1. Give a DFA which accepts the following language.
\[\{ w \mid w = a_1 b_1 a_2 b_2 \ldots a_n b_n, \text{for some } n, \text{where } a_i, b_i \in \{0, 1\} \text{ and } a_1 a_2 \ldots a_n > b_1 b_2 \ldots b_n \text{ (interpreted as binary numbers)} \} \]
In other words, DFA can decide if \(a_1 a_2 \ldots a_n > b_1 b_2 \ldots b_n \), if the inputs are given in a specific format.

2. For a DFA \(A = (Q, \Sigma, \delta, q_0, F) \), let \(\hat{\delta} \) be as defined in class. Show that \(\hat{\delta}(q, xy) = \hat{\delta}(\hat{\delta}(q, x), y) \), for all strings \(x, y \) over \(\Sigma^* \), and all states \(q \in Q \).

3. Give an NFA which accepts the set of strings which end in \(bba \). Use your NFA to construct a DFA which accepts the same language, using the method of converting NFA’s to DFA’s done in class (do not construct a DFA directly, but only via the method discussed in class).

4. For the NFA with \(\epsilon \)-transitions as given in Figure 1:
 (a) give the transition table
 (b) find \(E_{\text{close}}(q) \), for each state \(q \).
 (c) find \(\hat{\delta}(q_2, a) \) and \(\hat{\delta}(q_2, b) \).
 (d) find a DFA which is equivalent to the given automata (you need not go through the formal method discussed in class).

 In the figure, in the transitions, \(e \) denotes \(\epsilon \).

5. Prove or disprove the following:
 (a) \(L((R+S)^*) = L((R^*S^*)^*) \), for all regular expressions \(R \) and \(S \).
 (b) \(L(S(R+S)^*S) = L((SR^*S)^+) \), for all regular expressions \(R \) and \(S \).

6. Use the method discussed in class to give a regular expression for the language accepted by the DFA \((\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_2\}) \), where \(\delta \) is defined as follows.
 \(\delta(q_1, 1) = q_1 \), \(\delta(q_1, 0) = q_2 \), \(\delta(q_2, 1) = q_2 \), \(\delta(q_2, 0) = q_1 \).

7. Consider the DFA given in Figure 2. Give the minimal DFA which accepts the same language as accepted by the DFA in figure 2.
Figure 1: NFA for Q4
Figure 2: DFA for Q7