1. Give an \(\epsilon \)-NFA for the language generated by the following right-linear grammar.

\[
S \rightarrow abA | aaB | \epsilon \\
A \rightarrow baA | bB \\
B \rightarrow aS
\]

2. The right-linear grammars we studied in class have productions of the form: \(V \rightarrow T^* (V \cup \{ \epsilon \}) \) (that is, the non-terminal on the RHS, if any, is at the right end). A left-linear grammar is one in which the productions are of the form: \(V \rightarrow (V \cup \{ \epsilon \}) T^* \) (that is, the non-terminal on the RHS, if any, is at the left end).

Recall that \(x^R \) denotes the reverse of string \(x \).

(a) Let \(L^R = \{ w^R : w \in L \} \). It was earlier shown that if \(L \) is regular then so is \(L^R \).

(b.1) Suppose \(G \) is a right-linear grammar for \(L \). Show how to produce a left-linear grammar for \(L^R \), using \(G \).

(b.2) Suppose \(G \) is a left-linear grammar for \(L \). Show how to produce a right-linear grammar for \(L^R \), using \(G \).

(c) Using (a) and (b) show that left-linear grammars generate exactly the regular languages.

3. Give context free grammars for the following languages over the alphabet \(\Sigma \):

(a) \(L = \{ cwcw^R : w \in \{ a, b \}^* \} \). \(\Sigma = \{ a, b, c \} \).

(b) \(L = \{ a^n b^m : 2m \geq n \} \). \(\Sigma = \{ a, b \} \).

(c) \(L = \{ w : \text{number of } a\text{'s in } w \text{ is the same as the number of } b\text{'s in } w \} \). \(\Sigma = \{ a, b \} \).

4. Consider the grammar given in the previous question for \(L = \{ w : \text{number of } a\text{'s in } w \text{ is the same as the number of } b\text{'s in } w \} \).

Give a parse tree for \(abbaab \).

5. (a) Show that the following grammar is ambiguous:

\[
S \rightarrow bA | aB \\
A \rightarrow a | aS | bAA \\
B \rightarrow b | bS | aBB
\]
(b) Find unambiguous grammar for the language generated by the grammar in part (a).

6. Construct NPDA's for the following languages. Let \(\#_a(w) \) denote the number of \(a \)'s in string \(w \), where \(a \in \Sigma \).

(a) \(L = \{ wcw^R : w \in \{ a, b \}^* \} \). \(\Sigma = \{ a, b, c \} \).

(b) \(L = \{ w : \#_a(w) > \#_b(w) \} \). \(\Sigma = \{ a, b \} \).

(c) \(L = \{ a^i b^j c^k : i = j \text{ or } j = k \} \). \(\Sigma = \{ a, b, c \} \).

(d) \(L = \{ w_1cw_2 : w_1, w_2 \in \{ a, b \}^* \text{ and } w_1 \neq w_2^R \} \). \(\Sigma = \{ a, b, c \} \).