EFFECTIVE AND EFFICIENT PAGERANK-BASED POSITIONING FOR GRAPH VISUALIZATION

Shiqi Zhang, Renchi Yang, Xiaokui Xiao, Xiao Yan, Bo Tang

June 2023
OUTLINE

- Background
- Existing Solutions
- PPRviz
- Experiments
- Conclusion
BACKGROUND: GRAPH VISUALIZATION

- Input: a graph G with n nodes and m edges
- Output: a 2D position matrix X
- Drawing:
 - Position each node v_i at its coordinate $X[i]$
 - Link two endpoints of each edge with a straight segment
- It helps to understand relational data
BACKGROUND: AESTHETIC CRITERIA

- An effective visualization should have good readability
- Evaluate the readability of X by aesthetic criteria
- Node Distribution (ND): measure the distribution evenness of the nodes on the screen
- Uniform Length Coefficient Variance (ULCV): measure the length skewness of edge segments on the screen
EXISTING SINGLE-LEVEL SOLUTIONS

- Idea:
 - visualize all nodes and edges on the screen

- Steps:
 - compute a graph-theoretical distance matrix D:
 - adjacency-related matrix or the shortest distance matrix
 - embed D into X:
 - minimize node pair’s difference between graph and Euclidean distance

- Cons:
 - Poor readability: aesthetically-unpleasing or hairball-like layout
 - Expensive computational cost
EXISTING MULTI-LEVEL FRAMEWORK

- Idea:
 - interactively show the partial view level by level

- Steps:
 - build a supergraph hierarchy \(H \) for \(G \)
 - use a single-level solution to visualize children in \(S \)

- Pros:
 - avoid hairball
 - reduce embedding overhead

- Cons:
 - the aesthetic issue remains
PPRVIZ: OVERVIEW

- Supergraph hierarchy construction:
 - Generate H by Louvain [a] with balanced size

- Node distance computation:
 - Design a new distance measure PDist
 - Compute PDist matrix $\mathbf{\Delta}$ for children in S by our Tau-Push

- Position embedding:
 - Compute \mathbf{X} by $\mathbf{\Delta}$
 - Make node pair’s Euclidean distance resemble its PDist

PPRVIZ: PDIST FOR LEAF NODES

- **Personalized PageRank (PPR)**
 - Input: a source v_s, a target v_t, and a stopping probability α
 - Random walk with restart (RWR) from v_s:
 - At each step, stops with probability α at the current node,
 - With $1 - \alpha$ probability randomly jumps to one of the neighbors
 - PPR from v_s to v_t: $\pi(v_s, v_t) = \mathbb{P}[\text{RWR from } v_s \text{ stops at } v_t]$

<table>
<thead>
<tr>
<th></th>
<th>$\pi(v_0, v_8)$</th>
<th>$\pi(v_2, v_0)$</th>
<th>$\pi(v_6, v_9)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.01</td>
<td>0.11</td>
<td>0.44</td>
</tr>
</tbody>
</table>

A large $\pi(v_s, v_t)$ indicates v_s and v_t are well-connected, which should be close on graph and screen.
PPRVIZ: PDIST FOR LEAF NODES

- PDist between any nodes v_i, v_j:
 - Degree-normalized PPR (DPPR): $\pi_d(v_i, v_j) = \pi(v_i, v_j) \cdot d(v_i)$
 - Convert DPPR to a distance: $1 - \log(\pi_d(v_i, v_j) + \pi_d(v_j, v_i))$

- Pros:
 - Preserve high-order information
 - Guarantee visualization quality in terms of ND and ULCV

![Graph showing RWR and ignored paths]

RWR from v_3 to v_1:
- $v_3 \rightarrow v_1$
- $v_3 \rightarrow v_4 \rightarrow v_1$
- $v_3 \rightarrow v_2 \rightarrow v_1$
- $v_3 \rightarrow v_5 \rightarrow v_4 \rightarrow v_1$
- ...
PPRviz: Tau-Push for Leaf Nodes

- **Tau-Push**
 - Compute the tau value τ_j for each v_j and compute a constant τ, where
 $$\tau_j = \frac{1}{m} \cdot \sum_i \pi_d(v_i, v_j)$$
 - Estimate $\Delta[i, j]$ for v_j with $\tau_j < \tau$ by a deterministic version of RWR from v_i
 - Estimate $\Delta[i, j]$ for v_j with $\tau_j \geq \tau$ by a reverse traversal from v_j

precompute and store as index
EXPERIMENTS: DATASETS

<table>
<thead>
<tr>
<th>Dataset</th>
<th>(n)</th>
<th>(m)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TwEgo</td>
<td>23</td>
<td>52</td>
<td>Ego network</td>
</tr>
<tr>
<td>FbEgo</td>
<td>52</td>
<td>146</td>
<td>Ego network</td>
</tr>
<tr>
<td>Wiki-ii</td>
<td>186</td>
<td>632</td>
<td>Authorship network</td>
</tr>
<tr>
<td>Physician</td>
<td>241</td>
<td>1.8K</td>
<td>Social network</td>
</tr>
<tr>
<td>FilmTrust</td>
<td>874</td>
<td>2.6K</td>
<td>User trust network</td>
</tr>
<tr>
<td>SciNet</td>
<td>1.5K</td>
<td>5.4K</td>
<td>Collaboration network</td>
</tr>
<tr>
<td>Amazon</td>
<td>334.9K</td>
<td>1.9M</td>
<td>Product network</td>
</tr>
<tr>
<td>Youtube</td>
<td>1.1M</td>
<td>6.0M</td>
<td>Social network</td>
</tr>
<tr>
<td>Orkut</td>
<td>3.1M</td>
<td>234.4M</td>
<td>Social network</td>
</tr>
<tr>
<td>DBLP</td>
<td>5.4M</td>
<td>17.2M</td>
<td>Collaboration network</td>
</tr>
<tr>
<td>It-2004</td>
<td>41.3M</td>
<td>2.3B</td>
<td>Crawled network</td>
</tr>
<tr>
<td>Twitter</td>
<td>41.7M</td>
<td>3.0B</td>
<td>Social network</td>
</tr>
</tbody>
</table>

Dataset statistics (\(K = 10^3, M = 10^6, B = 10^9 \))
EXPERIMENTS: COMPETITORS

- Single-level competitors
 - Stress methods: CMDS, PMDS
 - Node embedding methods: GFactor, SDNE, LapEig, LLE, Node2vec
 - A variant replacing DPPR in PDist with SimRank

- Multi-level competitors
 - OpenOrd, KDraw

- Most competitors have been applied in software and libraries like Gephi, Graphviz and NetworkX.
EXPERIMENTS: EFFECTIVENESS OF PPRVIZ

- 6 small datasets and 11 single-level competitors
- ULCV: the smaller the better

<table>
<thead>
<tr>
<th></th>
<th>TwEgo</th>
<th>FbEgo</th>
<th>Wiki-ii</th>
<th>Physician</th>
<th>FilmTrust</th>
<th>SciNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPRviz</td>
<td>0.22</td>
<td>0.39</td>
<td>0.35</td>
<td>0.45</td>
<td>0.48</td>
<td>0.34</td>
</tr>
<tr>
<td>FR</td>
<td>0.35</td>
<td>0.42</td>
<td>0.41</td>
<td>0.53</td>
<td>0.54</td>
<td>0.77</td>
</tr>
<tr>
<td>LinLog</td>
<td>0.57</td>
<td>0.67</td>
<td>1.09</td>
<td>0.90</td>
<td>1.99</td>
<td>4.70</td>
</tr>
<tr>
<td>ForceAtlas</td>
<td>0.37</td>
<td>0.49</td>
<td>0.64</td>
<td>0.55</td>
<td>0.96</td>
<td>1.52</td>
</tr>
<tr>
<td>CMDS</td>
<td>0.40</td>
<td>0.46</td>
<td>0.62</td>
<td>0.80</td>
<td>1.05</td>
<td>1.74</td>
</tr>
<tr>
<td>PMDS</td>
<td>0.23</td>
<td>0.45</td>
<td>0.78</td>
<td>0.47</td>
<td>0.69</td>
<td>0.74</td>
</tr>
<tr>
<td>GFactor</td>
<td>0.45</td>
<td>0.91</td>
<td>0.62</td>
<td>0.95</td>
<td>0.64</td>
<td>0.86</td>
</tr>
<tr>
<td>SDNE</td>
<td>1.96</td>
<td>0.94</td>
<td>0.94</td>
<td>1.67</td>
<td>1.31</td>
<td>1.72</td>
</tr>
<tr>
<td>LapEig</td>
<td>1.15</td>
<td>0.98</td>
<td>1.04</td>
<td>1.02</td>
<td>1.70</td>
<td>1.26</td>
</tr>
<tr>
<td>LLE</td>
<td>0.46</td>
<td>0.77</td>
<td>1.27</td>
<td>0.77</td>
<td>0.87</td>
<td>-</td>
</tr>
<tr>
<td>Node2vec</td>
<td>0.80</td>
<td>0.96</td>
<td>0.86</td>
<td>1.41</td>
<td>0.89</td>
<td>1.32</td>
</tr>
<tr>
<td>SimRank</td>
<td>0.84</td>
<td>0.75</td>
<td>0.53</td>
<td>0.53</td>
<td>1.78</td>
<td>1.98</td>
</tr>
</tbody>
</table>
EXPERIMENTS: EFFECTIVENESS OF PPRVIZ

- The best competitor FR (in terms of aesthetic criteria)
- Visualizations on FilmTrust
Experiments: Efficiency of PPRViz

Preprocessing time:
- compute H and index of Tau-Push in PPRviz
- compute H in multi-level methods

Response time:
- visualize S in PPRviz and multi-level methods
- visualize G in single-level methods
CONCLUSION

- PPRviz: graph visualization solution
- PDist: PPR-based distance measure
- Tau-Push: efficient PDist approximation algorithm
THANK YOU! Q&A
BACKUP: TAU-PUSH FOR LEAF NODES

- **Forward Push [a]**
 - Deterministic version of RWR
 - Given a source v_s, each node v_i maintains
 - estimation $\hat{\pi}_d(v_s, v_i)$ and residue $r(v_s, v_i)$
 - Invariant:
 \[
 \pi_d(v_s, v_t) = \hat{\pi}_d(v_s, v_t) + \sum_i \frac{1}{d(v_i)} \cdot r(v_s, v_i) \cdot \pi_d(v_i, v_t)
 \]

DPR-guided termination

Degree-normalized PageRank (DPR) for v_j:

$$\tau_j = \frac{1}{m} \cdot \sum_i \pi_d(v_i, v_j)$$

Given a source v_s and a target v_t, stop Forward Push when each

$$r(v_s, v_i) \leq \frac{\epsilon \cdot \delta}{m \cdot \tau_t}$$

$\hat{\pi}_d(v_s, v_t)$ is (ϵ, δ)-approximate, since

$$\pi_d(v_s, v_t) - \hat{\pi}_d(v_s, v_t) = \sum_i \frac{1}{d(v_i)} \cdot r(v_s, v_i) \cdot \pi_d(v_i, v_t) \leq \epsilon \cdot \delta$$
Refinement

Intuition:

- only using Forward Push incurs redundant overhead
- Backward Push [a]:
 - perform push operations from a target v_t in a reverse manner

For this v_t, the stop condition is extremely tough even if the estimations of others in S are good

BACKUP: TAU-PUSH FOR LEAF NODES

- Summary
 - DPR Computation and identify large-DPR v_t
 - Forward Push: estimate for most small-DPR v_t
 - Backward Push: estimate for large-DPR v_t

<table>
<thead>
<tr>
<th>τ_1</th>
<th>0.01</th>
<th>τ_7</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_2</td>
<td>0.03</td>
<td>τ_8</td>
<td>0.02</td>
</tr>
<tr>
<td>τ_3</td>
<td>0.02</td>
<td>τ_9</td>
<td>0.06</td>
</tr>
<tr>
<td>τ_4</td>
<td>0.01</td>
<td>τ_{10}</td>
<td>0.07</td>
</tr>
<tr>
<td>τ_5</td>
<td>0.04</td>
<td>τ_{11}</td>
<td>0.02</td>
</tr>
<tr>
<td>τ_6</td>
<td>0.02</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

$\tau = 0.05$

precompute and store as index