PCP Theorem

Definition: Suppose r, q are functions. L is in $P C P(r, q)$, if there is a polynomial time verifier V and a constant c satisfying:

- V on input x of length n, a random string $\{0,1\}^{c * r(n)}$, and a 'proof', checks at most $c * q(n)$ bits of the proof (the bits checked depend on x and the random string), non adaptively, and accepts or rejects.
- If x is in L, there is a proof such that V accepts with probability 1 (note that this proof can be taken to be of length at most $\left.c q(n) 2^{c r(n)}\right)$.
- If x is not in L, then for any proof, V accepts with probability at most $1 / 3$.

Theorem: $N P=P C P(\log n, 1)$
Clearly, $P C P(\log n, 1)$ is contained in $N P$. Other direction is difficult. We will show a weaker version of it. Theorem: $N P \subseteq \bigcup_{c \in \mathbb{N}} P C P\left(n^{c}, 1\right)$.

Walsh Hadamard Codes

For x and y of same length (say n), let x o y denote $\left(\sum_{i=1}^{n} x_{i} \cdot y_{i}\right) \bmod 2$.
For any n, and $k \in\{0,1\}^{n}$ let $W(y) \in\{0,1\}^{2^{n}}$ be defined as follows. For the i-th element x in $\{0,1\}^{n}, i$-th bit of $W(y)$ is y o x (we sometimes also call it the x-th bit). Sometimes we denote $W(y)$ by W_{y} and treat W_{y} as a function from $\{0,1\}^{n}$ to $\{0,1\}$.
Below the operations are mod 2. Note that W is a linear function in the sense that
$W(x+y)(z)=W(x)(z)+W(y)(z)$, where + is bit wise $\bmod 2$ addition.
$W(x \cdot y)(z)=W(y)(x \cdot z)$, where \cdot is bit wise and.
$W(x)(y+z)=W(x)(y)+W(x)(z)$, where + is bit wise \bmod 2 addition.

Theorem: Any function $f:\{0,1\}^{n}$ to $\{0,1\}$ is W_{u} for some u iff f is linear (mod 2).
Proof: Clearly each W_{u} is linear.
Suppose f is linear. Suppose e_{i} has all bits 0 except the i-th bit.
$f(x)=\sum_{i=1}^{n} f\left(x_{i} e_{i}\right)$
$=\sum_{i=1}^{n} x_{i} f\left(e_{i}\right)$,
$=W_{u}(x)$, where u has i-th bit $f\left(e_{i}\right)$.

Definition: f, g from $\{0,1\}^{n}$ to $\{0,1\}$ are ρ-close if they agree on at least ρ fraction of the inputs. f is ρ-close linear function if it is ρ-close to some linear function.

Lemma: Suppose f is a function from $\{0,1\}^{n}$ to $\{0,1\}$. If $\operatorname{prob}(f(x+y)=f(x)+f(y)) \geq \rho \geq 1 / 2$, then f is a ρ-close linear function.
Note that one can do random verification for $f(x+y)=f(x)+f(y)$, using large enough number of trials.

Lemma: If f is ρ-linear for some $\rho>3 / 4$, then there exists a unique linear function \hat{f} such that f is ρ-close to \hat{f}. Proof: Suppose there are two such \hat{f} and \hat{h}. But then \hat{f} and \hat{h} are $>1 / 2$ close to each other, which is not possible. Why? $\hat{f}=W_{u} \hat{h}=W_{v}$. Suppose, u and v are different on i-th bit. Then consider any x and x^{\prime} which differ on exactly i-th bit. Now, exactly one pair:
u o x and $v o x$
or
u o x^{\prime} and $v o x^{\prime}$
are same.

QuadEQ

Definition: Instance: Given some quadratic equations over n boolean variables u_{1} to u_{n}.
Question: is there assignment to the boolean variables so that all equations are satisfied.

QuadEQ is NP-complete.

Theorem: QuadEQ is in $\bigcup_{c \in \mathbb{N}} P C P\left(n^{c}, 1\right)$.
Consider the equations as
$A U=b$, where A is $m \times n^{2}$ matrix, b is $m \times 1$, and U is formed by using $U(i, j)=u_{i} u_{j}$. We view U as both a $n \times n$ matrix and a vector of length n^{2} depending on context. We need to verify if there is some vector u which satisfies the above.
What should now be the proof?
We use Walsh-Hadamard codes for U and u, that is $f=W(U)$ and $g=W(u)$ of $2^{n^{2}}$ and 2^{n} bits respectively. U can be considered as $u \otimes u$.

We need to verify that

1. f and g are indeed linear functions
2. Check that for some $u, g=W(u)$ and $f=W(u \otimes u)$
3. $A U=b, U$ is the matrix obtained from $u \otimes u$.
4.

Use enough random pairs x, y and verify
$f(x)+f(y)=f(x+y)$,
so that if f is not 0.99 -linear it will fail the test with 99% probability.
Same for g.
Thus, we have unique linear function \hat{f} and \hat{g} which is
0.99 -close to f and g respectively.

How to get values of \hat{f} and \hat{g} ?
For any x, choose a random r and calculate $f(x+r)-f(r)$. This will be $\hat{f}(x)$ with high probability (98%).
2. Pick random $\alpha, \beta \in\{0,1\}^{n}$ and calculate $\hat{f}(\alpha \otimes \beta)$ and $\hat{g}(\alpha) \hat{g}(\beta)$.
Note that $\hat{f}(\alpha \otimes \beta)=U o(\alpha \otimes \beta)=\alpha U \beta$
$\hat{g}(\alpha) \hat{g}(\beta)=(u \circ \alpha)(u \circ \beta)=\alpha B \beta$, where $B_{i, j}=u_{i} u_{j}$.
Thus, If \hat{f} and \hat{g} are indeed representing U and u respectively, then $\hat{f}(\alpha \otimes \beta)$ and $\hat{g}(\alpha) \hat{g}(\beta)$, must be same.

If U did not represent $u \otimes u$, then probability of above test succeeding is at most $3 / 4$.
Why? if $U \neq B$, then probablity of $\alpha U \neq \alpha B$ is at least $1 / 2$. If $\alpha U \neq \alpha B$, then probability of $(\alpha U) \beta$ being not equal to $(\alpha B) \beta$ is at least $1 / 2$.
Repeating the test a fixed number of times decreases the probability of passing the test for a wrong proof.
3.

Choose $r \in\{0,1\}^{m}$ at random and compute $A U$ or r and b or .
If $A U \neq b$, then $A U$ or r and b or r will not be equal with probability $1 / 2$.

How to compute $A U$ or:
Using linearity of U, can be done using one query.

