PCP Theorem

Definition: Suppose r, q are functions. L is in PCP(r, q), if there is a polynomial time verifier V and a constant c satisfying:

- V on input x of length n, a random string {0,1}^{c*r(n)}, and a 'proof', checks at most c * q(n) bits of the proof (the bits checked depend on x and the random string), non adaptively, and accepts or rejects.
- If x is in L, there is a proof such that V accepts with probability 1 (note that this proof can be taken to be of length at most $cq(n)2^{cr(n)}$).
- If x is not in L, then for any proof, V accepts with probability at most 1/3.

Theorem: $NP = PCP(\log n, 1)$ Clearly, $PCP(\log n, 1)$ is contained in NP. Other direction is difficult. We will show a weaker version of it. Theorem: $NP \subseteq \bigcup_{c \in \mathbb{N}} PCP(n^c, 1)$.

Walsh Hadamard Codes

For x and y of same length (say n), let x o y denote $(\sum_{i=1}^{n} x_i \cdot y_i) \mod 2$.

For any *n*, and $k \in \{0,1\}^n$ let $W(y) \in \{0,1\}^{2^n}$ be defined as follows. For the *i*-th element *x* in $\{0,1\}^n$, *i*-th bit of W(y) is *y* o *x* (we sometimes also call it the *x*-th bit). Sometimes we denote W(y) by W_y and treat W_y as a function from $\{0,1\}^n$ to $\{0,1\}$.

Below the operations are mod 2. Note that W is a linear function in the sense that

W(x+y)(z) = W(x)(z) + W(y)(z), where + is bit wise mod 2 addition.

 $W(x \cdot y)(z) = W(y)(x \cdot z)$, where \cdot is bit wise and. W(x)(y+z) = W(x)(y) + W(x)(z), where + is bit wise mod 2 addition. Theorem: Any function $f : \{0,1\}^n$ to $\{0,1\}$ is W_u for some u iff f is linear (mod 2). Proof: Clearly each W_u is linear.

Suppose f is linear. Suppose e_i has all bits 0 except the *i*-th bit.

$$f(x) = \sum_{i=1}^{n} f(x_i e_i)$$

= $\sum_{i=1}^{n} x_i f(e_i)$,
= $W_u(x)$, where u has i -th bit $f(e_i)$.

Definition: f, g from $\{0, 1\}^n$ to $\{0, 1\}$ are ρ -close if they agree on at least ρ fraction of the inputs. f is ρ -close linear function if it is ρ -close to some linear function.

Lemma: Suppose f is a function from $\{0,1\}^n$ to $\{0,1\}$. If $prob(f(x+y) = f(x) + f(y)) \ge \rho \ge 1/2$, then f is a ρ -close linear function. Note that one can do random verification for

f(x+y) = f(x) + f(y), using large enough number of trials.

Lemma: If f is ρ -linear for some $\rho > 3/4$, then there exists a unique linear function \hat{f} such that f is ρ -close to \hat{f} . Proof: Suppose there are two such \hat{f} and \hat{h} . But then \hat{f} and \hat{h} are > 1/2 close to each other, which is not possible. Why? $\hat{f} = W_u \ \hat{h} = W_v$. Suppose, u and v are different on i-th bit. Then consider any x and x' which differ on exactly i-th bit. Now, exactly one pair:

```
u \ o \ x \ and \ v \ o \ x
```

or

```
u \ o \ x' \text{ and } v \ o \ x'
```

are same.

QuadEQ

Definition: Instance: Given some quadratic equations over n boolean variables u_1 to u_n .

Question: is there assignment to the boolean variables so that all equations are satisfied.

QuadEQ is NP-complete.

Theorem: QuadEQ is in $\bigcup_{c \in \mathbb{N}} PCP(n^c, 1)$. Consider the equations as

AU = b, where A is $m \times n^2$ matrix, b is $m \times 1$, and U is formed by using $U(i, j) = u_i u_j$. We view U as both a $n \times n$ matrix and a vector of length n^2 depending on context. We need to verify if there is some vector u which satisfies the above.

What should now be the proof?

We use Walsh-Hadamard codes for U and u, that is

f = W(U) and g = W(u) of 2^{n^2} and 2^n bits respectively. U can be considered as $u \otimes u$.

We need to verify that

- 1. f and g are indeed linear functions
- 2. Check that for some u, g = W(u) and $f = W(u \otimes u)$
- 3. AU = b, U is the matrix obtained from $u \otimes u$.

Use enough random pairs x, y and verify

$$f(x) + f(y) = f(x+y),$$

so that if f is not 0.99-linear it will fail the test with 99% probability.

Same for g.

Thus, we have unique linear function \hat{f} and \hat{g} which is 0.99-close to f and g respectively.

```
How to get values of \hat{f} and \hat{g}?
```

For any x, choose a random r and calculate f(x+r) - f(r). This will be $\hat{f}(x)$ with high probability (98%). 2. Pick random $\alpha, \beta \in \{0,1\}^n$ and calculate $\hat{f}(\alpha \otimes \beta)$ and $\hat{g}(\alpha)\hat{g}(\beta)$. Note that $\hat{f}(\alpha \otimes \beta) = U \ o \ (\alpha \otimes \beta) = \alpha U\beta$ $\hat{g}(\alpha)\hat{g}(\beta) = (u \ o \ \alpha)(u \ o \ \beta) = \alpha B\beta$, where $B_{i,j} = u_i u_j$. Thus, If \hat{f} and \hat{g} are indeed representing U and u

respectively, then $\hat{f}(\alpha \otimes \beta)$ and $\hat{g}(\alpha)\hat{g}(\beta)$, must be same.

- If U did not represent $u \otimes u$, then probability of above test succeeding is at most 3/4.
- Why? if $U \neq B$, then probablity of $\alpha U \neq \alpha B$ is at least 1/2. If $\alpha U \neq \alpha B$, then probability of $(\alpha U)\beta$ being not equal to $(\alpha B)\beta$ is at least 1/2.
- Repeating the test a fixed number of times decreases the probability of passing the test for a wrong proof.

```
3.
Choose r \in \{0,1\}^m at random and compute
AU \ o \ r and b \ o \ r.
If AU \neq b, then AU \ o \ r and b \ o \ r will not be equal with
probability 1/2.
```

How to compute $AU \circ r$: Using linearity of U, can be done using one query.