Efficient and Effective Algorithms for A Family of Influence Maximization Problems with A Matroid Constraint

Yiqian Huang, Shiqi Zhang, Laks V.S. Lakshmanan, Wenqing Lin, Xiaokui Xiao, Bo Tang

Problem Formulation

Influence Maximization (IM): in a social network, find a set of k users S that maximizes the expected number of *influenced* users: $\sigma(S)$, where σ is defined via the mechanism called the diffusion model (e.g., IC or LT).

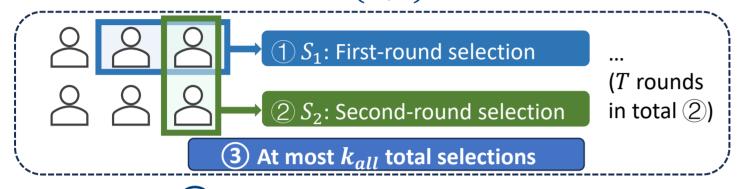
 $S = \{ \ \ \ \ \ \ \ \ \}; \ k = 2;$ $\{ \ \ \ \ \ \ \ \}$: (excepted) influenced users

Matroid: it models constraints across multiple selected sets (see below). **Formal definition:** a matroid is a pair (U, \mathbb{I}) , where U is the ground set and \mathbb{I} is a collection of subset of U (which is all feasible solutions) satisfying three axioms: (i) $\mathbb{I} \neq \emptyset$; (ii) $\mathbb{I} \in \mathbb{I}$, $J \subseteq I \Rightarrow J \in \mathbb{I}$; (iii) \mathbb{I} , $J \in \mathbb{I}$, $|J| < |I| \Rightarrow \exists x \in I \setminus J$ such that $J \cup \{x\} \in \mathbb{I}$.

We study IM subject to a general matroid constraint (IM-GM):

Maximize $\sigma(S)$ subject to $S \subseteq U, S \in I$.

Examples of IM-GM with matroid (U, \mathbb{I}) :



Example 1 (IM (only 1); T = 1, $k_{all} = k$)) U: all users; $I: |S| \le k$ (at most k users) [uniform matroid]

Example 2 (Multi-round (only ①; $k_{all} = +\infty$)) U: all users $\times T$ rounds; $I: \forall i, |S_i| \leq k_i$ (at most k_i users in round i) [partition matroid]

Example 3 (Multi-round + an overall budget (123)) U: all users $\times T$ rounds; $I: \forall i, |S_i| \leq k_i$ and $\sum_{i=1}^T |S_i| \leq k_{all}$ [general matroid]

Previous Work

- 1. IM-GM is an instance of monotone submodular maximization under a matroid constraint (thus NP-Hard).
- 2. Existing $(1 1/e \epsilon)$ -approximation algorithms adopt hill-climbing on the following *multilinear extension* of $\sigma(\cdot)$:

$$F([x_1 \dots x_{|U|}]) = \sum_{S \subseteq U} \prod_{i \in S} x_i \prod_{i \notin S} (1 - x_i) \cdot \sigma(S).$$

• Prior work (Calinescu et al. SIAM J. Comput.'11; Badanidiyuru et al. SODA'14) estimates $F([x_1 \dots x_{|U|}])$ by sampling, as it involves all $2^{|U|}$ possible S.

Main Idea

1. Approximating σ : Adapt the previous approach (RR sets) to approximate $\sigma(S)$ via set cover; specifically, we generate a collection \mathcal{R} of RR sets, then

$$\sigma(S) \approx C \cdot \sum_{R \in \mathcal{R}} \mathbf{1} \{ S \cap R \neq \emptyset \}.$$
 (C = $\frac{|U|}{|\mathcal{R}|}$ is constant)

2. Evaluating F**:** Hill-climbing on $F(\cdot)$, with **fast & exact assessment of its value**, motivated by plugging the set cover into $F(\cdot)$:

$$F([x_1 \dots x_{|U|}]) \approx C \cdot \sum_{R \in \mathcal{R}} \sum_{S \subseteq U} \prod_{i \in S} x_i \prod_{j \notin S} (1 - x_j) \mathbf{1} \{S \cap R \neq \emptyset\}.$$

Observation: $= (1 - \prod_{i \in R} (1 - x_i))$ (a computable form).

Algorithms & Guarantees

- **1. AMP (main algorithm):** Given RR sets (thus any $\Lambda_{\mathcal{R}}(S) = C \cdot \sum_{R \in \mathcal{R}} \mathbf{1} \{S \cap R \neq \emptyset\}$), AMP maximizes $\Lambda_{\mathcal{R}}(S)$ via two steps:
- (i) it uses hill-climbing to maximize $F_{\Lambda_{\mathcal{R}}}$ and returns a fractional solution $\vec{x} = \begin{bmatrix} x_1 & ... & x_{|U|} \end{bmatrix}$ satisfying: (a) \vec{x} is a convex combination of $\{\mathbf{1}_I \colon I \in \mathbb{I}\}$; (b) $x_1 + \cdots + x_{|U|}$ is maximized.
- (ii) It uses a *deterministic* rounding scheme to convert \vec{x} to a discrete set S satisfying: (a) $S \in \mathbb{I}$; (b) |S| is maximized; (c) $\Lambda_{\mathcal{R}}(S) \geq F_{\Lambda_{\mathcal{R}}}(\vec{x})$.
- **2. RAMP (scalable implementation):** RAMP improves AMP's efficiency by determining the number of RR sets needed to achieve a $(1-1/e-\epsilon)$ -approximation, adapting the doubling strategy from OPIM-C (Tang et al. SIGMOD'18).

Guarantees using multi-Round IM as an example (n users, m edges; T rounds in total, k users per round):

Known that approximating $\sigma(\cdot)$ needs $L = \sum_{R} |R|$ time in total (Tang et al. *SIGMOD'14*);

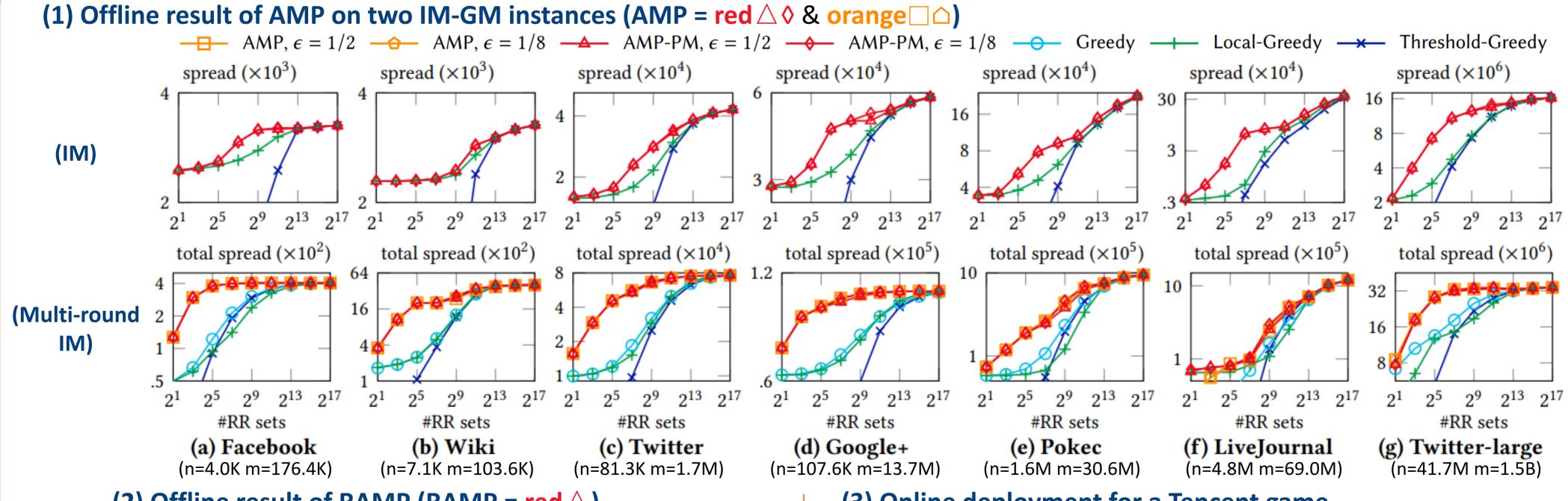
Results of AMP:

Algorithm	Time Complexity	Approximation
Calinescu et al. (SIAM J. Comput.'11)	$O(n^7 \cdot L)$	
Badanidiyuru et al. (SODA'14)	$O(nkT \cdot \epsilon^{-4} \cdot L)$	$1-1/e-\epsilon$
Our algorithm (AMP)	$O(k \cdot \epsilon^{-1} \cdot L)$	

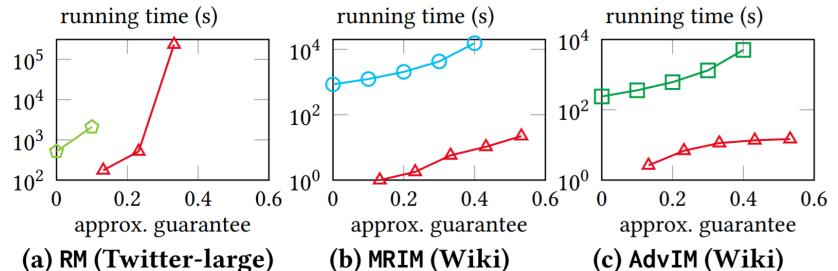
Results of RAMP (to achieve $(1-1/e-\epsilon)$ -approximation w.p. $1-\delta$):

Time complexity = $O\left(T^2k\epsilon^{-2}(\ln n + \ln(1/\delta)) \cdot (m + k\epsilon^{-1}n)\right)$

Representative Experimental Results



(2) Offline result of RAMP (RAMP = $red \triangle$) running time (s) running time (s) running time



(3) Online deployment for a Tencent game

Task: recommend in-game products (maps) to each user

Scale: 0.7 million users and 400 maps

Metric: Increase in engaged user–map pairs (vs. control group, $K=10^3$)

Result:

AlgorithmRM-ARAMP (ours) Δ of pairs20K160K

