Normal Forms.

Chomsky Normal Form. All productions are of the form $A \rightarrow BC$ or $A \rightarrow a$ (where $a \in T$ and $A, B, C \in V$).
Useless symbols: Symbols which do not appear in any derivation of a string from the start symbol. That is, the symbol does not appear in any derivation $S \Rightarrow_G^* w$, for any $w \in T^*$.

We want to eliminate useless symbols.

Symbol A is said to be useful if it appears as $S \Rightarrow_G^* \alpha A \beta \Rightarrow_G^* w$, for some $w \in T^*$.

We say that a symbol A is generating if $A \Rightarrow_G^* w$, for some $w \in T^*$.

We say that a symbol A is reachable if $S \Rightarrow_G^* \alpha A \beta$, for some $\alpha, \beta \in (V \cup T)^*$.
Surely a symbol is useful only if it is reachable and generating (though vice-versa need not be the case). What we will show is that if we get rid of non-generating symbols first and then the non-reachable symbols in the remaining grammar, then we will only be left with useful symbols.
Theorem: Suppose $G = (V, T, P, S)$ is a grammar which generates at least one string. Then, if
1) First eliminate all symbols (and productions involving these symbols) which are non-generating. Let this grammar be $G_2 = (V_2, T, P_2, S)$.
2) Remove all non-reachable symbols (and corresponding productions for them) from the grammar G_2. Suppose the resulting grammar is G_3. Then G_3 contains no useless symbols and generates the same language as G.
Generating Symbols

Base Case: All symbols in T are generating.
Induction: If there is a production of the form $A \rightarrow \alpha$, where α consists only of generating symbols, then A is generating. Iterate the above process until no more symbols can be added.
Reachable symbols

Base Case: S is reachable.
Induction Case: If A is reachable, and $A \rightarrow \alpha$ is a production, then every symbol in α is reachable.

A symbol is non-reachable, iff it is not reachable.
Converting a Grammar into Chomsky Normal Form:
1. Eliminate ϵ productions.
2. Eliminate unit-productions.
3. Convert the productions to productions of length 2 (involving non-terminals on RHS) or productions of length 1 (involving terminal on RHS).
Eliminating ε productions

1. We first find all nonterminals \(A \) such that \(A \Rightarrow^* \varepsilon \). These nonterminals are called nullable.
2. Then, we get rid of \(\varepsilon \) productions, and for each production \(B \rightarrow \alpha \), we replace it with all possible productions, \(B \rightarrow \alpha' \), where \(\alpha' \) can be formed from \(\alpha \) by possibly deleting some of the nonterminals which are nullable.
 Note: If \(S \) is nullable, then our method only generates the language \(L - \{\varepsilon\} \).
Theorem: If we modify the grammar as above, then
\[L(G') = L(G) - \{\epsilon\}. \]

Proof: We prove a more general statement:
For all \(A \in V \), for all \(w \in T^* - \{\epsilon\} \), \(A \Rightarrow^*_G w \), iff \(A \Rightarrow^*_G' w \).

Claim: Suppose \(A \Rightarrow^*_G w \). Then we claim that \(A \Rightarrow^*_G' w \).

Proof:
In the derivation \(A \Rightarrow^*_G w \), “drop” each symbol which eventually produces empty string in the derivation.
Claim: For all $A \in V$, for all $w \in T^* - \{\epsilon\}$, if $A \Rightarrow_{G'}^* w$ then $A \Rightarrow_G^* w$.

Proof: Consider the first step in the derivation:
$A \Rightarrow_{G'}^* \alpha \Rightarrow_{G'}^* w$.

Suppose the corresponding production in G was $A \rightarrow \alpha'$.
Then, we have that $\alpha' \Rightarrow_G^* \alpha$, by having the “nulled” symbols generate ϵ.
Now the claim follows by induction.
Identifying nullable symbols

Base: If $A \rightarrow \epsilon$, then A is nullable.
Induction: If $A \rightarrow \alpha$, and every symbol in α is nullable, then A is nullable.
Apply the induction step until no more nullable symbols can be found.
Eliminating Unit Productions

First determine for each pair of non-terminals A, B, if $A \Rightarrow^*_G B$. Then we need to add $A \rightarrow \gamma$, for all non unit productions of the form $B \rightarrow \gamma$.

Base: (A, A) is a unit pair.
Induction: If (A, B) is a unit pair, and $B \rightarrow C$, then (A, C) is a unit pair.
Do the induction step until no more new pairs can be added.
All productions of length ≥ 2 can be changed to (a set of) productions of length 2 (involving only non-terminals on RHS) or productions of length 1 (involving terminals on RHS) as follows:

Given Production: $A \rightarrow X_1X_2\ldots X_k$

is changed to the following set of productions:

$A \rightarrow Z_1B_2,$

$B_2 \rightarrow Z_2B_3,$ \ldots,

$B_{k-1} \rightarrow Z_{k-1}Z_k,$

$Z_i \rightarrow X_i,$ if $X_i \in T,$

$Z_i = X_i,$ if X_i is a nonterminal,

where B_i (and possibly) Z_i are new non-terminals.
Size of Parse Tree
Theorem: Suppose we have a parse tree using a Chomsky Normal Form Grammar. If the length of the longest path from root to a node is s, then size of the string w generated is at most 2^{s-1}.
Pumping Lemma

Pumping Lemma for CFL: Let \(L \) be a CFL. Then there exists a constant \(n \) such that, if \(z \) is any string in \(L \) such that \(|z| \geq n \), then we can write \(z = uvwxy \) such that:

1. \(|vwx| \leq n|
2. \(vx \neq \emptyset \)
3. For all \(i \geq 0 \), \(uv^iwx^iy \in L \).
Example: $L = \{a^mb^mc^m : m \geq 1 \}$ is not a CFL. Suppose by way of contradiction that L is a CFL. Then, let $n > 1$ be as in the pumping lemma. Consider $z = a^n b^n c^n$.

Let $z = uvwxy$ be as in the pumping lemma. Now, $|vwx| \leq n$. Thus, vwx cannot contain both a and c. In case vwx does not contain an a, then uv^2wx^2y contains n a’s, though $|uv^2wx^2y| > 3n$. Thus, uv^2wx^2y is not in L.

Similarly, if vwx does not contain a c, then uv^2wx^2y contains n c’s, though $|uv^2wx^2y| > 3n$. Thus, uv^2wx^2y is not in L.

Thus, in all cases, we have that L does not satisfy the pumping lemma. Hence, L cannot be CFL.
Proof of Pumping Lemma for CFL. Let L be a context free language. Without loss of generality, we assume $L \neq \emptyset$ and $L \neq \{\epsilon\}$. Choose a Chomsky Normal Form grammar $G = (V, T, P, S)$ for $L - \{\epsilon\}$. Let $m = |V|$. Let $n = 2^m$. Suppose a string $z \in L$ of length at least $n = 2^m$ is given. Consider the parse tree for z. This parse tree must have a path from the root to a leaf of length at least $m + 1$ (by Theorem proved earlier). Consider the path from the root to a leaf at largest depth. In this path, among the last $m + 1$ non-terminals, there must be two nonterminals which are same (by pigeonhole principle). (See picture: PL-figure)
Then, $z = uvwxy$, where $S \Rightarrow^*_G uAy \Rightarrow^*_G uvAxy \Rightarrow^*_G uvwxy$. Thus, we have $A \Rightarrow^*_G vAx$, $A \Rightarrow^*_G w$.

Thus, $A \Rightarrow^*_G v^iAx^i \Rightarrow^*_G v^ix^i$.

Thus, $S \Rightarrow^*_G uAy \Rightarrow^*_G uv^iAx^iy \Rightarrow^*_G uv^iwx^iy$, for all i.

Note that length of vwx is at most 2^m.

Also, note that $vx \neq \epsilon$, as $A \Rightarrow^*_G vAx$, using 1 or more steps in the derivation, and G is a Chomsky Normal Form grammar (which does not have unit productions or ϵ productions).
Example: $L = \{\alpha\alpha : \alpha \in \{a, b\}^*\}$ is not a CFL.
Suppose by way of contradiction that L is a CFL.
Then, let $n > 1$ be as in the pumping lemma.
Now consider $z = a^{n+1}b^{n+1}a^{n+1}b^{n+1}$.
Let $z = uvwxy$ be as in the pumping lemma.
Now consider the following cases based on where v and x lie in $a^{n+1}b^{n+1}a^{n+1}b^{n+1}$:
Case 1: vwx is contained in the first $a^{n+1}b^{n+1}$.
In this case, wxy is of the form $a^{n+1-k}b^{n+1-s}a^{n+1}b^{n+1}$, where, $vx = a^k b^s$, and thus $0 < k + s \leq n$.
This string cannot be written as $\alpha \alpha$. Suppose otherwise.
Then, the second α must end with b^{n+1} (as $|\alpha| = \frac{4n+4-k-s}{2} > n$).
Thus, the first α ends somewhere in the first sequence of b's: b^{n+1-s}.
Thus, the second α ends with $a^{n+1}b^{n+1}$.
But this means $|\alpha| \geq 2n + 2$, and thus $k + s \leq 0$, a contradiction.
Case 2: vwx is contained in $b^{n+1}a^{n+1}$ part of z.
Thus, wxy is of the form $a^{n+1}b^{n+1-k}a^{n+1-s}b^{n+1}$, where,
$vx = b^ka^s$, and thus $0 < k + s \leq n$.
This string cannot be written as $\alpha\alpha$. Suppose otherwise.
Then, α must start with a^{n+1} and end with b^{n+1} (as
$|\alpha| = \frac{4n+4-k-s}{2} > n$).
But then $|\alpha| \geq 2n + 2$, and thus $k + s \leq 0$, a contradiction.
Case 3: vwx is contained in the second $a^{n+1}b^{n+1}$ part of z. Thus, wy is of the form $a^{n+1}b^{n+1}a^{n+1-k}b^{n+1-s}$, where, $vx = a^kb^s$, and thus $0 < k + s \leq n$. This string cannot be written as $\alpha\alpha$. Suppose otherwise. Then, α must start with a^{n+1} (as $|\alpha| = \frac{4n+4-k-s}{2} > n$). Thus, the second α starts somewhere in the second sequence of a’s: a^{n+1-k}. Thus, the first α starts with $a^{n+1}b^{n+1}$. But this means $|\alpha| \geq 2n + 2$, and thus $k + s \leq 0$, a contradiction.
Thus, in all cases, we have that L does not satisfy the pumping lemma. Hence, L cannot be CFL.
Closure Properties:

Substitution:
Consider mapping each terminal a to a CFL L_a.
$s(a) = L_a$.
For a string w define $s(w)$ as follows:
$s(\epsilon) = \{\epsilon\}$.
$s(wa) = s(w) \cdot s(a)$, for $a \in \Sigma$, $w \in \Sigma^*$.
That is, $s(a_1a_2\ldots a_n) = s(a_1) \cdot s(a_2) \cdot \ldots \cdot s(a_n)$.

Theorem: Suppose L is CFL over Σ and s is a substitution on Σ such that $s(a) = L_a$ is CFL, for each $a \in \Sigma$. Then, $\cup_{w \in L} s(w)$ is a CFL.
Let $G = (V, T, P, S)$ be a grammar for L. For each a, let $G_a = (V_a, T_a, P_a, S_a)$ be a grammar for L_a.
Assume without loss of generality that V_a’s are pairwise disjoint among themselves as well as with V.
Then, $G' = (V', T', P', S)$ is a grammar for $\bigcup_{w \in L} s(w)$, where V' is $V \cup \bigcup_{a \in T} V_a$.
T' is $\bigcup_{a \in T} T_a$.
$P' = P_{\text{new}} \cup \bigcup_{a \in T} P_a$
where P_{new} is formed using the productions in P, where in each of the productions, terminal a is replaced by S_a.
Now, (V', T', P', S) is a grammar for $\bigcup_{w \in L} s(w)$. $S \Rightarrow^*_G w$ iff $S \Rightarrow^*_G \alpha$, where α has each symbol a in w replaced by S_a. That is, if $w = a_1a_2 \ldots a_n$, then $\alpha = S_{a_1}S_{a_2} \ldots S_{a_n}$.
Reversal

$L^R = \{w^R : w \in L\}$

If L is CFL, then L^R is CFL.

To see this, suppose $G = (V, T, P, S)$ is a grammar for L.

Then, grammar for L^R is obtained by considering

$G^R = (V, T, P^R, S)$, where P^R consists of productions obtained by “reversing” the productions in P. That is, $A \rightarrow \alpha$ is a production in P then $A \rightarrow \alpha^R$ is a production in P^R, where α^R is the reverse of α.
If L is CFL and R is regular, then $L \cap R$ is CFL.

For this, one can run the PDA for L and DFA for R in parallel. Note that for this, one needs only one stack for the PDA: DFA can be run without using the stack.

Suppose $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ is a PDA for L, and $A = (Q', \Sigma, \delta', q'_0, F')$ is a DFA for R.

Then, form PDA $P'' = (Q'', \Sigma, \Gamma, \delta'', q''_0, Z_0, F'')$ as follows:

- $Q'' = Q \times Q'$
- $q''_0 = (q_0, q'_0)$
- $F'' = F \times F'$

For $Z \in \Gamma, p \in Q, q \in Q'$:

$\delta''((p, q), \epsilon, Z) = \delta(p, \epsilon, Z) \times \{q\}$

For $a \in \Sigma, Z \in \Gamma, p \in Q, q \in Q'$:

$\delta''((p, q), a, Z) = \delta(p, a, Z) \times \{\delta'(q, a)\}$.

Example: $L = \{ w : w \in \{ a, b, c \}^* \text{ and } \#_a(w) = \#_b(w) = \#_c(w) \}$ is not a CFL.

If L were a CFL, then $L \cap a^*b^*c^* = \{ a^n b^n c^n : n \geq 0 \}$ would also be a CFL, contradicting a result proved earlier.
Note that CFLs are not closed under intersection in general:

$L_1 = \{a^nb^nc^m : m, n \geq 1\}$

and

$L_2 = \{a^mb^n c^n : m, n \geq 1\}$

are both context free. However, their intersection

$L_3 = L_1 \cap L_2 = \{a^nb^nc^n : n \geq 1\}$

is not context free.
Testing whether CFL is \emptyset or not.

We can check if S is a useless symbol or not. If S is useless, then the language is \emptyset. Otherwise it is non-empty.
Testing membership in a CFL.
CYK algorithm.
Using Chomsky Normal Form.
We use a dynamic programming algorithm.
For $w = a_1 \ldots a_n$, we determine the set $X_{i,j}$ of nonterminals which generate the string $a_ia_{i+1}\ldots a_j$.
Base Case: Note that $X_{i,i}$ is just the set of non-terminals which generate a_i.
Induction step: $X_{i,j}$ then contains all A such that $A \rightarrow BC$ and $B \in X_{i,k}$, $C \in X_{k+1,j}$, for $i \leq k < j$. That is, B generates $a_ia_{i+1}\ldots a_k$ and C generates $a_{k+1}\ldots a_j$.
Now, $w = a_1 \ldots a_n$ is in the language iff $X_{1,n}$ contains S.
Running Time of the algorithm is $O(n^3)$.
For $i = 1$ to n do

Let $X_{i,i} = \{A : A \rightarrow a_i\}$.

EndFor

For $s = 1$ to $n - 1$ do

For $i = 1$ to $n - s$ do

Let $j = i + s$.

Let $X_{i,j} = \{A : A \rightarrow BC, B \in X_{i,k}, C \in X_{k+1,j}, i \leq k < j\}$.

EndFor

EndFor

Note that in the above algorithm, $X_{i,k}$ and $X_{k+1,j}$ are already computed by the time $X_{i,j}$ is computed, since $k - i$ and $j - (k + 1)$ are both $< j - i$.