Finite Automata

- We will now introduce the concept of regular languages.
- Accepted by a computation device known as finite automata
- Other methods to describe regular languages include, regular expressions and a special type of grammars called regular grammars.

Some Examples

- 1. ON-OFF switch (push button). Two states, on and off. Each input toggles the state.
- 2. Recognition of words (lexical analyzers).
- 3. Many home devices such as VCRs, ...

Deterministic Finite Automata (DFA)

A deterministic Finite Automaton consists of:

- A finite set of states, often denoted by Q.
- A finite set of input symbols (letters), often denoted by Σ .
- A transition function, that takes two arguments: a state from Q and a letter from Σ , and returns a state.

Transition function is often denoted by δ .

- A starting state, q_0 , which is one of the states of Q.
- A set $F \subseteq Q$ of final/accepting states.

$$A = (Q, \Sigma, \delta, q_0, F)$$
.

DFA: Example

DFA accepting strings which contain odd number of bs (here we are taking the alphabet as $\{a, b\}$).

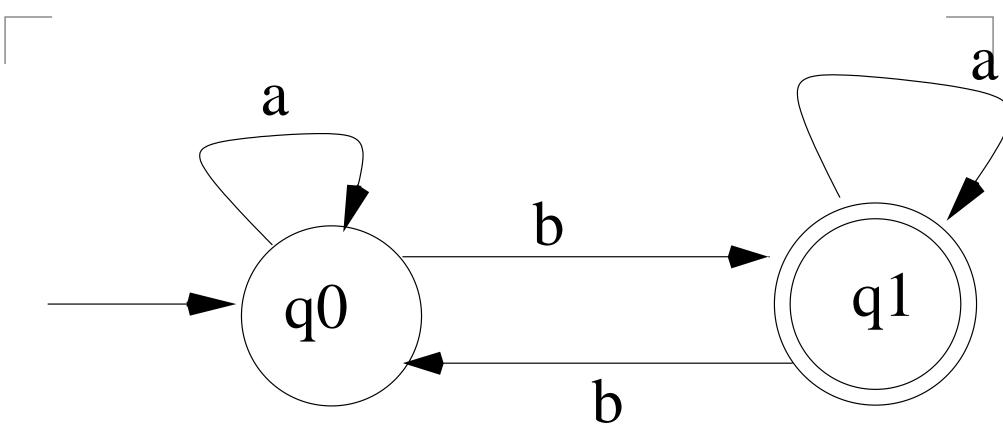
$$A = (\{q_0, q_1\}, \{a, b\}, \delta, q_0, \{q_1\}).$$

$$\delta(q_0, a) = q_0.$$

$$\delta(q_0, b) = q_1.$$

$$\delta(q_1, a) = q_1.$$

$$\delta(q_1, b) = q_0.$$



DFA: Another Example

DFA accepting strings which contain 00 as a substring. This is same as accepting the set: $\{w \mid w \text{ is of the form } x00y \text{ for some strings } x \text{ and } y\}$ (here we are taking the alphabet as $\{0,1\}$).

$$A = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\}).$$

$$\delta(q_0, 0) = q_1.$$

$$\delta(q_0, 1) = q_0.$$

$$\delta(q_1, 0) = q_2.$$

$$\delta(q_1, 1) = q_0.$$

$$\delta(q_2, 0) = q_2.$$

$$\delta(q_2, 1) = q_2.$$

Transition Diagrams

- Using circles to denote states, arrows to denote transition.
- Starting state is denoted by using an arrow labeled start.
- Final/accepting states are denoted by using double circles.

Transition Tables

	0	1
q_0	q_1	q_0
q_1	q_2	q_0
q_2	q_2	q_2

Extending transition function to strings

Basis:

$$\hat{\delta}(q,\epsilon) = q$$
.

Induction:

$$\hat{\delta}(q,xa) = \delta(\hat{\delta}(q,x),a).$$

Language Accepted by a DFA

$$L(A) = \{ w \mid \hat{\delta}(q_0, w) \in F \}$$

 $L(A)$ is also denoted by $Lang(A)$.

Dead and Unreachable States in a DFA

Dead State is a state from which one cannot reach a final state, whatever the sequence of inputs.

Formally, q is a dead state if, for all $w \in \Sigma^*$, $\hat{\delta}(q,w) \not\in F$. Unreachable states are states which cannot be reached from starting state, whatever the sequence of inputs. Formally, q is an unreachable state if, for all $w \in \Sigma^*$, $\hat{\delta}(q_0,w) \neq q$.

Nondeterministic Finite State Automata

Nondeterministic Finite State Automata (NFA)

- $A = (Q, \Sigma, \delta, q_0, F).$
- The transition function maps the input (state, symbol) to a set of states (a subset of Q)

Example: $L = \{w \mid n\text{-th symbol in } w \text{ from the end is } 1\}.$

Extending transition function to strings

Basis:

$$\hat{\delta}(q, \epsilon) = \{q\}$$

Induction:

$$\hat{\delta}(q, xa) = \bigcup_{p \in \hat{\delta}(q, x)} \delta(p, a)$$

Language Accepted by an NFA

$$L(A) = \{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \}$$

Equivalence of DFA and NFA

Clearly, a DFA is also an NFA.

So, we only need to show that a language accepted by NFA is also accepted by some DFA.

Suppose NFA $A = (Q, \Sigma, \delta, q_0, F)$ is given.

Define DFA $A_D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$ as follows.

$$Q_D = \{S \mid S \subseteq Q\}.$$

$$F_D = \{S \mid S \subseteq Q \text{ and } S \cap F \neq \emptyset\}.$$

$$\delta_D(S, a) = \bigcup_{q \in S} \delta(q, a)$$

Equivalence of DFA and NFA

Claim: For any string w, $\hat{\delta_D}(\{q_0\}, w) = \hat{\delta}(q_0, w)$.

Proof: By induction on length of w.

Base Case: $w = \epsilon$.

In this case clearly, $\hat{\delta_D}(\{q_0\},\epsilon)=\{q_0\}=\hat{\delta}(q_0,\epsilon)$.

Induction Step:

$$\hat{\delta_D}(\{q_0\}, wa) = \delta_D(\hat{\delta_D}(\{q_0\}, w), a)
= \bigcup_{q \in \hat{\delta_D}(\{q_0\}, w)} \delta(q, a)
= \bigcup_{q \in \hat{\delta}(q_0, w)} \delta(q, a)
= \hat{\delta}(q_0, w)
= \hat{\delta}(q_0, wa)$$

QED Claim.

Thus, $\hat{\delta_D}(\{q_0\}, w) \in F_D$ iff $\hat{\delta}(q_0, w) \cap F \neq \emptyset$. It follows that DFA A_D accepts w iff NFA A accepts w.

NFA with ϵ transitions

 $A=(Q,\Sigma,\delta,q_0,F)$. δ maps $Q\times(\Sigma\cup\{\epsilon\})$ to subsets of Q.

Example: An integer is $(+, -, \epsilon)$ followed by digits.

ϵ Closures

Definition of Eclose(q)

- 1. $q \in Eclose(q)$.
- 2. If state $p \in Eclose(q)$, then each state in $\delta(p, \epsilon)$, is in Eclose(q).
- 3. We iterate step 2, until no more changes are done to Eclose(q).

Extended transition function $\hat{\delta}$

$$\hat{\delta}(q,\epsilon) = Eclose(q)$$
.

 $\hat{\delta}(q, wa) = S$, where S is defined as follows:

Let

$$R = \bigcup_{p \in \hat{\delta}(q, w)} \delta(p, a)$$

Then,

$$S = \bigcup_{p \in R} Eclose(p)$$

$$L(A) = \{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \}.$$

Equivalence of ϵ -NFA and DFA

Idea:

Suppose $A = (Q, \Sigma, \delta, q_0, F)$.

Form $A_D = (Q_D, \Sigma, \delta_D, q_D, F_D)$ as follows:

Essentially let $Q_D = \{S \mid S \subseteq Q\}$.

$$q_D = Eclose(q_0)$$
.

Transition:

$$\delta_D(S, a) = \bigcup_{p \in S} \hat{\delta}(p, a)$$

$$F_D = \{ S \mid S \cap F \neq \emptyset \}.$$

Regular Expressions

Basis: The constant ϵ and \emptyset are regular expressions, and $L(\epsilon) = {\epsilon}$ and $L(\emptyset) = \emptyset$.

If a is any symbol in Σ , then a is a regular expression, and $L(a) = \{a\}$.

Induction: If r_1 and r_2 are regular expressions, then so are:

(a)
$$r_1 + r_2$$

 $L(r_1 + r_2) = L(r_1) \cup L(r_2)$.

(b)
$$r_1 \cdot r_2$$

 $L(r_1 \cdot r_2) = \{xy \mid x \in L(r_1) \text{ and } y \in L(r_2)\}$

(c)
$$r_1^*$$

 $L(r_1^*) = \{x_1 x_2 \dots x_k \mid \text{for } 1 \le i \le k, x_i \in L(r_1)\}.$

Note: in above k can be 0, and thus, $\epsilon \in L(r_1^*)$.

(d)
$$(r_1)$$

 $L((r_1)) = L(r_1)$.

Precedence

- * has highest precedence
- · has next highest precedence
- + has least precedence

Association

DFA to Regular Expressions

Let the DFA $A=(Q,\Sigma,\delta,q_{start},F)$. We assume $Q=\{1,2,\ldots,n\}$ for some n, and $q_{start}=1$. $R^k_{i,j}$ denote the regular expression for the set of strings which can be formed by going from state i to state j using intermediate states numbered $\leq k$. Base Case: Definition of $R^0_{i,j}$.

If $i \neq j$: $R_{i,j}^0 = a_1 + a_2 \dots + a_m$, where a_1, a_2, \dots, a_m are all the symbols such that $\delta(i, a_r) = j$ (If no such symbols, then $R_{i,j}^0 = \emptyset$).

If i = j: $R_{i,i}^0 = \epsilon + a_1 + a_2 \dots + a_m$, where a_1, a_2, \dots, a_m are all the symbols such that $\delta(i, a_r) = i$

DFA to Regular Expressions

Induction Case:

$$R_{i,j}^{k+1} = R_{i,j}^k + R_{i,k+1}^k (R_{k+1,k+1}^k)^* R_{k+1,j}^k$$

Regular Expression for language L(A) is given by:

$$\sum_{j \in F} R_{1,j}^n$$

Regular Expressions to ϵ -NFA

We will show how to inductively construct a ϵ -NFA for every regular expression which additionally satisfies:

- a) It has only one final state.
- b) There is no transition into the starting state.
- c) There is no transition out of the final state.
- d) The starting and final states are different.

Base Cases:

(i) Ø:

 $A = (\{q_0, q_f\}, \Sigma, \delta, q_0, \{q_f\})$, where δ is empty function (that is, there are no tansitions).

(ii) ϵ :

$$A=(\{q_0,q_f\},\Sigma,\delta,q_0,\{q_f\})$$
, where $\delta(q_0,\epsilon)=q_f$.

(iii) *a*:

$$A = (\{q_0, q_f\}, \Sigma, \delta, q_0, \{q_f\}), \text{ where } \delta(q_0, a) = q_f.$$

Induction Case:

(iv)
$$r_1 + r_2$$
:

Suppose
$$A_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1)$$
, and

$$A_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2)$$

are the automata for r_1 and r_2 respectively, where $Q_1 \cap Q_2 = \emptyset$.

Let
$$A = (\{q_0, q_f\} \cup Q_1 \cup Q_2, \Sigma, \delta, q_0, \{q_f\})$$
, where

$$\delta(q_0, \epsilon) = \{q_0^1, q_0^2\}$$

$$\delta(q_f^1,\epsilon)=\{q_f\}, \text{ for } q_f^1\in F_1$$

$$\delta(q_f^2,\epsilon)=\{q_f\}, \text{ for } q_f^2\in F_2$$

Additionally, δ contains all transitions of δ_1 and δ_2

(v)
$$r_1 \cdot r_2$$
: Suppose $A_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1)$, and $A_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2)$ are the automata for r_1 and r_2 respectively, where $Q_1 \cap Q_2 = \emptyset$. Let $A = (\{q_0, q_f\} \cup Q_1 \cup Q_2, \Sigma, \delta, q_0, \{q_f\})$, where $\delta(q_0, \epsilon) = \{q_0^1\}$

$$\delta(q_f^1, \epsilon) = \{q_0^2\}, \text{ for } q_f^1 \in F_1$$

 $\delta(q_f^2, \epsilon) = \{q_f\}, \text{ for } q_f^2 \in F_2$

Additionally, δ contains all transitions of δ_1 and δ_2

(vi) r_1^* : Suppose $A_1=(Q_1,\Sigma,q_0^1,\delta_1,F_1)$ is the automata for r_1 . Let $A=(\{q_0,q_f\}\cup Q_1,\Sigma,\delta,q_0,\{q_f\})$, where $\delta(q_0,\epsilon)=\{q_0^1,q_f\}$ $\delta(q_f^1,\epsilon)=\{q_0^1,q_f\}$, for $q_f^1\in F_1$ Additionally, δ contains all transitions of δ_1

Some Properties of Regular Expressions

- M + N = N + M
- L(M+N) = LM + LN
- L + L = L
- $(L^*)^* = L^*$.
- \bullet $\epsilon^* = \epsilon$
- $L^+ = LL^* = L^*L$
- $(L+M)^* = (L^*M^*)^*$