective branch is correctly predicted

(Figure 4(a)) and the other when the respective branch is incorrectly predicted (Figure 4(b)).

The combination is performed through an abstract join operation, which depends on the type

19

acsoutj

= Join(acsoutj , acsoutspec)

acsoutj

acsoutspec
acsoutspec

acsini
acsini = acsoutspec

(a) (b) (c)

j j j

i i i

acsini = acsoutj

Speculated
instructions

Figure 4: (a) Computation of acsini when the edge j → i is correctly predicted, (b) Computation
of acsini when the edge j → i is mispredicted, (c) A safe approximation of acsini by considering
both correct and incorrect prediction of edge j → i.

of analysis (must or may) being computed. A stabilization on the abstract cache contents at the

entry and exit of each basic block is achieved through conventional fixed point analysis.

0.7.2 Effect on bus for speculative execution

Due to branch misprediction, some additional instructions might be fetched from the mispre-

dicted path. As described in Section 0.6, an execution graph for each basic block B contains

a prologue (instructions before B which directly affect the execution time of B). If the last

instruction of the prologue is a conditional branch, the respective execution graph is augmented

with the instructions along the mispredicted path (Li et al. [2006]). Since the propagation of

bus context is entirely performed on the execution graph (as shown in Section 0.5), our shared

bus analysis remains unchanged, except the fact that it works on an augmented execution graph

(which contains instructions from the mispredicted path) in the presence of speculative execu-

tion.

0.7.3 Computing the number of mispredicted branches

In the presence of a branch predictor, each conditional edge j → i in the program CFG can be

correctly or incorrectly predicted. Let us assumeEj→i denotes the total number of times control

flow edge j → i is executed andEcj→i (Emj→i) denotes the number of times the control flow edge

j → i is executed due to correct (incorrect) branch prediction. Clearly, Ej→i = Ecj→i + Emj→i.

Value of Ej→i is further bounded by CFG structural constraints. On the other hand, values

of Ecj→i and Emj→i depend on the type of branch predictor. We use our prior work (Li et al.

[2005]), where we have shown how to bound the values of Ecj→i and Emj→i for history based

20

branch predictors. The constraints generated on Ecj→i and Emj→i are as well captured in the

global ILP formulation to compute the whole program WCET. We exclude the details of branch

predictor modeling in this paper — interested readers are referred to Li et al. [2005].

0.8 WCET computation of an entire program

We compute the WCET of the entire program with N basic blocks by using the following

objective function:

Maximize T =
N∑
i=1

∑
j→i

∑
w∈Ωi

tc,wj→i ∗ E
c,w
j→i + tm,wj→i ∗ E

m,w
j→i (19)

Ωi denotes the set of all bus contexts under which basic block i can execute. Basic block i can be

executed with different bus contexts. However, the number of elements in Ωi is always bounded

by the number of bus contexts entering the loop immediately enclosing i (refer to Section 0.6).

tc,wj→i denotes the WCET of basic block i when the basic block i is reached from basic block j,

the control flow edge j → i is correctly predicted and i is reached with bus context w ∈ Ωi.

Similarly, tm,wj→i denotes the WCET of basic block i under the same bus context but when the

control flow edge j → i was mispredicted. Note that both tc,wj→i and tm,wj→i are computed during

the iterative pipeline modeling (with the modifications proposed in Section 0.5). Ec,wj→i (Em,wj→i)

denotes the number of times basic block i is reached from basic block j with bus context w and

when the control flow edge j → i is correctly (incorrectly) predicted. Therefore, we have the

following two constraints:

Ecj→i =
∑
w∈Ωi

Ec,wj→i, E
m
j→i =

∑
w∈Ωi

Em,wj→i (20)

Constraints on Ecj→i and Emj→i are proposed by the ILP-based formulation in Li et al. [2005].

On the other hand, Ec,wj→i and Em,wj→i are bounded by the CFG structural constraints (Theiling

et al. [2000]) and the constraints proposed by Equations 12-18 in Section 0.6. Note that in

Equations 12-18, we only discuss the ILP constraints related to the bus contexts. Other ILP

constraints, such as CFG structural constraints and user constraints, are used in our framework

for an IPET implementation.

Finally, the WCET of the program maximizes the objective function in Equation 19. Any

ILP solver (e.g. CPLEX) can be used for the same purpose.

21

0.9 Soundness and termination of analysis

In this section, we shall first provide the basic ideas for the proof of the soundness of our analysis

framework and subsequently, elaborate each point.

0.9.1 Overall idea about soundness

The heart of soundness guarantee follows from the fact that we represent the timing of each

pipeline stage as an interval. Recall that the active timing interval of each pipeline stage is

captured by INTVi = [earliest[treadyi], latest[tfinishi]]. Therefore, as long as we can guarantee

that INTVi is always an over-approximation of the actual timing interval of the corresponding

pipeline stage in any concrete execution, we can also guarantee the soundness of our analysis.

To ensure that the interval INTVi is always an over-approximation, we have to consider all

possible latencies suffered by any pipeline stage. The latency of a pipeline stage, on the other

hand, may be influenced by the following factors:

Cache miss penalty Only NC categorized memory references may have variable latencies.

Our analysis represents this variable latency as an interval [lo, hi] (Equation 1) where lo (hi)

represents the latency of a cache hit (miss).

Functional unit latency Some functional units may have variable latencies depending on

operands (e.g. multiplier unit). For such functional units, we consider the EX pipeline stage

latency as an interval [lo, hi] where lo (hi) represents the minimum (maximum) possible latency

of the corresponding functional unit.

Contention to access functional units A pair of instructions may delay each other by con-

tending for the same functional unit. Since only EX stage may suffer from contention, two

different instructions may contend for the same functional unit only if the timing intervals of

respective EX stages overlap. For any pipeline stage i, an upper bound on contention (say

CONTmaxi) is computed by accounting the cumulative effect of contentions created by all the

overlapping pipeline stages (which access the same functional unit as i). We do not compute a

lower bound on contention and conservatively assume a safe lower bound of 0. Finally, we add

[0, CONTmaxi] with the timing interval of pipeline stage i. Clearly, [0, CONTmaxi] covers all

possible latencies suffered by pipeline stage i due to contention.

22

Bus access delay Bus access delay of a pipeline stage depends on incoming bus contexts

(Oini). Computation of Oini is always an over-approximation as evidenced by Equation 7 and

Equation 9. Therefore, we can always compute the interval spanning from minimum to maxi-

mum bus delay using Oini (Equation 4 and Equation 5).

In the following description, we shall argue how our analysis maintain soundness for each

of these four scenarios.

0.9.2 Detailed proofs

Property 0.9.1. Functional unit latency considered during analysis is always sound. More

precisely, any functional unit latency that may appear in a concrete execution, is considered

during WCET analysis.

Proof. If a functional unit has fixed latency, the soundness follows trivially. However, a func-

tional unit may have variable latency (e.g. multiplier unit). Assume lo (hi) represents the

minimum (maximum) latency that could possibly be suffered by using functional unit f . Our

WCET analysis uses an interval [lo, hi] to represent the execution latency (i.e. the latency of

EX stage in the pipeline) for all the instructions which may use f . In this way, we are able to

handle the worst case which may arise due to a lower functional unit latency.

Property 0.9.2. Cache access latencies considered during analysis is always sound. Therefore,

WCET analysis considers all possible cache access latencies which may appear in a concrete

execution.

Proof. Recall that memory references are classified as all-hit (AH), all-miss (AM) and unclas-

sified (NC) in L1 and (shared) L2 cache. The soundness of categorizing a memory reference

either AH or AM in L1 or (shared) L2 cache follows from the soundness of analyses proposed

in Theiling et al. [2000] and Li et al. [2009]. On the other hand, the soundness of our analysis

directly follows from Equation 1. Note that the latency considered for NC categorized memory

reference (Equation 1) captures the entire interval — ranging from cache hit latency to cache

miss latency. Therefore, our analysis can handle the worst case which may arise due to a cache

hit (instead of a cache miss) for a particular memory reference.

23

We propose the following properties which are essential for understanding the soundness of

shared bus analysis.

Property 0.9.3. Consider an execution graph of a basic blockB and assume INITB represents

the set of execution graph nodes without any predecessor. Assume two different execution con-

texts of basic blockB say c1 and c2. Further assumeOinj (c1) (Oinj (c2)) andOoutj (c1) (Ooutj (c2))

represent the incoming and outgoing bus context, respectively, at any execution graph node j

with execution context c1 (c2). Finally assume that each EX stage in the execution context c2

experiences at least as much contention as in the execution context c1. For any execution graph

node j, the following property holds: if Oinj (c1) * Oinj (c2), then Oini (c1) * Oini (c2) for at

least one i ∈ INITB .

Proof. For j ∈ INITB , our claim trivially follows. Therefore, assume j /∈ INITB . We

prove our claim by contradiction. We assume that Oini (c1) ⊆ Oini (c2) for all i ∈ INITB , but

Oinj (c1) * Oinj (c2). Note that any execution graph is acyclic and consequently, it has a valid

topological ordering. We prove that the contradiction is invalid (i.e. Oinj (c1) ⊆ Oinj (c2)) by

induction on the topological order n of execution graph nodes.

Base case n = 1. These are the nodes in INITB . Therefore, the claim directly follows from

our assumption.

Induction step Assume all nodes in the execution graph which have topological order ≤ k

validates our claim. We prove that any node j having topological order ≥ k + 1 validates our

claim as well. If we assume a contradiction then Oinj (c1) * Oinj (c2). However, it is only

possible if one of the following conditions hold for some predecessor p′ of j (refer to Equation

9):

• earliest[tfinishp′](c1) < earliest[tfinishp′](c2) or

• latest[tfinishp′](c1) > latest[tfinishp′](c2) or

• Ooutp′ (c1) * Ooutp′ (c2).

where earliest[tfinishi](c1) (latest[tfinishi](c1)) and earliest[tfinishi](c2) (latest[tfinishi](c2))

represent the earliest (latest) finish time of node i in the execution contexts c1 and c2, re-

24

spectively. As any EX stage in the execution context c2 experiences more contention than in

the execution context c1 (our assumption), any of the above three conditions can hold only if

Oinp′ (c1) * Oinp′ (c2). Following the same argument and going backward in the topological order

of the execution graph, we must have a predecessor p0 which has topological order ≤ k and

Oinp0(c1) * Oinp0(c2). This contradicts our induction hypothesis. Therefore, our initial claim was

invalid.

This property ensures that the bus contexts reaching at basic block B can precisely be en-

coded by the set of bus contexts reaching at INITB , ignoring functional unit contentions (since

the bus context at any node in the execution graph can grow only if the bus context at some node

i ∈ INITB grows). The following property ensures that the same is true even in the presence

of functional unit contentions.

Property 0.9.4. Consider an execution graph of a basic blockB and assume INITB represents

the set of execution graph nodes without any predecessor. Assume two different execution

contexts of basic blockB say c1 and c2. Further assumeOinj (c1, n) (Oinj (c2, n)) andOoutj (c1, n)

(Ooutj (c2, n)) represent the incoming and outgoing bus context, respectively, at any execution

graph node j with execution context c1 (c2) and at the n-th iteration of pipeline modeling.

Finally assume CRn(c1) (CRn(c2)) represents the contention relation in the execution context

c1 (c2) and at the n-th iteration of pipeline modeling. For any execution graph node j, the

following property holds: if Oini (c1, n) ⊆ Oini (c2, n) for all i ∈ INITB then Oinj (c1, n) ⊆

Oinj (c2, n) for any execution graph node j and CRn(c1) ⊆ CRn(c2) over different iterations n

of pipeline modeling.

Proof. Assume earliest[treadyi , n](c1) (earliest[treadyi , n](c2)) represents the earliest ready time

of execution graph node i in the execution context c1 (c2) and at n-th iteration of pipeline mod-

eling. Similarly, latest[tfinishi , n](c1) (latest[tfinishi , n](c2)) represents the latest finish time of

execution graph node i in the execution context c1 (c2) and at n-th iteration of pipeline modeling.

We prove our claim by an induction on the number of iterations (n) of pipeline modeling.

Base case n = 1. We start with all possible pairs of instructions in the contention relation (i.e.

we assume that every pair of instructions which may use same functional unit, can potentially

25

delay each other). Therefore, CR1(c1) = CR1(c2). Property 0.9.3 ensures that Oinj (c1, 1) ⊆

Oinj (c2, 1) for any execution graph node j. Consequently, for any execution graph node j, we

can conclude that

• earliest[treadyj , 1](c1) ≥ earliest[treadyj , 1](c2)

• latest[tfinishj , 1](c1) ≤ latest[tfinishj , 1](c2)

Therefore, CR2(c1) ⊆ CR2(c2) as the timing interval of any execution graph node is coarser in

the execution context c2 compared to the corresponding timing interval in the execution context

c1.

Induction step We assume that CRn(c1) ⊆ CRn(c2) and Oinj (c1, n) ⊆ Oinj (c2, n) for any

execution graph node j. We shall prove that CRn+1(c1) ⊆ CRn+1(c2) and Oinj (c1, n + 1) ⊆

Oinj (c2, n + 1) for any execution graph node j. We shall prove the same by contradiction (i.e.

assume that CRn+1(c1) * CRn+1(c2)). Informally, we have at least two execution graph

nodes i and j which have disjoint timing intervals in the execution context c1 but have overlap-

ping timing intervals in the execution context c2. This is only possible if one of the following

conditions hold:

• earliest[treadyi , n+ 1](c1) < earliest[treadyi , n+ 1](c2)

• earliest[treadyj , n+ 1](c1) < earliest[treadyj , n+ 1](c2).

• latest[tfinishi , n+ 1](c1) > latest[tfinishi , n+ 1](c2)

• latest[tfinishj , n+ 1](c1) > latest[tfinishj , n+ 1](c2)

However, above situation may arise only if one of the following two conditions holds:

• Oink (c1, n + 1) * Oink (c2, n + 1) for some execution graph node k. Since CRn(c1) ⊆

CRn(c2), Property 0.9.3 ensures Oinp (c1, n + 1) * Oinp (c2, n + 1) for at least one node

p which does not have any predecessor. This is a contradiction as Oinp (c1, n + 1) =

Oinp (c1, n) andOinp (c2, n+1) = Oinp (c2, n) and therefore,Oinp (c1, n+1) = Oinp (c1, n) ⊆

Oinp (c2, n) = Oinp (c2, n+ 1).

• CRn(c1) * CRn(c2), which may increase latest[tfinishi , n + 1](c1) with respect to the

value of latest[tfinishi , n+1](c2) for some node i. However, this is a contradiction of our

induction hypothesis.

26

This property generalizes the previous Property 0.9.3 by considering functional unit contentions.

Property 0.9.5. Consider an execution graph of a basic blockB and assume INITB represents

the set of execution graph nodes without any predecessor. Assume two different execution con-

texts of basic blockB say c1 and c2. Further assumeOinj (c1) (Oinj (c2)) andOoutj (c2) (Ooutj (c2))

represent the incoming and outgoing bus context, respectively, at any execution graph node j

with execution context c1 (c2). If Oini (c1) ⊆ Oini (c2) for all i ∈ INITB , WCET of basic block

B in the execution context c2 is always at least equal to the WCET of basic block B in the

execution context c1.

Proof. This claim follows directly from Properties 0.9.3-0.9.4. If Oini (c1) ⊆ Oini (c2) for all

nodes i ∈ INITB , then according to Properties 0.9.3-0.9.4, Oinj (c1) ⊆ Oinj (c2) for any execu-

tion graph node j. Since the bus context at any execution graph node with the execution context

c2 subsumes the respective bus contexts with the execution context c1, we can conclude that the

WCET of basic block B with the execution context c2 is at least equal to the WCET of basic

block B with the execution context c1.

Property 0.9.6. Consider any non-nested loop l. Assume Oini (m) represents the incoming bus

context of any execution graph node i atm-th iteration of loop. Consider two different iterations

m′ and m′′ of loop l. If Oinxi(m
′) ⊆ Oinxi(m′′) for all xi ∈ πinl , Oinxi(m

′+ 1) ⊆ Oinxi(m′′+ 1) for

all xi ∈ πinl . Moreover, WCET of any basic block inside loop l at iteration m′′ must be at least

equal to the WCET of the corresponding basic block at iteration m′.

Proof. By definition, πinl corresponds to the set of pipeline stages which resolve loop carried

dependency (either due to resource constraints, pipeline structural constraints or true data depen-

dency). This direct dependency is specified through directed edges in the execution graph (as

shown in Figure 3). We first prove thatOinj (m′) ⊆ Oinj (m′′) for any execution graph node j that

corresponds to some instruction inside l. We prove our claim by induction on the topological

order n of basic blocks in l.

27

Base case n = 1. This is the loop headerH . By using an exactly similar proof as in properties

0.9.3-0.9.4, we can show that if Oinxi(m
′) ⊆ Oinxi(m′′) for all xi ∈ πinl , Oini (m′) ⊆ Oini (m′′) for

any node i in the execution graph of H .

Induction step Assume our claim holds for all basic blocks having topological order≤ k. We

shall prove that our claim holds for all basic blocks having topological order≥ k+ 1. However,

using our methodology for proving Properties 0.9.3-0.9.4, we can easily show that if the bus

context for some basic block (having topological order ≥ k + 1) at iteration m′′ is not an over-

approximation of the bus context of the same basic block at iteration m′, it could be either of

two following reasons:

• The bus context at iteration m′′ is not an over-approximation of the bus context at itera-

tion m′ for some basic block having topological order ≤ k, contradicting our induction

hypothesis;

• For some xi ∈ πinl , Oinxi(m
′) * Oinxi(m

′′), contradicting our assumption.

Since the bus contexts computed at each basic block at iteration m′′ subsume the corre-

sponding bus contexts at iteration m′, Oinxi(m
′ + 1) ⊆ Oinxi(m

′′ + 1) for all xi ∈ πinl . For the

same reason, WCET of any basic block inside l at m′′-th iteration is at least equal to the WCET

of the corresponding basic block at iteration m′.

Recall that to track the bus contexts at different loop iterations, we construct a flow graph

Gsl . We terminate the construction of Gsl after k (k ≥ 1) iterations only if for all i ∈ πinl ,

Oini (k) ⊆ Oini (j) where 1 ≤ j < k. We add a backedge from k − 1-th bus context to j-th

bus context to terminate the construction of Gsl . The bus context at some loop iteration n is

computed from Gsl by following a path of length n from the initial node. In case n is less than

the number of nodes in Gsl , it is straightforward to see that the computed bus context is always

an over-approximation (as evidenced by Equation 7 and Equation 9). In case n is more than

the number of nodes in Gsl (i.e. backedge in Gsl is followed at least once to compute the bus

context), the above property ensures that the bus context computed by the flow graph is always

an over-approximation.

In the following property, we shall generalize the result for any loop (nested or non-nested).

28

Property 0.9.7. Consider any loop l. Assume Oini (m) represents the incoming bus context of

any execution graph node i at m-th iteration of loop. Consider two different iterations m′ and

m′′ of loop l. If Oinxi(m
′) ⊆ Oinxi(m

′′) for all xi ∈ πinl , Oinxi(m
′ + 1) ⊆ Oinxi(m

′′ + 1) for all

xi ∈ πinl . Moreover, if l contains some loop l′, Oexitxj computed at m′′-th iteration of l always

over-approximates Oexitxj computed at m′-th iteration of l, for every xj ∈ πoutl′ .

Proof. Let us first consider some loop l which contains only non-nested loops. Let us assume

a topological order of all inner loops inside l and assume lx represents the inner loop contained

in l, which is preceded by x − 1 other inner loops inside l, in topological order. We first prove

that Oinj (m′) ⊆ Oinj (m′′) for any execution graph node j that corresponds to some instruction

inside l. We also prove that for any inner loop lx and for all j ∈ πoutlx , Oexitj computed at m′′-th

iteration of l is always an over-approximation of Oexitj computed at m′-th iteration of l.

For any basic block i inside l, assume that ni is the number of loop exit edges appearing

prior in topological order of i. We assume that each loop has a single exit node. If some loop

has multiple exits, we can assume an empty node which post-dominates all the exit nodes of the

loop. We prove our claim by induction on ni.

Base case ni = 0. Therefore, we have the two following possibilities:

• (Case I) i is a basic block which is immediately enclosed by loop l.

• (Case II) i is a basic block which is immediately enclosed by loop l1 and l1 is the first

loop contained inside l, following a topological order.

For Case I, Property 0.9.6 ensures thatOinj (m′) ⊆ Oinj (m′′) for all nodes j that corresponds

to the instructions in basic block i.

For Case II, basic block i may have different bus contexts at different iterations of loop l1.

We shall prove that the bus context computed for basic block i at any iteration of l1 validates

our claim. Assume Oinj (x, x′) (Ooutj (x, x′)) represents the incoming (outgoing) bus context at

the execution graph node j at x-th iteration of l and at x′-th iteration of l1. Properties 0.9.3-

0.9.4 ensure that Oinxj(m
′, 1) ⊆ Oinxj(m

′′, 1) for all xj ∈ πinl1 . Therefore, applying Property

0.9.6 on loop l1, for any execution graph node j and for any iteration n of loop l1, we get

Oinj (m′, n) ⊆ Oinj (m′′, n) . Therefore, Oexiti for any i ∈ πoutl1 (recall that Oexiti represents

29

the bus context exiting the loop l1 from node i) computed at m′′-th iteration of loop l is an

over-approximation of Oexiti computed at m′-th iteration of loop l.

Induction step Assume our claim holds for all basic blocks i having ni ≤ k. Therefore,

Oinj (m′) ⊆ Oinj (m′′) for any execution graph node j that corresponds to the instructions of any

basic block i (having ni ≤ k). Moreover, for any inner loop lk and for all j ∈ πout
lk

, Oexitj

computed at m′′-th iteration of l is always an over-approximation of Oexitj computed at m′-th

iteration of l,

We shall prove that our claim holds for all basic blocks having ni = k + 1. As described in

the preceding, we have the two following cases:

• (Case I) i is a basic block which is immediately enclosed by loop l.

• (Case II) i is a basic block which is immediately enclosed by some loop lk+1, where lk+1

is the loop contained inside l and k different loops inside l precedes lk+1 in topological

order.

For Case I, using our methodology for proving Properties 0.9.3-0.9.4, we can easily show

that if the bus context for some basic block i (having ni = k + 1) at iteration m′′ is not an

over-approximation of the bus context of the same basic block at iteration m′, it could be due to

any of the three following reasons:

• The bus context at iterationm′′ is not an over-approximation of the bus context at iteration

m′ for some basic block j having nj ≤ k, contradicting our induction hypothesis;

• There exists some loop lx which appears prior to i in topological order butOexiti computed

at m′′-th iteration of loop l is not an over-approximation of Oexiti computed at m′-th

iteration of loop l for some i ∈ πoutlx . Since lx appears prior in topological order of i,

x ≤ k. This also violates our induction hypothesis.

• For some xi ∈ πinl , Oinxi(m
′) * Oinxi(m

′′), contradicting our assumption.

Now consider Case II. Assume Oinj (x, x′) (Ooutj (x, x′)) represents the incoming (outgoing)

bus context at the execution graph node j at x-th iteration of l and at x′-th iteration of lk+1.

According to our induction hypothesis and the argument provided above, we get Oinj (m′, 1) ⊆

Oinj (m′′, 1) for all j ∈ πin
lk+1 . Therefore, applying Property 0.9.6 on loop lk+1, for any execution

30

graph node j and for any iteration n of loop lk+1, we get Oinj (m′, n) ⊆ Oinj (m′′, n) . Conse-

quently, for any i ∈ πout
lk+1 ,Oexiti computed atm′′-th iteration of loop l is an over-approximation

of Oexiti computed at m′-th iteration of loop l. This completes our induction.

Finally, we conclude that Oinj (m′) ⊆ Oinj (m′′) for any execution graph node j that corre-

sponds to some instruction in l. Consequently, Oinxi(m
′ + 1) ⊆ Oinxi(m′′ + 1) for all xi ∈ πinl .

From the above argument, it is now straight-forward to see that the property also holds for

any nested loop by proving the claims in a bottom up fashion of loop nests (i.e. an induction on

the level of loop nests starting from the innermost loop).

Property 0.9.8. (Termination Property) Consider two instructions p and q of basic block B.

(p, q) ∈ CR if and only if p and q may contend for the same functional unit. CR is called

the contention relation. Assume CRn represents the contention relation at n-th iteration of

pipeline modeling. Set of elements in CRn monotonically decreases across different iterations

n of pipeline modeling.

Proof. We prove the above claim by induction on number of iterations taken by the pipeline

modeling. For some execution graph node i, assume Oini (n) (Oouti (n)) represents the incom-

ing (outgoing) bus context at iteration n. Also assume earliest[treadyi , n] (latest[tfinishi , n])

represents the earliest (latest) ready (finish) time of execution graph node i at iteration n.

Base case n = 1. We start with all possible pairs of instructions in the contention relation (i.e.

we assume that every pair of instructions which may use same functional unit can potentially

delay each other). Therefore, the set of elements in the contention relation trivially decreases

after the first iteration (i.e. CR2 ⊆ CR1).

Induction step We assume that CRn ⊆ CRn−1 and we shall prove that CRn+1 ⊆ CRn. We

prove the same by contradiction (i.e. assume that CRn+1 * CRn). Informally, we have at

least two execution graph nodes i and j which have disjoint timing intervals at iteration n but

overlapping timing intervals at iteration n + 1. This is only possible if one of the following

conditions hold:

• earliest[treadyi , n+1] < earliest[treadyi , n] (or earliest[treadyj , n+1] < earliest[treadyj , n]).

31

• latest[tfinishi , n+ 1] > latest[tfinishi , n] (or latest[tfinishj , n+ 1] > latest[tfinishj , n]).

However, above situation may arise only if one of the following two conditions hold: 1)Oink (n+

1) * Oink (n) for some execution graph node k. Since CRn ⊆ CRn−1, Property 0.9.4 ensures

Oinp (n + 1) * Oinp (n) for at least one node p which does not have any predecessor. This is a

contradiction as Oinp (n + 1) = Oinp (n). 2) CRn * CRn−1, which leads to more contention at

n-th iteration and thereby increasing latest[tfinishi , n + 1] for some node i. However, this is a

contradiction of our induction hypothesis.

This property ensures that our iterative framework always terminates in the presence of

shared cache and shared bus.

Property 0.9.9. Computation of Oini and Oouti is always sound.

Proof. This follows directly from the previous properties. Property, 0.9.6 ensures that we in-

clude all possible contexts for a basic block inside loop. Equation 10 and Equation 11 ensure

that we include all possible TDMA offsets from different program paths. As contention de-

creases monotonically over different iterations of pipeline modeling (Property 0.9.8), Equation

9 and Equation 7 ensure that the value of Oini and Oouti are sound over-approximations of re-

spective bus contexts. Finally, the soundness of the analysis presented in Kelter et al. [2011]

guarantees that we always compute an overapproximation of bus contexts at loop exit.

Essentially, we show that the search space of possible bus contexts is never pruned through-

out the program. Therefore, our analysis maintain soundness when a lower bus delay may lead

to global worst case scenario.

Finally, we conclude that the longest acyclic path search in the execution graph always

results in a sound estimation of basic block WCET. Moreover, we are able to consider an over-

approximation of all possible bus contexts if a basic block executes with multiple bus contexts

(Properties 0.9.6 -0.9.7). The IPET approach, on the other hand, searches for the longest feasible

program path to ensure a sound estimation of whole program’s WCET.

32

0.10 Experimental evaluation

Experimental setup

We have chosen moderate to large size benchmarks from Gustafsson et al. [2010], which are

generally used for timing analysis. The code size of the benchmarks ranges from 2779 bytes

(bsort100) to 118351 bytes (nsichneu), with an average code size of 18500 bytes. Indi-

vidual benchmarks are compiled into simplescalar PISA (Portable Instruction Set Architecture)

Austin et al. [2002] — a MIPS like instruction set architecture. We use the simplescalar gcc

cross compiler with optimization level -O2 to generate the PISA compliant binary of each

benchmark. The control flow graph (CFG) of each benchmark is extracted from its PISA com-

pliant binary and is used as an input to our analysis framework.

To validate our analysis framework, the simplescalar toolset Austin et al. [2002] was ex-

tended to support the simulation of shared cache and shared bus. The simulation infrastructure

is used to compare the estimated WCET with the observed WCET. Observed WCET is mea-

sured by simulating the program for a few program inputs. Nevertheless, we would like to

point out that the presence of a shared cache and a shared bus makes the realization of the

worst case scenario extremely challenging. In the presence of a shared cache and a shared bus,

the worst case scenario depends on the interleavings of threads, which are running on differ-

ent cores. Consequently, the observed WCET result in our experiments may sometimes highly

under-approximate the actual WCET.

For all of our experiments, we present the WCET overestimation ratio, which is measured

as Estimated WCET
Observed WCET . For each reported overestimation ratio, the system configuration during

the analysis (which computes Estimated WCET) and the measurement (which computes

Observed WCET) are kept identical. Unless otherwise stated, our analysis uses the default

system configuration in Table 1 (as shown by the column “Default settings“). Since the data

cache modeling is not yet included in our current implementation, all data accesses are assumed

to be L1 cache hits (for analysis and measurement both).

To check the dependency of WCET overestimation on the type of conflicting task (being

run in parallel on a different core), we use two different tasks to generate the inter-core conflicts

— 1) jfdctint, which is a single path program and 2) statemate, which has a huge

number of paths. In our experiments (Figures 5-7), we use jfdctint to generate inter-core

33

Table 1: Default micro-architectural setting for experiments

Component Default settings Perfect settings
Number of cores 2 NA

1-way, inorder
pipeline 4-entry IFQ, 8-entry ROB NA

L1 instruction 2-way associative, 1 KB All accesses
cache miss penalty = 6 cycles are L1 hit

L2 instruction 4-way associative, 4 KB NA
cache miss penalty = 30 cycles

Shared bus slot length = 50 cycles Zero bus delay
Branch predictor 2 level predictor, L1 size=1 Branch prediction

L2 size=4, history size=2 is always correct

conflicts to the first half of the tasks (i.e. matmult to nsichneu). On the other hand, we use

statemate to generate inter-core conflicts to the second half of the tasks (i.e. edn to st).

Due to the absence of any infeasible program path, inter-core conflicts generated by a single

path program (e.g. jfdctint) can be more accurately modeled compared to a multi-path

program (e.g. statemate). Therefore, in the presence of a shared cache, we expect a better

WCET overestimation ratio for the first half of the benchmarks (i.e. matmult to nsichneu)

compared to the second half (i.e. edn to st).

To measure the WCET overestimation due to cache sharing, we compare the WCET result

with two different design choices, where the level 2 cache is partitioned. For a two-core system,

two different partitioning choices are explored: first, each partition has the same number of

cache sets but has half the number of ways compared to the original shared cache (called vertical

partitioning). Secondly, each partition has half the number of cache sets but has the same number

of ways compared to the original shared cache (called horizontal partitioning). In our default

configuration, therefore, each core is assigned a 2-way associative, 2 KB L2 cache in the vertical

partitioning, whereas each core is assigned a 4-way associative, 2 KB L2 cache in the horizontal

partitioning.

Finally, to pinpoint the source of WCET overestimation, we can selectively turn off the anal-

ysis of different micro-architectural components. We say that a micro-architectural component

has perfect setting if the analysis of the same is turned off (refer to column “Perfect settings” in

Table 1).

34

 0

 0.5

 1

 1.5

 2

 2.5

matmult

cnt
fir fdct

expint

nsichneu

edn
ludcmp

ns bsort100

adpcm
stW

C
E

T
ov

er
es

tim
at

io
n

ra
tio

 (W
C

E
T/

S
IM

)

Benchmarks

WCET overestimation w.r.t various L2 cache setting

perfect L1 cache
only L1 cache

L1 cache + shared L2 cache

L1 cache + vertically partitioned L2 cache
L1 cache + horizontally partitioned L2 cache

Figure 5: Effect of shared and partitioned L2 cache on WCET overestimation

Basic analysis result

Effect of caches Figure 5 shows the WCET overestimation ratio with respect to different

L1 and L2 cache settings in the presence of a perfect branch predictor and a perfect shared

bus. Results show that we can reasonably bound the WCET overestimation ratio except for

nsichneu. The main source of WCET overestimation in nsichneu comes from the path

analysis and not due to the micro-architectural modeling. This is expected, as nsichneu

contains more than two hundred branch instructions and many infeasible paths. These infeasible

paths can be eliminated by providing additional user constraints into our framework and hence

improving the result. We also observe that the partitioned L2 caches may lead to a better WCET

overestimation compared to the shared L2 caches, with the vertical L2 cache partitioning almost

always working as the best choice. The positive effect of the vertical cache partitioning is visible

in adpcm, where the overestimation in the presence of a shared cache rises. This is due to the

difficulty in modeling the inter-core cache conflicts from statemate (a many-path program

being run in parallel).

Effect of speculative execution As we explained in Section 0.7, the presence of a branch

predictor and speculative execution may introduce additional computation cycles for executing

a mispredicted path. Moreover, speculative execution may introduce additional cache conflicts

from a mispredicted path. The results in Figure 6(a) and Figure 6(b) show the effect of specula-

tion in L1 and L2 cache, respectively. Mostly, we do not observe any sudden spikes in the WCET

overestimation just due to speculation. adpcm shows some reasonable increase in WCET over-

estimation with L2 caches and in the presence of speculation (Figure 6(b)). This increase in

35

 0

 0.5

 1

 1.5

 2

 2.5

matmult

cnt
fir fdct

expint

nsichneu

edn
ludcmp

ns bsort100

adpcm
st

W
C

E
T

ov
er

es
tim

at
io

n
ra

tio
 (W

C
E

T/
S

IM
)

Benchmarks

WCET overestimation w.r.t speculation and with only L1 cache

perfect predictor + perfect L1 cache
2 level predictor + perfect L1 cache

perfect predictor + only L1 cache
2 level predictor + only L1 cache

(a)

 0

 0.5

 1

 1.5

 2

 2.5

matmult

cnt
fir fdct

expint

nsichneu

edn
ludcmp

ns bsort100

adpcm
stW

C
E

T
ov

er
es

tim
at

io
n

ra
tio

 (W
C

E
T/

S
IM

)

Benchmarks

WCET overestimation w.r.t speculation in various L2 cache setting

perfect predictor + L1 cache + shared L2 cache
2 level predictor + L1 cache + shared L2 cache

perfect predictor + L1 cache + vertically partitioned L2 cache
2 level predictor + L1 cache + vertically partitioned L2 cache

perfect predictor + L1 cache + horizontally partitioned L2 cache
2 level predictor + L1 cache + horizontally partitioned L2 cache

(b)

Figure 6: (a) Effect of speculation on L1 cache, (b) effect of speculation on partitioned and
shared L2 caches

the overestimation ratio can be explained from the overestimation arising in the modeling of the

effect of speculation in cache (refer to Section 0.7). Due to the abstract join operation to com-

bine the cache states in correct and mispredicted path, we may introduce some spurious cache

conflicts. Nevertheless, our approach for modeling the speculation effect in cache is scalable

and produces tight WCET estimates for most of the benchmarks.

Effect of shared bus Figure 7 shows the WCET overestimation in the presence of a shared

cache and a shared bus. We observe that our shared bus analysis can reasonably control the

overestimation due to the shared bus. Except for edn and nsichneu, the overestimation in

the presence of a shared cache and a shared bus is mostly equal to the overestimation when

shared bus analysis is turned off (i.e. a perfect shared bus). Recall that each overestimation ratio

is computed by performing the analysis and the measurement on identical system configuration.

Therefore, the analysis and the measurement both includes the shared bus delay only when the

36

 0

 0.5

 1

 1.5

 2

 2.5

matmult

cnt
fir fdct

expint

nsichneu

edn
ludcmp

ns bsort100

adpcm
stW

C
E

T
ov

er
es

tim
at

io
n

ra
tio

 (W
C

E
T/

S
IM

)

Benchmarks

WCET overestimation in presence of shared bus

perfect predictor + L1 cache + shared L2 cache + perfect shared bus
perfect predictor + L1 cache + shared L2 cache + shared bus

2 level predictor + L1 cache + shared L2 cache + perfect shared bus
2 level predictor + L1 cache + shared L2 cache + shared bus

Figure 7: Effect of shared bus on WCET overestimation

shared bus is enabled. For a perfect shared bus setting, both the analysis and the measurement

consider a zero latency for all the bus accesses. As a result, we also observe that our shared

bus analysis might be more accurate than the analysis of other micro-architectural components

(e.g. in case of nsichneu, expint and fir, where the WCET overestimation ratio in the

presence of a shared bus might be less than the same with a perfect shared bus). In particular,

nsichneu shows a drastic fall in the WCET overestimation ratio when the shared bus analysis

is enabled. For nsichneu, we found that the execution time is dominated by shared bus delay,

which is most accurately computed by our analysis for this benchmark. On the other hand,

we observed in Figure 5 that the main source of WCET overestimation in nsichneu is path

analysis, due to the presence of many infeasible paths. Consequently, when shared bus analysis

is turned off, the overestimation arising from path analysis dominates and we obtain a high

WCET overestimation ratio. Average WCET overestimation in the presence of both a shared

cache and a shared bus is around 50%.

WCET analysis sensitivity w.r.t. micro-architectural parameters

In this section, we evaluate the WCET overestimation sensitivity with respect to different micro-

architectural parameters. For the following experiments, the reported WCET overestimation

denotes the geometric mean of the term Estimated WCET
Observed WCET over all the different benchmarks.

WCET sensitivity w.r.t. L1 cache size Figure 8(a) and Figure 8(b) show the geometric mean

of WCET overestimation for different L1 cache sizes, with and without speculation, respec-

tively. To keep the L2 cache bigger than the L1 cache, total L2 cache is kept at 4-way, 16 KB for

all the experiments in Figures 8(a)-(b). Therefore, for horizontally and vertically partitioned L2

37

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

1-way, 512 bytes

2-way, 512 bytes

1-way, 1 KB

2-way, 1 KB

1-way, 2 KB

2-way, 2KB

1-way, 4 KB

2-way, 4KBW
C

E
T

ov
er

es
tim

at
io

n
ra

tio
 (W

C
E

T/
S

IM
)

L1 cache

WCET overestimation sensitivity w.r.t L1 cache size

only L1 cache + perfect shared bus
L1 cache + shared L2 cache + perfect shared bus

L1 cache + vertically partitioned L2 cache + perfect shared bus
L1 cache + horizontally partitioned L2 cache + perfect shared bus

L1 cache + shared L2 cache + shared bus

(a)

 0

 0.5

 1

 1.5

 2

 2.5

1-way, 512 bytes

2-way, 512 bytes

1-way, 1 KB

2-way, 1 KB

1-way, 2 KB

2-way, 2KB

1-way, 4 KB

2-way, 4KB

W
C

E
T

ov
er

es
tim

at
io

n
ra

tio
 (W

C
E

T/
S

IM
)

L1 cache

WCET overestimation sensitivity w.r.t speculation and L1 cache size

2 level predictor + only L1 cache + perfect shared bus
2 level predictor + L1 cache + shared L2 cache + perfect shared bus

2 level predictor + L1 cache + vertically partitioned L2 cache + perfect shared bus
2 level predictor + L1 cache + hrizontally partitioned L2 cache + perfect shared bus

2 level predictor + L1 cache + shared L2 cache + shared bus

(b)

Figure 8: WCET overestimation sensitivity w.r.t. L1 cache (a) without speculation, (b) with
speculation

cache architectures, each core uses an 8 KB L2 cache. Naturally, in the presence of speculation,

the overestimation is slightly higher. However, our framework is able to maintain an average

overestimation ratio around 20% without speculation and around 40% with speculation.

WCET sensitivity w.r.t. L2 cache size Figure 9(a) and Figure 9(b) show the geometric mean

of WCET overestimation for different L2 cache sizes, with and without speculation, respec-

tively. On average, WCET overestimation in the presence of shared L2 cache is higher com-

pared to partitioned L2 cache architectures. As pointed out earlier, this is due to the inherent

difficulties in modeling the inter-core cache conflicts. Nevertheless, our analysis framework

captures an average overestimation around 40% (50%) without (with) speculation over different

L2 cache settings.

WCET sensitivity w.r.t. different pipelines We have done experiments for different pipelines.

Figure 10(a) (without speculation) and Figure 10(b) (with speculation) show the WCET over-

38

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

4-way, 4 KB 4-way, 8 KB 4-way, 16 KB 4-way, 32 KB 4-way, 64 KB

W
C

E
T

ov
er

es
tim

at
io

n
ra

tio
 (W

C
E

T/
S

IM
)

L2 cache

WCET overestimation sensitivity w.r.t L2 cache size

only L1 cache + perfect shared bus
L1 cache + shared L2 cache + perfect shared bus

L1 cache + vertically partitioned L2 cache + perfect shared bus
L1 cache + horizontally partitioned L2 cache + perfect shared bus

L1 cache + shared L2 cache + shared bus

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

4-way, 4 KB 4-way, 8 KB 4-way, 16 KB 4-way, 32 KB 4-way, 64 KB

W
C

E
T

ov
er

es
tim

at
io

n
ra

tio
 (W

C
E

T/
S

IM
)

L2 cache

WCET overestimation sensitivity w.r.t speculation and L2 cache size

2 level predictor + L1 cache + shared L2 cache + perfect shared bus
2 level predictor + L1 cache + vertically partitioned L2 cache + perfect shared bus

2 level predictor + L1 cache + horizontally partitioned L2 cache + perfect shared bus
2 level predictor + L1 cache + shared L2 cache + shared bus

(b)

Figure 9: WCET overestimation sensitivity w.r.t. L2 cache (a) without speculation, (b) with
speculation

estimation sensitivity for inorder, out-of-order and superscalar pipelines. Superscalar pipelines

increase the instruction level parallelism and so as the performance of entire program. How-

ever, it also becomes difficult to model the inherent instruction level parallelism in the presence

of superscalar pipelines. Therefore, Figure 10(a) and 10(b) both show an increase in WCET

overestimation with superscalar pipelines. However, it is clear from both the figures that the

additional overestimation mostly comes from the superscalar pipeline modeling (results marked

by “without cache” and “2lev without cache” respectively) and not from the modeling of caches.

WCET sensitivity w.r.t. bus slot length Finally, we show how the WCET overestimation is

affected with respect to bus slot length. Figure 11 shows the WCET overestimation sensitivity

with respect to different bus slot lengths. With very high bus slot lengths (e.g. 70 or 80 cycles),

WCET overestimation normally increases (as shown in Figure 11). This is due to the fact that

with higher bus slot lengths, the search space for possible bus contexts (or set of TDMA offsets)

increases. As a result, it is less probable to expose the worst case scenario in simulation with

39

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1-way, inorder 1-way, out-of-order 2-way, out-of-orderW
C

E
T

ov
er

es
tim

at
io

n
ra

tio
 (W

C
E

T/
S

IM
)

Pipeline

WCET overestimation sensitivity w.r.t pipeline parameters

perfect L1 cache
only L1 cache + perfect shared bus

L1 cache + shared L2 cache + perfect shared bus
L1 cache + vertically partitioned L2 cache + perfect shared bus

L1 cache + horizontally partitioned L2 cache + perfect shared bus
L1 cache + shared L2 cache + shared bus

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1-way, inorder 1-way, out-of-order 2-way, out-of-orderW
C

E
T

ov
er

es
tim

at
io

n
ra

tio
 (W

C
E

T/
S

IM
)

Pipeline

WCET overestimation sensitivity w.r.t pipeline parameters in presence of speculation

2 level predictor + perfect L1 cache
2 level predictor + only L1 cache + perfect shared bus

2 level predictor + L1 cache + shared L2 cache + perfect shared bus
2 level predictor + L1 cache + vertically partitioned L2 cache + perfect shared bus

2 level predictor + L1 cache + horizontally partitioned L2 cache + perfect shared bus
2 level predictor + L1 cache + shared L2 cache + shared bus

(b)

Figure 10: WCET overestimation sensitivity w.r.t. different pipelines (a) without speculation,
(b) with speculation

higher bus slot lengths.

Analysis time

We have performed all the experiments on an 8 core, 2.83 GHz Intel Xeon machine having 4 GB

of RAM and running Fedora Core 4 operating system. Table 2 reports the maximum analysis

time when the shared bus analysis is disabled and Table 3 reports the maximum analysis time

when all the analyses are enabled (i.e. cache, shared bus and pipeline). Recall from Section

0.4 that our WCET analysis framework is broadly composed of two different parts, namely,

micro-architectural modeling and implicit path enumeration (IPET) through integer linear pro-

gramming (ILP). The column labeled “µ arch” captures the time required for micro-architectural

modeling. On the other hand, the column labeled “ILP” captures the time required for path anal-

ysis through IPET.

In the presence of speculative execution, number of mispredicted branches is modeled by

integer linear programming Li et al. [2005]. Such an ILP-based branch predictor modeling,

40

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

40 cycles 50 cycles 60 cycles 70 cycles 80 cycles

W
C

E
T

ov
er

es
tim

at
io

n
ra

tio
 (W

C
E

T/
S

IM
)

TDMA bus slot length

WCET overestimation sensitivity w.r.t bus slot length

perfect predictor + L1 cache + shared L2 cache + shared bus
2 level predictor + L1 cache + shared L2 cache + shared bus

Figure 11: WCET overestimation sensitivity w.r.t. different bus slot length (with and without
speculative execution)

therefore, increases the number of constraints which need to be considered by the ILP solver.

As a result, the ILP solving time increases in the presence of speculative execution (as evidenced

by the second rows of both Table 2 and Table 3).

Shared bus analysis increases the micro-architectural modeling time (as evidenced by Table

3) and the analysis time usually increases with the bus slot length. The time for the shared bus

analysis generally appears from tracking the bus context at different pipeline stages. A higher

bus slot length usually leads to a higher number of bus contexts to analyze, thereby increasing

the analysis time.

In Table 2 and Table 3, we have only presented the analysis time for the longest running

benchmark (nsichneu) from our test-suite. For any other program used in our experiments,

the entire analysis (micro-architectural modeling and ILP solving time) takes around 20-30 sec-

onds on average to finish.

The results reported in Table 2 show that the ILP-based modeling of branch predictor usually

increases the analysis time. Therefore, for a more efficient but less precise analysis of branch

predictors, one can explore different techniques to model branch predictors, such as abstract

interpretation. Shared bus analysis time can be reduced by using different offset abstractions,

such as interval instead of an offset set. Nevertheless, the appropriate choice of analysis method

and abstraction depends on the precision-scalability tradeoff required by the user.

41

Table 2: Analysis time [of nsichneu] in seconds. The first row represents the analysis time
when speculative execution was disabled. The second row represents the time when speculative
execution was enabled

Shared L2 cache Pipeline
1-way 1-way 2-way

4 KB 8 KB 16 KB 32 KB 64 KB inorder out-of-order superscalar
µ µ µ µ µ µ µ µ

arch ILP arch ILP arch ILP arch ILP arch ILP arch ILP arch ILP arch ILP

1.2 1.3 1.4 1.3 1.7 1.3 2.3 1.3 4.8 1.2 1.3 1.3 1.2 1.3 1.3 1.4
2.6 240 2.9 240 3.5 238 4.6 238 7 239 2.6 238 2.4 239 2.8 254

Table 3: Analysis time [of nsichneu] in seconds. The first row represents the analysis time
when speculative execution was disabled. The second row represents the time when speculative
execution was enabled

TDMA bus slot length
40 cycles 50 cycles 60 cycles 70 cycles 80 cycles
µ µ µ µ µ

arch ILP arch ILP arch ILP arch ILP arch ILP

75.8 4 100 4 128 4 160 4.2 198 5.1
128 162 163 156 205 158 261 181 363 148

0.11 Extension of shared cache analysis

Our discussion on cache analysis has so far concentrated on the least-recently-used (LRU) cache

replacement policies. However, a widely used cache replacement policy is first-in-first-out

(FIFO). FIFO cache replacement policy has been used in embedded processors such as ARM9

and ARM11 Reineke et al. [2007]. Recently, abstract interpretation based analysis of FIFO re-

placement policy has been proposed in Grund and Reineke [2009, 2010a] for single level caches

and for multi-level caches in Hardy and Puaut [2011]. In this section, we shall discuss the ex-

tension of our shared cache analysis for FIFO cache replacement policy. We shall also show

that such an extension will not change the modeling of timing interactions among shared cache

and other basic micro-architectural components (e.g. pipeline and branch predictor).

0.11.1 Review of cache analysis for FIFO replacement

We use the must cache analysis for FIFO replacement as proposed in Grund and Reineke [2009].

In FIFO replacement, when a cache set is full and still the processor requests fresh memory

blocks (which map to the same cache set), the first cache line entering the respective cache set

(i.e. first-in) is replaced. Therefore, the set of tags in a k-way FIFO abstract cache set (say As)

42

can be arranged from last-in to first-out order (Grund and Reineke [2009]) as follows:

As = [T1, T2, . . . , Tk] (21)

where each Ti ⊆ T and T is the set of all cache tags. Unlike LRU, cache state never changes

upon a cache hit with FIFO replacement policy. Therefore, the cache state update on a memory

reference depends on the hit-miss categorization of the same memory reference. Assume that a

memory reference belongs to cache tag tagi. The FIFO abstract cache setAs = [T1, T2, . . . , Tk]

is updated on the access of tagi as follows:

τ([T1, T2, . . . , Tk], tagi) =


[T1, T2, . . . , Tk], if tagi ∈

⋃
i Ti;

[{tagi}, T2, . . . , Tk−1], if tagi /∈
⋃
i Ti ∧ |

⋃
i Ti| = k;

[φ, T2, . . . , Tk−1 ∪ {tagi}], otherwise.

(22)

The first scenario captures a cache hit and the second scenario captures a cache miss. Third

scenario appears when the static analysis cannot accurately determine the hit-miss categorization

of the memory reference.

The abstract join function for the FIFO must cache analysis is exactly same as the LRU

must cache analysis. The join function between two abstract FIFO cache sets computes the

intersection of the abstract cache sets. If a cache tag is available in both the abstract cache sets,

the right most relative position of the cache tag is captured after the join operation.

0.11.2 Analysis of shared cache with FIFO replacement

We implement the must cache analysis for FIFO replacement as described in the preceding. To

distinguish the cold cache misses at the first iterations of loops and different procedure calling

contexts, our cache analysis employs the virtual-inline-virtual-unrolling (VIVU) approach (as

described in Theiling et al. [2000]). After analyzing the L1 cache memory references are cate-

gorized as all-hit (AH), all-miss (AM) or unclassified (NC). AM and NC categorized memory

references may access the L2 cache and therefore, the L2 cache state is updated for the memory

references which are categorized AM or NC in the L1 cache (as in Hardy and Puaut [2011]).

To analyze the shared cache, we used our previous work on shared cache Li et al. [2009] for

LRU cache replacement policy. Li et al. [2009] employs a separate shared cache conflict analysis

43

phase. For FIFO replacement policy too, we can use the exactly same idea to analyze the set

of inter-core cache conflicts. Shared cache conflict analysis may change the categorization of a

memory reference from all-hit (AH) to unclassified (NC). For the sake of illustration, assume

a memory reference which accesses the memory block m. This analysis phase first computes

the number of unique conflicting shared cache accesses from different cores. Then it is checked

whether the number of conflicts from different cores can potentially replace m from shared

cache. More precisely, for an N -way set associative cache, hit/miss categorization (CHMC) of

corresponding memory reference is changed from all-hit (AH) to unclassified (NC) if and only

if the following condition holds:

N −AGEfifo(m) < |Mc(m)| (23)

where |Mc(m)| represents the number of conflicting memory blocks from different cores which

may potentially access the same L2 cache set as m. AGEfifo(m) represents the relative posi-

tion of memory block m in the FIFO abstract cache set and in the absence of inter-core cache

conflicts. Recall that the memory blocks (or the tags) are arranged according to the last-in to

first-out order in the FIFO abstract cache set. Therefore, the term N − AGEfifo(m) captures

the maximum number of fresh memory blocks which can enter the FIFO cache before m being

evicted out.

0.11.3 Interaction of FIFO cache with pipeline and branch predictor

As described in the preceding, after the FIFO shared cache analysis, memory references are

categorized as all-hit (AH), all-miss (AM) or unclassified (NC). In the presence of pipeline, such

a categorization of instruction memory references add computation cycle with the instruction

fetch (IF) stage. Therefore, we use Equation 1 to compute the latency suffered by cache hit/miss

and propagate the latency through different pipeline stages.

Recall from Section 0.7.1 that speculative execution may introduce additional cache con-

flicts. In Section 0.7.1, we proposed to modify the abstract interpretation based cache analysis

to handle the effect of speculative execution on cache. From Figure 4, we observe that our so-

lution is independent of the cache replacement policies concerned. Our proposed modification

performs an abstract join operation on the cache states along the correct and mispredicted path

(as shown in Figure 4). Therefore, for FIFO replacement polices the abstract join operation

44

is performed according to the FIFO replacement analysis (instead of LRU join operation we

performed in case of LRU caches).

0.11.4 Experimental result

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

matmult

cnt
fir fdct

expint

nsichneu

edn
ludcmp

ns bsort100

adpcm
stW

C
E

T
ov

er
es

tim
at

io
n

ra
tio

 (W
C

E
T/

S
IM

)

Benchmarks

WCET overestimation w.r.t various L2 cache setting (FIFO cache replacement)

perfect L1 cache
only L1 cache

L1 cache + shared L2 cache

L1 cache + vertically partitioned L2 cache
L1 cache + horizontally partitioned L2 cache

(a)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

matmult

cnt
fir fdct

expint

nsichneu

edn
ludcmp

ns bsort100

adpcm
st

W
C

E
T

ov
er

es
tim

at
io

n
ra

tio
 (W

C
E

T/
S

IM
)

Benchmarks

WCET overestimation w.r.t speculation in various L2 cache setting (FIFO cache replacement)

perfect predictor + L1 cache + shared L2 cache
2 level predictor + L1 cache + shared L2 cache

perfect predictor + L1 cache + vertically partitioned L2 cache
2 level predictor + L1 cache + vertically partitioned L2 cache

perfect predictor + L1 cache + horizontally partitioned L2 cache
2 level predictor + L1 cache + horizontally partitioned L2 cache

(b)

Figure 12: Analysis of cache in the presence of FIFO replacement policy (a) WCET overestima-
tion w.r.t. different L2 cache architectures, (b) WCET overestimation in the presence of FIFO
cache and speculative execution

Figure 12 demonstrates our WCET analysis experience with FIFO replacement policy. We

have used the exactly same experimental setup as mentioned in Section 0.10. Figure 12(a)

shows the WCET overestimation ratio in the absence of speculative execution and Figure 12(a)

shows the same in the presence of branch predictor. In general, our analysis framework can

reasonably bound the WCET overestimation for FIFO cache replacement, except for fdct.

Such an overestimation for fdct is solely due to the presence of a FIFO cache and not due to

the presence of cache sharing, as clearly evidenced by Figure 12(a). However, as mentioned in

Berg [2006], the observed worst-case for FIFO replacement may highly under-approximate the

true worst case due to the domino effect. Otherwise, our results in Figure 12(a) show that FIFO

45

is a reasonably good alternative of LRU replacement even in the context of shared caches.

Figure 12(b) shows that our modeling of the interaction between FIFO cache and the branch

predictor does not much affect the WCET overestimation. As evidenced by Figure 12(b), the

increase in the WCET overestimation is minimal due to the speculation.

0.11.5 Other cache organizations

In the preceding, we have discussed the extension of our WCET analysis framework with FIFO

replacement policy. We have shown that as long as the cache tags in an abstract cache set can be

arranged according to the order of their replacement, our shared cache conflict analysis can be

integrated. As a result, our modeling for the timing interaction among (shared) cache, pipeline

and branch predictor is independent of the underlying cache replacement policy. Nevertheless,

for some cache replacement policies, arranging the cache tags according to the order of their

replacement poses a challenge (e.g. PLRU Grund and Reineke [2010b]). Cache analysis based

on relative competitiveness Reineke et al. [2007] tries to analyze a cache replacement policy

with respect to an equivalent LRU cache, but with different parameters (e.g. associativity). Any

cache replacement analysis based on relative competitiveness can directly be integrated with

our WCET analysis framework. Nevertheless, more precise analysis than the ones based on

relative competitiveness can be designed, as shown in Grund and Reineke [2010b] for PLRU

policy. However, we believe that designing more precise cache analysis is outside the scope of

this paper. The purpose of our work is to propose a unified WCET analysis framework and any

precision gain in the existing cache analysis technique will directly benefit our framework by

improving the precision of WCET prediction.

In this paper, we have focused on the non-inclusive cache hierarchy. In multi-core archi-

tectures, inclusive cache hierarchy may limit performance when the size of the largest cache

is not significantly larger than the sum of the smaller caches. Therefore, processor architects

sometimes resort to non-inclusive cache hierarchies Zahran et al. [2007]. On the other hand,

inclusive cache hierarchies greatly simplify the cache coherence protocol. The analysis of in-

clusive cache hierarchy requires to take account of the invalidations of certain cache lines to

maintain the inclusion property (as shown in Hardy and Puaut [2011] for multi-level private

cache hierarchies). The analysis in Hardy and Puaut [2011] first analyzes the multi-level caches

for general non-inclusive cache hierarchies and a post-processing phase may change the catego-

rization of a memory reference from all-hit (AH) to unclassified (NC). Our shared cache conflict

46

analysis phase can be applied on this reduced set of AH categorized memory reference for inclu-

sive caches, keeping the rest of our WCET analysis framework entirely unchanged. Therefore,

we believe that the inclusive cache hierarchies do not pose any additional challenge in the con-

text of shared caches and the analysis of such cache hierarchies can easily be integrated, keeping

the rest of our WCET analysis framework unchanged.

0.12 Conclusion

In this paper, we have proposed a sound WCET analysis framework by modeling different

micro-architectural components and their interactions in a multi-core processor. Our analysis

framework is also sound in the presence of timing anomalies. Our experiments suggest that

we can obtain tight WCET estimates for the majority of benchmarks in a variety of micro-

architectural configurations. Apart from design space exploration, we believe that our frame-

work can be used to figure out the major sources of overestimation in multi-core WCET analysis.

As a result, our framework can help in designing predictable hardware for real-time applications

and it can also help writing real-time applications for the predictable execution in multi-cores.

0.13 Acknowledgement

This work was partially funded by A*STAR public sector funding project 1121202007 (R252-

000-476-305) from Singapore, by the ArtistDesign Network of Excellence (the European Com-

munity’s 7th Framework Program FP7/2007-2013 under grant agreement no 216008) and by

Deutsche Forschungsgemeinschaft (DFG) under grant FA 1017/1-1.

47

Bibliography

AUSTIN, T., LARSON, E., AND ERNST, D. 2002. Simplescalar: An infrastructure for computer

system modeling. Computer 35, 2.

BERG, C. 2006. PLRU cache domino effects. In International Workshop on Worst-Case Exe-

cution Time (WCET) Analysis.

CHATTOPADHYAY, S., CHONG, L. K., ROYCHOUDHURY, A., KELTER, T., MARWEDEL,

P., AND FALK, H. 2011. Chronos for multi-cores: a WCET analysis tool for multi-

cores. http://www.comp.nus.edu.sg/˜rpembed/chronos/publication/

chronos-multi-core-TR.pdf.

CHATTOPADHYAY, S. AND ROYCHOUDHURY, A. 2011. Scalable and precise refinement of

cache timing analysis via model checking. In IEEE Real-Time Systems Symposium.

CHATTOPADHYAY, S., ROYCHOUDHURY, A., AND MITRA, T. 2010. Modeling shared cache

and bus in multi core platforms for timing analysis. In International Workshop on Software

& Compilers for Embedded Systems.

GRUND, D. AND REINEKE, J. 2009. Abstract interpretation of FIFO replacement. In Static

Analysis Symposium.

GRUND, D. AND REINEKE, J. 2010a. Precise and efficient FIFO-replacement analysis based

on static phase detection. In Euromicro Conference on Real-Time Systems.

GRUND, D. AND REINEKE, J. 2010b. Toward precise PLRU cache analysis. In International

Workshop on Worst-Case Execution Time (WCET) Analysis.

GUSTAFSSON, J., BETTS, A., ERMEDAHL, A., AND LISPER, B. 2010. The Mälardalen WCET

benchmarks – past, present and future. In International Workshop on Worst-Case Execution

Time (WCET) Analysis.

48

http://www.comp.nus.edu.sg/~rpembed/chronos/publication/chronos-multi-core-TR.pdf
http://www.comp.nus.edu.sg/~rpembed/chronos/publication/chronos-multi-core-TR.pdf

HARDY, D., PIQUET, T., AND PUAUT, I. 2009. Using bypass to tighten WCET estimates for

multi-core processors with shared instruction caches. In IEEE Real-Time Systems Symposium.

HARDY, D. AND PUAUT, I. 2011. WCET analysis of instruction cache hierarchies. Journal of

Systems Architecture - Embedded Systems Design 57, 7.

KELTER, T., FALK, H., MARWEDEL, P., CHATTOPADHYAY, S., AND ROYCHOUDHURY, A.

2011. Bus aware multicore WCET analysis through TDMA offset bounds. In Euromicro

Conference on Real-Time Systems.

LI, X., LIANG, Y., MITRA, T., AND ROYCHOUDHURY, A. 2007. Chronos: A timing analyzer

for embedded software. Science of Computer Programming. http://www.comp.nus.

edu.sg/˜rpembed/chronos.

LI, X., MITRA, T., AND ROYCHOUDHURY, A. 2005. Modeling control speculation for timing

analysis. Real-Time Systems 29, 1.

LI, X., ROYCHOUDHURY, A., AND MITRA, T. 2006. Modeling out-of-order processors for

WCET analysis. Real-Time Systems 34, 3.

LI, Y., SUHENDRA, V., LIANG, Y., MITRA, T., AND ROYCHOUDHURY, A. 2009. Timing

analysis of concurrent programs running on shared cache multi-cores. In IEEE Real-Time

Systems Symposium.

LI, Y.-T. S., MALIK, S., AND WOLFE, A. 1999. Performance estimation of embedded software

with instruction cache modeling. ACM Trans. Des. Autom. Electron. Syst. 4, 3.

LUNDQVIST, T. AND STENSTRÖM, P. 1999. Timing anomalies in dynamically scheduled mi-

croprocessors. In IEEE Real-Time Systems Symposium.

LV, M., NAN, G., YI, W., AND YU, G. 2010. Combining abstract interpretation with model

checking for timing analysis of multicore software. In IEEE Real-Time Systems Symposium.

PAOLIERI, M., QUIÑONES, E., CAZORLA, F. J., BERNAT, G., AND VALERO, M. 2009. Hard-

ware support for WCET analysis of hard real-time multicore systems. In International Sym-

posium on Computer Architecture.

49

http://www.comp.nus.edu.sg/~rpembed/chronos
http://www.comp.nus.edu.sg/~rpembed/chronos

PELLIZZONI, R., BETTI, E., BAK, S., YAO, G., CRISWELL, J., CACCAMO, M., AND KEG-

LEY, R. 2011. A predictable execution model for COTS-based embedded systems. In IEEE

Real-Time and Embedded Technology and Applications Symposium.

REINEKE, J., GRUND, D., BERG, C., AND WILHELM, R. 2007. Timing predictability of cache

replacement policies. Real-Time Systems 37, 2.

ROSEN, J., ANDREI, A., ELES, P., AND PENG, Z. 2007. Bus access optimization for pre-

dictable implementation of real-time applications on multiprocessor systems-on-chip. In

IEEE Real-Time Systems Symposium.

THEILING, H., FERDINAND, C., AND WILHELM, R. 2000. Fast and precise WCET prediction

by separated cache and path analyses. Real-Time Systems 18, 2/3.

WILHELM, R., GRUND, D., REINEKE, J., SCHLICKLING, M., PISTER, M., AND FERDI-

NAND, C. 2009. Memory hierarchies, pipelines, and buses for future architectures in time-

critical embedded systems. IEEE Trans. on CAD of Integrated Circuits and Systems 28, 7.

YAN, J. AND ZHANG, W. 2008. WCET analysis for multi-core processors with shared L2

instruction caches. In IEEE Real-Time and Embedded Technology and Applications Sympo-

sium.

ZAHRAN, M. M., ALBAYRAKTAROGLU, K., AND FRANKLIN, M. 2007. Non-inclusion prop-

erty in multi-level caches revisited. I. J. Comput. Appl. 14, 2.

50

	Introduction
	Related work
	Background
	Overview of our analysis
	Interaction of shared resources with pipeline
	Interaction of shared cache with pipeline
	Interaction of shared bus with pipeline

	WCET computation under multiple bus contexts
	Execution context of a basic block
	Bounding the execution count of a bus context

	Effect of branch prediction
	Effect on cache for speculative execution
	Effect on bus for speculative execution
	Computing the number of mispredicted branches

	WCET computation of an entire program
	Soundness and termination of analysis
	Overall idea about soundness
	Detailed proofs

	Experimental evaluation
	Extension of shared cache analysis
	Review of cache analysis for FIFO replacement
	Analysis of shared cache with FIFO replacement
	Interaction of FIFO cache with pipeline and branch predictor
	Experimental result
	Other cache organizations

	Conclusion
	Acknowledgement

