
PCP Theorem

Definition: Suppose r, q are functions. L is in PCP (r, q), if
there is a polynomial time verifier V and a constant c
satisfying:

V on input x of length n, a random string {0, 1}c∗r(n),
and a ‘proof’, checks at most c ∗ q(n) bits of the proof
(the bits checked depend on x and the random string),
non adaptively, and accepts or rejects.

If x is in L, there is a proof such that V accepts with
probability 1 (note that this proof can be taken to be of

length at most cq(n)2cr(n)).

If x is not in L, then for any proof, V accepts with
probability at most 1/3.
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Theorem: NP = PCP (log n, 1)
Clearly, PCP (log n, 1) is contained in NP . Other direction is
difficult. We will show a weaker version of it.
Theorem: NP ⊆

⋃
c∈N PCP (nc, 1).
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Walsh Hadamard Codes

For x and y of same length (say n), let x o y denote

(
∑n

i=1 xi · yi) mod 2.

For any n, and k ∈ {0, 1}n let W (y) ∈ {0, 1}2
n

be defined as
follows. For the i-th element x in {0, 1}n, i-th bit of W (y) is
y o x (we sometimes also call it the x-th bit). Sometimes we
denote W (y) by Wy and treat Wy as a function from {0, 1}n

to {0, 1}.
Below the operations are mod 2. Note that W is a linear
function in the sense that
W (x+ y)(z) = W (x)(z) +W (y)(z), where + is bit wise mod 2
addition.
W (x · y)(z) = W (y)(x · z), where · is bit wise and.
W (x)(y + z) = W (x)(y) +W (x)(z), where + is bit wise mod
2 addition.
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Theorem: Any function f : {0, 1}n to {0, 1} is Wu for some u
iff f is linear (mod 2).
Proof: Clearly each Wu is linear.
Suppose f is linear. Suppose ei has all bits 0 except the i-th
bit.
f(x) =

∑n
i=1 f(xiei)

=
∑n

i=1 xif(ei),

= Wu(x), where u has i-th bit f(ei).
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Definition: f, g from {0, 1}n to {0, 1} are ρ-close if they agree
on at least ρ fraction of the inputs. f is ρ-close linear
function if it is ρ-close to some linear function.

Lemma: Suppose f is a function from {0, 1}n to {0, 1}. If
prob(f(x+ y) = f(x) + f(y)) ≥ ρ ≥ 1/2, then f is a ρ-close
linear function.
Note that one can do random verification for
f(x+ y) = f(x) + f(y), using large enough number of trials.
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Lemma: If f is ρ-linear for some ρ > 3/4, then there exists a

unique linear function f̂ such that f is ρ-close to f̂ .

Proof: Suppose there are two such f̂ and ĥ. But then f̂ and

ĥ are > 1/2 close to each other, which is not possible. Why?

f̂ = Wu ĥ = Wv. Suppose, u and v are different on i-th bit.
Then consider any x and x′ which differ on exactly i-th bit.
Now, exactly one pair:
u o x and v o x
or
u o x′ and v o x′

are same.
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QuadEQ

Definition: Instance: Given some quadratic equations over
n boolean variables u1 to un.
Question: is there assignment to the boolean variables so
that all equations are satisfied.

QuadEQ is NP-complete.
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Theorem: QuadEQ is in
⋃

c∈N PCP (nc, 1).

Consider the equations as

AU = b, where A is m× n2 matrix, b is m× 1, and U is
formed by using U(i, j) = uiuj. We view U as both a n× n

matrix and a vector of length n2 depending on context.
We need to verify if there is some vector u which satisfies
the above.
What should now be the proof?
We use Walsh-Hadamard codes for U and u, that is

f = W (U) and g = W (u) of 2n
2

and 2n bits respectively. U
can be considered as u⊗ u.
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We need to verify that

1. f and g are indeed linear functions

2. Check that for some u, g = W (u) and f = W (u⊗ u)

3. AU = b, U is the matrix obtained from u⊗ u.
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1.
Use enough random pairs x, y and verify
f(x) + f(y) = f(x+ y),
so that if f is not 0.99-linear it will fail the test with 99%
probability.
Same for g.

Thus, we have unique linear function f̂ and ĝ which is
0.99-close to f and g respectively.

How to get values of f̂ and ĝ?
For any x, choose a random r and calculate f(x+ r)− f(r).

This will be f̂(x) with high probability (98%).
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2. Pick random α, β ∈ {0, 1}n and calculate f̂(α⊗ β) and
ĝ(α)ĝ(β).

Note that f̂(α⊗ β) = U o (α⊗ β) = αUβ
ĝ(α)ĝ(β) = (u o α)(u o β) = αBβ, where Bi,j = uiuj .

Thus, If f̂ and ĝ are indeed representing U and u

respectively, then f̂(α⊗ β) and ĝ(α)ĝ(β), must be same.
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If U did not represent u⊗ u, then probability of above test
succeeding is at most 3/4.
Why? if U 6= B, then probablity of αU 6= αB is at least 1/2. If
αU 6= αB, then probability of (αU)β being not equal to
(αB)β is at least 1/2.
Repeating the test a fixed number of times decreases the
probability of passing the test for a wrong proof.
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3.
Choose r ∈ {0, 1}m at random and compute
AU o r and b o r.
If AU 6= b, then AU o r and b o r will not be equal with
probability 1/2.
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How to compute AU o r:
Using linearity of U , can be done using one query.
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