Pumping Lemma: Let L be a regular language. Then there exists a constant n (which depends on L) such that for every string w in L satisfying $|w| \geq n$, we can break w into three strings $w = xyz$, such that

(a) $y \neq \epsilon$,
(b) $|xy| \leq n$
(c) For all $k \geq 0$, the string xy^kz is also in L.
Examples:

Let $L = \{a^mb^m \mid m \geq 1\}$.
Then L is not regular.
Proof: Suppose by way of contradiction that L is regular.
Let n be as in the Pumping Lemma.
Let $w = a^n b^n$.
Let $w = xyz$ be as in the Pumping Lemma.
Note that y consists only of as.
Thus, $xy^2z \in L$, however, xy^2z contains more a's than b's.
Examples:

Let \(L = \{ a^i b^j \mid i < j \} \).
Then \(L \) is not regular.
Proof: Suppose by way of contradiction that \(L \) is regular.
Let \(n \) be as in the Pumping Lemma.
Let \(w = a^n b^{n+1} \).
Let \(w = xyz \) be as in the Pumping Lemma.
Note that \(y \) consists only of \(a \)s.
Thus, \(xy^3z \in L \), however, \(xy^3z \) contains more \(a \)'s than \(b \)'s.
Examples:

Let \(L = \{a^p \mid p \text{ is prime}\} \).
Then \(L \) is not regular.

Proof: Suppose by way of contradiction that \(L \) is regular.
Let \(n \) be as in the Pumping Lemma.
Let \(w = a^p \), where \(p \) is prime, and \(p > n \).
Let \(w = xyz \) be as in the Pumping Lemma.
Thus, \(xy^kz \in L \), for all \(k \).
Choose \(k = ? \). Thus, \(xy^kz = a^r \), where \(r \) is not a prime number.
Proof of the Pumping Lemma

Suppose $A = (Q, \Sigma, \delta, q_0, F)$ is a DFA which accepts L. Let n be the number of states in Q. Suppose $w = a_1a_2\ldots a_n\ldots a_m$ is as given, where $m \geq n$. For $i \geq 1$, let $q_i = \hat{\delta}(q_0, a_1\ldots a_i)$. Then, by Pigeonhole principle, there exists $i, j \leq n, i < j$, such that $q_i = q_j$. Let $x = a_1\ldots a_i, y = a_{i+1}\ldots a_j, z = a_{j+1}\ldots a_m$. As $\hat{\delta}(q_i, y) = q_i$, we have: for all $k, \hat{\delta}(q_i, y^k) = q_i$. Thus, $\hat{\delta}(q_0, xyz) = \hat{\delta}(q_0, xy^kz)$, for all k. QED
Closure Properties

- If L_1, L_2 are regular, then so is $L_1 \cup L_2$.
- If L_1, L_2 are regular, then so is $L_1 \cdot L_2$.
- If L is regular, then so is $\overline{L} = \Sigma^* - L$.
- If L_1, L_2 are regular, then so is $L_1 \cap L_2$.
- If L_1, L_2 are regular, then so is $L_1 - L_2$.
- If L is regular, then so is L^R.
- Let h be a homomorphism. If L is regular, then so is $h(L)$.

Homomorphism: $h(a) \in B^*$, where B is an alphabet set.

$h(\epsilon) = \epsilon$.

$h(a_1a_2\ldots) = h(a_1)h(a_2)\ldots$.
Decision Problems on Regular Languages

$L = \emptyset$?
$L = \Sigma^*$?
$L(A) = L(A')$?
$w \in L$?