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Abstract. We investigate a new paradigm in the context of learning in the limit,
namely, learning correction grammars for classes of computably enumerable (c.e.) lan-
guages. Knowing a language may feature a representation of it in terms of two gram-
mars. The second grammar is used to make corrections to the first grammar. Such
a pair of grammars can be seen as a single description of (or grammar for) the lan-
guage. We call such grammars correction grammars. Correction grammars capture
the observable fact that people do correct their linguistic utterances during their
usual linguistic activities.
We show that learning correction grammars for classes of c.e. languages in the TxtEx-
model (i.e., converging to a single correct correction grammar in the limit) is some-
times more powerful than learning ordinary grammars even in the TxtBc-model
(where the learner is allowed to converge to infinitely many syntactically distinct but
correct conjectures in the limit). For each n ≥ 0, there is a similar learning advan-
tage, again in learning correction grammars for classes of c.e. languages, but where
we compare learning correction grammars that make n+ 1 corrections to those that
make n corrections.
The concept of a correction grammar can be extended into the constructive trans-
finite, using the idea of counting-down from notations for transfinite constructive
ordinals. This transfinite extension can also be conceptualized as being about learn-
ing Ershov-descriptions for c.e. languages. For u a notation in Kleene’s general system
(O,<o) of ordinal notations for constructive ordinals, we introduce the concept of an
u-correction grammar, where u is used to bound the number of corrections that the
grammar is allowed to make. We prove a general hierarchy result: if u and v are
notations for constructive ordinals such that u <o v, then there are classes of c.e. lan-
guages that can be TxtEx-learned by conjecturing v-correction grammars but not
by conjecturing u-correction grammars.
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Surprisingly, we show that — above “ω-many” corrections — it is not possible to
strengthen the hierarchy: TxtEx-learning u-correction grammars of classes of c.e. lan-
guages, where u is a notation in O for any ordinal, can be simulated by TxtBc-
learning w-correction grammars, where w is any notation for the smallest infinite
ordinal ω.

1 Introduction and Motivation

We investigate a new model in the context of Gold-style learning theory (see [24, 26]): learning
“correction grammars”. Burgin [9] suggested that knowing a language may feature a represen-
tation of the language in terms of two sets of rules, i.e., two grammars, say g1 and g2: g2 is used
to “edit” errors of (make corrections to) g1. In set-theoretic terms, the language L is represented
as the difference (L1 − L2), where Li is the language generated by the grammar gi. The pair
〈g1, g2〉 can thus be seen as a single description of (or “grammar” for) the language L. Burgin
called these grammars grammars with prohibition. We prefer to call them correction grammars.
The idea is readily formalizable in a recursion-theoretic context: p is a correction grammar for L
if and only if p = 〈i, j〉 and L = (Wi−Wj).

4 In general, one cannot effectively convert correction
grammars 〈i, j〉 for a language L to a standard grammar for L, even when L is computable (i.e.,
computably decidable) (this can be proved using standard techniques and also follows from proof
of Theorem 17).

It is natural to consider extensions of the correction grammars paradigm. The concept is
readily generalizable to descriptions of c.e. languages as finite differences of c.e. languages. This
idea formalizes the concept of a finite, fixed number of successive editings for errors. For k > 0,
a k-correction grammar for a c.e. language L is a number p such that p = 〈i1, . . . , ik〉 and
L = Wi1 − (Wi2 − · · · (Wik−1

−Wik) · · ·).
Correction grammars — besides being mathematically interesting — can be seen as capturing

the observable fact that people do correct their linguistic utterances during their usual linguistic
activities (both oral and written). As will be seen later, the formal concept of a general correction
grammar can be equivalently expressed in terms of algorithms that initially exclude all candidate
items but are allowed, for each candidate item, a finite number of mind-changes about whether to
include in or exclude from the language that candidate item (in other words, correction grammars
are algorithms for limiting computable functions — that initially output 0 for exclusion). For
example, a correction grammar 〈g1, g2〉 for the language L = L1−L2, as described above, can be
equivalently thought of as an algorithm that initially excludes each item x and, then, can change
its mind about x’s inclusion or exclusion up to twice on the way to giving its final, correct answer
as to whether x is included in or excluded from L.5 More generally, a k-correction grammar is
equivalent to an algorithm that initially excludes each item x and, then, it can change its mind

4 Wi is the i-th c.e. set, where i codes a program for generating or for accepting Wi.
5 Of course, an ordinary grammar (c.e. index) g for a c.e. language L can be thought of as an algorithm that initially

excludes each item x and, then, it can change its mind about x’s inclusion or exclusion up to once on the way to giving
its final, correct answer as to whether x is included or excluded in L.
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about x’s inclusion or exclusion up to k times on the way to giving its final, correct answer as
to whether x is included or excluded.

This description of correction grammars can be seen as modeling the observable, multiply
self-correcting behaviour of humans.

The observable need for self-correction might be blamed on an error in the rule itself or on
a performance error, i.e., an error of rule application. The idea of correction grammars explores
the theoretical possibility that the cause of self-correcting behaviour depends on the form of the
rules themselves, rather than, e.g., on an error in the rule or in rule application.

If it is the case that the self-correcting behaviour of humans depends on the fact that humans
internally represent the target language as a correction grammar and not as a standard grammar,
it is natural to ask: is there some learning gain that compensates for the need of self-corrections?

We investigate a formal version of the latter question, in the context of computability-
theoretic learning theory (or learning in the limit) [24, 26]: a learning machine (an algorithmic
device) receives as input a sequence e1, e2, . . . of all and only the elements of a c.e. language L
(any such sequence is called a text for L) and outputs a corresponding infinite sequence g1, g2, . . .
of grammars that may generate L.

Several criteria of successful learning of a language can and have been studied. The most basic
one is Explanatory Learning from Text (TxtEx-learning): the machine is required to output,
past some point, one and the same correct grammar for the input language.

A more liberal (and more powerful) criterion is Behaviourally Correct Learning from Text
(TxtBc-learning): the machine is required to output, past some point, only correct grammars,
though possibly infinitely many syntactically distinct ones.

Both these criteria feature learning in the limit (the machine does not know if and when
it has converged) and require success of the learner on any order of presentation of the data.
Since learning a single c.e. language is trivial in this model, the simultaneous learning of classes
of c.e. languages is studied. Note that the conjectures of a learning machine as just above are
standard type-0 grammars [25], or, equivalently, c.e. indices for the language [40]. The formal
version of the above question is now the following: what is the power of an algorithmic learning
machine that outputs correction grammars instead of c.e. indices for c.e. languages?

One of the main results of the present paper (Theorem 21, Section 3.2) implies that learn-
ing correction grammars for classes of c.e. languages is more powerful than learning ordinary
c.e. indices in the TxtEx-model. The increase in power is so strong that there are classes of com-
putable languages that are TxtEx-learnable by a machine that outputs correction grammars but
not by any TxtBc-learner conjecturing c.e. indices — and this even if the learner is presented
with informant, instead of text, for the languages in the class (an informant for a language is
the graph of the characteristic function of the language). An informal, intuitive explanation for
this result, as well as (mutatis mutandis) for its generalizations described below, is that, while
ordinary grammars or c.e. indices provide information on how to list the corresponding c.e. lan-
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guage, correction grammars do not, in general, provide this information, so, one might expect
that correction grammars, being, in this respect less informative, may be easier to learn.6

Actually, Theorem 21 provides that learning (k + 1)-correction grammars is more powerful
than learning k-correction grammars. So a next mathematically natural step is to extend the
concept of a correction grammar into the constructive transfinite. We explain briefly. Ordinals
are canonical representatives of well-orderings. We know from set theory that each well-ordered
set (finite or infinite) is isomorphic to a unique ordinal. The transfinite ordinals are the ordinals
beyond the finite ones — i.e., which are not isomorphic to any of the well-ordered finite sets. A
constructive ordinal is the order-type of some computable well-ordering of the set of non-negative
integers [40]. Constructive ordinals are equivalent to those that have a program, called a notation,
which specifies how to effectively build them or lay them out end-to-end (see infra for further
details). All constructive ordinals are countable. ω denotes the first (smallest) ordinal which is
not isomorphic to a finite well-ordering. The ordinal ω is isomorphic to the standard well-ordering
of the natural numbers 0 < 1 < 2 < . . .. The ordinal ω is constructive and transfinite, in fact the
smallest transfinite ordinal. Our concept of a general correction grammar is roughly based on
the idea of using constructive ordinals to bound the number of corrections that the grammar can
make. To do this rigorously, we explain and use below the idea of counting-down from notations
for (countable, constructive) transfinite ordinals. For example, it can be shown that counting
down corrections allowed from any notation for ω is equivalent to declaring algorithmically, at
the time a first correction is made, a finite number bound on the number of further corrections to
be allowed. This is more powerful than just initially setting a fixed, finite number of corrections
allowed. As another example consider using the ordinal ω + ω (two copies of ω laid end to
end), also constructive and transfinite: in this case, at the time the first correction is made,
the algorithm declares a finite bound on the number of further corrections it is going to make;
this bound is, however, allowed to be changed once, at a later time. For constructive ordinal
ω+ω+ω, the algorithm is allowed to update the bound twice. If one considers the constructive
ordinal ω2, then the algorithm is allowed to make a finite number of changes to the bound, where
the maximum number of changes allowed to the bound is announced at the time the algorithm
makes the first correction!

To expand a bit on our description above, the constructive ordinals are just those that have
a notation (in some system) which specifies how to build them from below using notations for
smaller ordinals and basic effective operations (typically successor and constructive limit). We
will employ, as our system of notations, Kleene’s general system O [29–31, 40]. This system has at
least one notation for each constructive ordinal and comes with Kleene’s standard, useful order
relation <o on the notations in O. The order relation <o naturally embeds into the ordering of

6 Furthermore, it is shown in [14] that correction grammars for suitable finite (respectively, co-finite) languages can be
∅(1) (respectively ∅(2)) more succinct than minimal size ordinary grammars; hence, these correction grammars may
carry less information than the corresponding minimal size ordinary grammars. However, here is a subtlety. It is also
shown in [14] that one can prove some global properties of suitable c.e. languages L from suitable correction grammars
for L that one cannot prove from any ordinary grammars for L. This provides a different and contrasting sense in which
some correction grammars for some c.e. languages carry more information than any corresponding ordinary grammars.
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the corresponding constructive ordinals (i.e., if u is a notation for α and v is a notation for β
and u <o v, then α < β).

The idea of using constructive notations to perform algorithmic count-down from transfinite
(constructive) ordinals is widely used in Proof Theory (e.g., to measure the strength of formal
systems and classify their provably total functions) [43, 39], and in Term Rewriting (e.g., to
prove termination of rewrite systems) [8, 44]. In Learning Theory, this idea has been introduced
by Freivalds and Smith in [23]. They used ordinal notations, for example, for algorithmically
counting down the mind-changes of inductive inference procedures. This allowed for handling
and studying constructive, “transfinite” bounds on mind-changes of inductive inference machines.

In the present paper, we use ordinal notations to bound the number of corrections allowed
to a correction grammar. Equivalently, a correction grammar is a total procedure for a limiting
computable 0–1 function that initially excludes each item x (outputs 0 for exclusion) and that
uses an ordinal notation to bound the number of later mind-changes about inclusion or exclusion
of an element in the conjectured language. The well-orderedness of the ordinals ensures that such
a procedure converges. (See [1] for another use of ordinal notations in the context of inductive
inference of functions.) We formalize the concept of a u-correction grammar, where u is a
notation in O for some constructive ordinal. To do this, we, in effect, use descriptions of sets in
levels of the Ershov Hierarchy [18–20]. The Ershov Hierarchy is based on effective iteration of
set-theoretic differences of c.e. sets including up into the constructive transfinite. A correction
grammar for a c.e. set is, in fact, a “description” of the c.e. set as belonging to some level of the
Ershov Hierarchy. We will build on recent work by Case and Royer [14] who obtained succinctness
results for correction grammars and developed useful, uniform numberings (i.e., programming
systems) for the relevant classes of the Ershov Hierarchy. Our using these programming systems
has the following advantage: it is shown in [14] that these programming systems are acceptable
[40, 32].7 Since our results are easily seen to be independent of which acceptable systems are used
for the Ershov classes, from our employment in our proofs of these useful acceptable systems
from [14], we can conclude that our results hold for all acceptable systems.

From the perspective of the Cognitive Science interpretation of the present investigation, the
following should be observed. Although the definition of general correction grammars makes use
of the notion of (constructive) transfinite ordinals, the algorithmic count-down always consists
of a finite number of steps down along a (possibly very intricate) countable well-ordering. Thus,
the general notion of correction grammar still reflects the behaviour of a learner that is allowed
to correct its linguistic output a finite number of times.

On the other hand, the correction grammar model has no pretension of modeling human self-
correcting behaviour in more detail. For example, there is no control on how late a correction
may occur, and it should be observed that this is already true for the base case of correction
grammars, i.e., grammars that are allowed only one correction on each candidate element of the
language.

7 By definition, the acceptable programming systems for a class are those which contain a universal simulator and into
which all other universal programming systems for the class can be compiled. Acceptable systems are characterized
as universal systems with an algorithmic substitutivity principle called S-m-n [40, 32, 41, 14]. Acceptable systems also
satisfy self-reference principles such as Recursion Theorems [40, 32, 41, 14].
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The existence of a hierarchy of more and more powerful learning criteria, increasing in the
ordinal notation used to count corrections of a correction grammar is one of the main results
of the present paper (Theorem 19, Section 3.1). We show that, if u and v are two notations for
two constructive ordinals α and β, respectively, such that u <o v (which implies α < β), then
TxtEx-learning correction grammars that count-down from v is more powerful than TxtEx-
learning correction grammars that count-down from u. That is, there are classes of c.e. languages,
even classes of computable languages, that can be TxtEx-learned by conjecturing correction
grammars that count-down from v but not by conjecturing correction grammars that count-
down from u — and this even if the learner is presented with informant, instead of text, for the
languages in the class.

Surprisingly, Theorems 29 and 35 show that the following collapse occurs: any class of c.e. lan-
guages that is TxtEx-learnable or TxtBc-learnable by a learner outputting u-correction gram-
mars, for any notation u for a transfinite ordinal, is already TxtBc-learnable by a learner
outputting w-correction grammars, where w is a notation for the smallest infinite ordinal ω.8

Hence, there is a learning power tradeoff between, on the one hand, employing u-corrections,
where u is a notation for a very large transfinite ordinal, with TxtEx-learning which nicely
features only one correct correction grammar in the limit and, on the other hand, stopping at
“ω” corrections but, then, paying the price of infinitely many distinct correction grammars in
the limit. Theorems 32 and 35 show similar collapsing result when (unbounded or bounded)
finite number of errors are allowed in the grammars (eventually) output by the TxtBc learner.

The paper is organized as follows. In Section 2 we introduce notations and definitions needed
for the rest of the paper. This section includes general recursion-theoretic notation (Section 2.1),
a quick treatment of Kleene’sO (Section 2.2), the definition of the Ershov Hierarchy (Section 2.3),
and the basics of Gold-style Learning Theory, culminating in the formal definition of learning
general correction grammars (Section 2.4).

Next, in Section 3, we first prove our general hierarchy result (Theorem 19): TxtEx-learning
correction grammars that count-down from (constructive notations for) transfinite ordinals yields
an infinite hierarchy of more and more powerful learning criteria.

We then show (Theorem 21) that, for each finite level of this hierarchy, the result can be
strengthened as follows: TxtEx-learning n+1-correction grammars is sometimes more powerful
than TxtBc-learning n-correction grammars for every natural number n.

In Section 4, we present some surprising collapsing results, showing that the hierarchy re-
sults of Section 3 are best possible. For example, we show (Theorem 29) that every class that
is TxtEx-learnable by conjecturing u-correction grammars, where u is a notation for any con-
structive ordinal, is already TxtBc-learnable using correction grammars that count-down from
any notation for ω, the least infinite ordinal.

Section 5 contains some miscellaneous further results regarding learning slightly anomalous
programs (Section 5.1) and program size complexity restricted learning (Section 5.2).

8 We note, by way of informally and very approximately explaining this collapse that in contexts of learning descriptions
of functions, e.g., in the proofs of [15, Theorem 3.10 (Harrington)], [12, Theorem 14], and [4, Theorem 7(d)], one gets
collapsings of some different sorts with cases of suitably twice iterating either limits or ∀∞ quantifiers, where ∀∞ denotes
‘for all but finitely many’.
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Section 6 contains concluding remarks, announcement of further results, open problems, and
suggestions for future work.

2 Preliminaries

This section contains terminology for the rest of the paper, a presentation of Kleene’s ordinal
notation system O, and general background on the Ershov Hierarchy. These technical concepts
and tools are then used to define formally the criteria of learning correction grammars that
count-down from (notations for constructive) transfinite ordinals.

2.1 Notation and Recursion Theory Background

Any unexplained recursion theoretic notation is from [40]. The symbol N denotes the set of
natural numbers, {0, 1, 2, 3, . . .}. The symbols ∅, ⊆, ⊂, ⊇, ⊃, and ∆ denote empty set, subset,
proper subset, superset, proper superset, and symmetric difference, respectively. The cardinality
of a set S is denoted by card(S). card(S) ≤ ∗ denotes that S is finite. We use the convention
n < ∗ for all n ∈ N. The maximum and minimum of a set are denoted by max(·),min(·),
respectively, where max(∅) = 0 and min(∅) = ∞. L1 =n L2 means that card(L1∆L2) ≤ n and
L1 and L2 are called n-variants. L1 =∗ L2 means that card(L1∆L2) ≤ ∗, i.e., is finite; in this
case L1 and L2 are called finite-variants.

We let 〈·, ·〉 stand for Cantor’s computable, bijective mapping 〈x, y〉 = 1
2
(x+y)(x+y+1)+x

from N ×N onto N [40]. Note that 〈·, ·〉 is monotonically increasing in both of its arguments.
We define π1(〈x, y〉) = x and π2(〈x, y〉) = y.

By ϕ we denote a fixed acceptable programming system for the partial computable functions
mapping N to N [40]. By ϕi we denote the partial computable function computed by the program
number i in the ϕ-system. We assume that multiple arguments are coded in some standard way
[40] and suppress the explicit coding. By Φ we denote an arbitrary fixed Blum complexity measure
[7, 25] for the ϕ-system. A partial computable function Φ(·, ·) is said to be a Blum complexity
measure for ϕ, if and only if the following two conditions are satisfied:

(a) for all i and x, Φ(i, x)↓ if and only if ϕi(x)↓.
(b) One can effectively (in i, x, t) decide whether Φ(i, x) ≤ t.
By convention we use Φi to denote the partial computable function x → Φ(i, x). Intu-

itively, Φi(x) may be thought as the number of steps it takes to compute ϕi(x). ϕi,s denotes
the complexity-bounded version of ϕi, that is, ϕi,s(x) = ϕi(x), if x < s and Φi(x) < s; ϕi,s(x) is
undefined otherwise.

Formally, Wi denotes domain(ϕi). That is, Wi is the set of all numbers on which the ϕ-
program i halts. This treats i as an acceptor program for Wi [25]. By Wi,s we denote the set
domain(ϕi,s) = {x < s | Φi(x) < s}. We say that p is a limiting computable program for a total
function f if ϕp is a total function, and for all x, limt→∞ ϕp(x, t) = f(x).

Every subset of N is considered to be language. The symbol E will denote the set of all
c.e. languages. The symbol L ranges over E . By L, we denote the complement of L, that is
N− L. χL denotes the characteristic function of L. The symbol L ranges over subsets of E .
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As noted above, ∀∞ denotes for all but finitely many.

2.2 Constructive Ordinals and Kleene’s O

We proceed informally (for a detailed treatment see [40, 3]). The exposition in this and next
subsection (Section 2.3) is based closely on [14]. A system of notation S is a collection of pro-
grams (S-notations) each of which specifies a structured algorithmic description of some ordinal.
Specifically, the notations are programs for building, or laying down end-to-end, the denoted
ordinal. An ordinal is called constructive when it has a notation in some system of notation. An
ordinal is called a successor ordinal, if it is of the form α+ 1, for some ordinal α. An ordinal is
a limit ordinal if it is neither 0 nor a successor ordinal.

A system of notation S consists of a subset NS of N (the set of S-notations), and a mapping
S[·] from NS to an initial segment of the ordinals, such that:

– For x ∈ NS, the properties of being a notation for 0, a notation for a successor ordinal and
a notation for a limit ordinal are computably decidable.

– There is a partial computable function p (the predecessor function) such that, if x ∈ NS is
a notation for a successor ordinal, then p(x) is defined and is a notation for the immediate
predecessor of the ordinal S[x] denoted by x. I.e., S[p(x)] + 1 = S[x].

– There exists a partial computable function q (the fundamental sequence function) such that
for every notation x ∈ NS for a limit ordinal, the function mapping y to q(x, y) is total and
S[q(x, 1)] < S[q(x, 2)] < . . . has limit S[x].

A system of notation S is acceptable if any other system is computably order-preservingly em-
beddable in it. Formally, if, for any other system of notation S ′, there exists a partial computable
τ such that, for all S ′-notation x, τ(x) is defined and is an S-notation, and S ′[x] ≤ S[τ(x)]; Fur-
thermore, if x <S′ y, then τ(x) <S τ(y), where <S′ and <S are ordering relations among S ′

and S notation, respectively. Each acceptable system of notation assigns at least one notation
to every constructive ordinal. A system of notation S is univalent if S[·] is injective. It is known
that every acceptable system fails to be univalent (see [40]).

Kleene [29–31, 40] developed a general acceptable system of notation O. Every constructive
ordinal has at least one notation in O. O is endowed with a relation <o on notations that
naturally embeds in the ordering of the corresponding constructive ordinals: for all O-notations
u, v, if u <o v then O[u] < O[v].

We will not need much of the particular features of O in what follows, but it is nonetheless
necessary to refer to some system of notations to define precisely our general concept of learning
by correction grammars. The use of O is advantageous in that it provides a general system
containing at least one notation for each constructive ordinal. This will allow us to state our
general Hierarchy Theorem with satisfactory generality and uniformity.

In Kleene’s system O, 20 is (by definition) the notation for the ordinal 0. If u is a notation
for the immediate predecessor of a successor ordinal, then a notation for that successor ordinal
is (by definition) 2u. We omit the details of the definition of <o. We now consider notations for
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limit ordinals. Suppose ϕp(0), ϕp(1), ϕp(2), . . . are each notations in <o order (see [40]). Suppose,
then, that the corresponding ordinals are longer and longer initial segments of some limit ordi-
nal which is their supremum. For example, some such p generates the respective notations for
0, 1, 2, . . . in <o order, and ω is the supremum of this sequence. In general, then, p essentially
describes how to build the limit ordinal which is the supremum of the ordinals with notations
ϕp(0), ϕp(1), ϕp(2), . . . . A notation for this limit ordinal is (by definition) 3 · 5p. A sequence of
notations for larger and larger ordinals is also called a fundamental sequence for their supremum.
The assignment of fundamental sequences to limit ordinals is an essential ingredient of an ordinal
notation system. Clearly limit ordinals have infinitely many notations, different ones for different
generating p’s. Nothing else is a notation. We define ‘x =o y’ to mean ‘x, y ∈ O and x = y’. As
in the literature on constructive ordinals, we use ‘x ≤o y’ for ‘x <o y ∨ x =o y’, ‘x ≥o y’ to mean
‘y ≤o x and ‘x >o y’ to mean ‘y <o x’. We also recall that the mapping O[·] : O → the set of
(constructive) ordinals, is defined as follows [29, 31, 40]

O[1] = 0;

O[2u] = O[u] + 1;

O[3 · 5p] = lim
n→∞

O[ϕp(n)],

where, for the latter, for each n, ϕp(n) <o ϕp(n+ 1) ∈ O.
For all x, y ∈ O, it is true that, if x <o y then O[x] < O[y]. It is also true that, for all y ∈ O,

if O[y] = β, then for every α < β, there is an x such that x <o y and O[x] = α. If u ∈ O and
O[u] = α, then we say that u is for α.

We shall use the following properties of O in later proofs.

Lemma 1 (Some properties of O, [40]).

1. For every n ∈ N there exists a unique O-notation for n. This notation will be denoted by n.
2. For every v ∈ O, {u | u <o v} is a univalent system of notations for the corresponding initial

segment of the ordinals.
3. There exists a c.e. set Z such that {u | u <o v} = {u | 〈u, v〉 ∈ Z}, for each v ∈ O.
4. There exists a computable mapping +o : N × N −→ N such that, for every u, v ∈ O, (i)
u+o v ∈ O, (ii) O[u+o v] = O[u] +O[v], and (iii) if v 6= 0 then u <o u+o v.

In the rest of this paper, u, v, w denote elements in O.

2.3 The Ershov Hierarchy

In the present subsection we introduce the Ershov Hierarchy [18–20], and give the definition of
a particular acceptable universal programming system W u for each level of the hierarchy, due
to Case and Royer in [14].9

9 This system was created in part to make sure there is such an acceptable system. The construction of the W u’s is also
nicely uniform in u ∈ O.
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Our presentation of the Ershov Hierarchy is in terms of count-down functions from O-
notations for constructive ordinals. Similar presentations, differing from but equivalent to the
one originally given by Ershov, can be found in [3, 17].

Definition 2 (Count-Down Function). A computable function F : N×N → O is a count-
down function if for all x and t, F (x, t+ 1) ≤o F (x, t).

For a binary function h(·, ·) we write h(x,∞) for the limit limt→∞ h(x, t). For a set A, we
denote by χA the characteristic function of A.

Definition 3 (Ershov Hierarchy). A ∈ Σ−1
u if and only if there exists a computable function

h : N×N → {0, 1} and a count-down function F such that, for all x, t ∈ N,

(i) χA(x) = h(x,∞),
(ii) h(x, 0) = 0 and F (x, 0) ≤o u,
(iii) h(x, t+ 1) 6= h(x, t) ⇒ F (x, t+ 1) <o F (x, t).

In this case we say that h and F witness A ∈ Σ−1
u .

Note that Σ−1
0 = {∅}. Definition 3 immediately implies that u <o v ⇒ Σ−1

u ⊆ Σ−1
v . The

containment is in fact proper, so that one speaks of the Ershov Hierarchy.
The next lemma spells out the correspondence between a description of a set in terms of

finite differences of c.e. sets and in terms of count-down functions.

Lemma 4 (Case and Royer, [14]). X ∈ Σ−1
u+o1 if and only if there exists Y ∈ E, ∃S ∈ Σ−1

u

such that S ⊆ Y and X = Y − S.

Corollary 5. Let n ≥ 1. X ∈ Σ−1
n if and only if there exist c.e. sets Y1 ⊇ . . . ⊇ Yn such that

X = Y1 − (Y2 − (. . .− (Yn−1 − Yn) . . .)).

We will now proceed to define, for each u ∈ O, an acceptable universal numbering or pro-
gramming system W u for Σ−1

u . This numbering is due to Case and Royer [14]. The proof that it
gives an acceptable numbering is omitted here.

Let us denote by ϕTM an acceptable programming system for the partial computable functions
based on a coding of deterministic multi-tape Turing Machines. By standard results [40], ϕTM

is an acceptable programming system for the partial computable functions.
For each x and i in N, let ΦTM

i (x) be the runtime of Turing Machine i on input x. It is
easy to check that ΦTM

i (x) is a Blum Complexity Measure [7] for ϕTM. It is easy to arrange the
numerical TM coding so that {〈x, i, t〉 | ΦTM

i (x) ≤ t} is primitive recursively decidable (see, for
example, [41]).

From Lemma 1 part 3, we know that there exists a c.e. set Z such that

{u | 〈u, v〉 ∈ Z} = {u | u <o v},

for each v ∈ O. In what follows, let z0 be a fixed ϕTM program for accepting Z.
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Definition 6 (Convenient Function). Let F be a count-down function. Then F is convenient
(relative to z0) if

(∀x)(∀t)[F (x, t+ 1) <o F (x, t) ⇒ ΦTM
z0

(〈F (x, t+ 1), F (x, t)〉) ≤ t].

We say that h and F conveniently witness A ∈ Σ−1
u when h and F witness A ∈ Σ−1

u and F is
convenient.

Let ψ be a standard programming system for the primitive recursive functions, (i.e., one for
which the S-m-n Theorem and the Recursion Theorems all hold) [41].

Definition 7. Let u ∈ O. We say that i, j, x are u-consistent through t when ψi(x, 0) = 0,
ψj(x, 0) =o u and, for each t′ < t,

(i) ψi(x, t
′ + 1) ∈ {0, 1},

(ii) ψj(x, t
′ + 1) 6= ψj(x, t

′) ⇔ ΦTM
z0

(ψj(x, t
′ + 1), ψj(x, t

′)) ≤ t′,
(iii) ψi(x, t

′ + 1) 6= ψi(x, t
′) ⇒ ψj(x, t

′ + 1) <o ψj(x, t
′).

Definition 8. Let u ∈ O. For each i, j, x, t let

hu(i, j, x, t) =


0 if i, j, x are not u -consistent through 0;
ψi(x, t

′) otherwise, where
t′ is the greatest number ≤ t
such that i, j, x are u-consistent through t′.

For each i, j ∈ N, let
W u

〈i,j〉 = {x | hu(i, j, x,∞) = 1}.

We call p a u-correction grammar for W u
p , and we are herein interested in such grammars for

c.e. (and computable) languages.
We observe that hu(i, j, x, t) is double recursive (see [37]) as a function of u, i, j, x, t, while,

for each u, hu(i, j, x, t) is primitive recursive as a function of i, j, x, t.10

Theorem 9 (Case and Royer, [14]).

(a) W u is an acceptable universal numbering for Σ−1
u .

(b) The S-m-n and the Recursion Theorems hold for W u.

In particular, by the previous Theorem, the Kleene Recursion Theorem holds in the W u-
system.11 This means that, given the specification of a W u-system task p, there exists an e such
that program e in the W u-system makes a self-copy (i.e., computes a copy of its own code) and
applies that task p to this self-copy (and, of course, to its external input). In proofs below, for
convenience, we will give the description of what such an e does with its self-copy in an informal

10 As noted in [14], it is possible, using methods from [41], to make hu(i, j, x, t) exponential-time computable as a function
of u, i, x, t and, for every u, to make hu(i, j, x, t) linear-time computable as a function of i, j, x, t.

11 For the ϕ-system the Kleene Recursion Theorem is described in [40, Page 214]. Herein we employ this self-reference
principle for the W u systems, u ∈ O.
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system. In particular we will describe task-relevant functions h and F , each informally in terms
of e, such that F is a count-down function and h and F witness that {x | h(x,∞) = 1} ∈ Σ−1

u

(Definition 3). In each such case, we make sure this latter set is u-c.e. Implicitly, then, we invoke
the acceptability of W u to obtain a translation of the informal description involving h and F
into the W u-system to get what e really does in the formal W u-system with its self-copy (and
its external input). In practice, though, we will merely describe informally what such a formal e
does with its self-copy, and not mention again the invoking of acceptability to get a translation
of what such an e does more formally with its self-copy, etc.

We adopt, for the sake of readability, the following notational convention:

θu
p (x, t) = hu(π1(p), π2(p), x, t).

We now have all the tools needed to define the general learning criteria of learning u-correction
grammars.

2.4 Learning Criteria

We now present concepts from language learning theory (see [26]) and then formally define
learning correction grammars.

The next definition introduces the concept of a sequence of data.

Definition 10 (Sequence).
(a) A sequence σ is a mapping from an initial segment of N into (N ∪ {#}). The empty

sequence is denoted by λ.
(b) The content of a sequence σ, denoted content(σ), is the set of natural numbers in the

range of σ.
(c) The length of σ, denoted by |σ|, is the number of elements in σ. So, |λ| = 0.
(d) For n ≤ |σ|, the initial sequence of σ of length n is denoted by σ[n]. So, σ[0] is λ.

Intuitively, the pause-symbol # represents a pause in the presentation of data. We let σ, τ
and γ range over finite sequences. We denote the sequence formed by the concatenation of τ
at the end of σ by σ � τ or by στ . Sometimes we abuse the notation and use σx to denote the
concatenation of sequence σ and the sequence of length 1 which contains the element x. SEQ
denotes the set of all finite sequences.

Definition 11 (Texts, [24]).
(a) A text T for a language L is a mapping from N into (N ∪ {#}) such that L is the set of

natural numbers in the range of T . T (i) represents the (i+ 1)-st element in the text.
(b) The content of a text T , denoted by content(T ), is the set of natural numbers in the

range of T ; that is, the language which T is a text for.
(c) T [n] denotes the finite initial sequence of T with length n.

Definition 12 (Learning Machine, [24]). A learning machine (or just learner) is an algo-
rithmic device which computes a mapping from SEQ into N.

12



We let M range over learning machines. We note that, without loss of generality, for all
criteria of learning discussed in this paper, a learner M may be assumed to be total (see [33,
Lemma 4.2.2B] for the proof for the criteria TxtEx; same proof works for the criteria TxtBc
also). M(T [n]) denotes the hypothesis of the learner M after it has seen the first n members of
T . M(T ) = e denotes that M converges on T to e, that is M(T [n]) = e, for all but finitely many
n.

There are several criteria for a learning machine to be successful on a language. Below we
define some of them.

Definition 13 (Explanatory Learning, [13, 24]). Suppose a ∈ N ∪ {∗}.
(a) M TxtExa-identifies a text T just in case (∃i | Wi =a content(T )) (∀∞n)[M(T [n]) = i].
(b) M TxtExa-identifies a c.e. language L (written: L ∈ TxtExa(M)) just in case M

TxtExa-identifies each text for L.
(c) M TxtExa-identifies a class L of c.e. languages (written: L ⊆ TxtExa(M)) just in case

M TxtExa-identifies each language from L.
(d) TxtExa = {L ⊆ E | (∃M)[L ⊆ TxtExa(M)]}.

Definition 14 (Behaviourally Correct Learning, [13, 34]). Suppose a ∈ N ∪ {∗}.
(a) M TxtBca-identifies a text T just in case (∀∞n ∈ N)[WM(T [n]) =a content(T )].
(b) M TxtBca-identifies a c.e. language L (written: L ∈ TxtBca(M)) just in case M

TxtBca-identifies each text for L.
(c) M TxtBca-identifies a class L of c.e. languages (written: L ⊆ TxtBca(M)) just in case

M TxtBca-identifies each language from L.
(d) TxtBca = {L ⊆ E | (∃M)[L ⊆ TxtBca(M)]}.

For learning criteria I, a = 0, we often write I instead of Ia. It is well-known that TxtExa ⊂
TxtBca (see [13]). With an abuse of terminology we sometimes refer to any criterion that
requires syntactic (resp. semantic) convergence in the limit as Ex- (resp. Bc-) learning.

We collect some well-known facts about learning with anomalies in the following theorem.

Theorem 15 (Basic Results [13]). Suppose n,m ∈ N.
(a) TxtEx ⊂ TxtEx1 ⊂ . . . ⊂ TxtEx∗,
(b) TxtEx∗ −

⋃
n∈N TxtExn 6= ∅,

(c) TxtBc ⊂ TxtBc1 ⊂ . . . ⊂ TxtBc∗,
(d) TxtEx∗ and TxtBc are incomparable,
(e) {L | L =2m+1 N} ∈ (TxtEx2m+1 −TxtBcm),
(f) TxtEx2m ⊆ TxtBcm.

When we only require that a learner is successful when fed the graph of the characteristic
function of the language instead of any text, we obtain the concept of learning from informant
(see [24]). For an informant I, we denote by I[n], the first n elements of I. A canonical informant
for a language L is (0, χL(0)), (1, χL(1)), (2, χL(2)), . . .. We often identify χL with the canonical
informant for L. For a characteristic function f , we use f [n] to denote the initial segment
(0, f(0)), (1, f(1)), . . . , (n− 1, f(n− 1)).

13



Using Inf instead of Txt in the name of any learning criterion indicates that the requirement
of learning from texts is substituted by the requirement of learning from informant. It is well-
known that more can be learned from informant than from text (see [26]).

We can now formally introduce learning by correction grammars. Intuitively, a CoruI-learner,
where I is any learning criterion, is a successful I-learner when its conjectures are interpreted as
u-correction grammars.

Definition 16 (Learning Correction Grammars). Let u ∈ O, a ∈ N ∪ {∗}.
(a) CoruTxtExa is the collection of all classes L of c.e. languages such that there exists an

M such that (∀L ∈ L)(∀ texts T for L)(∃i)[W u
i =a L ∧ (∀∞n)[M(T [n]) = i]] — in this case we

say that L ⊆ CoruTxtExa(M) or L is CoruTxtExa-identified by M.
(b) CoruTxtBca is the collection of all classes L of c.e. languages such that there exists

an M such that (∀L ∈ L)(∀ texts T for L)(∀∞n)[W u
M(T [n]) =a L] — in this case we say that

L ⊆ CoruTxtBca(M) or L is CoruTxtBca-identified by M.

It is important to note that, while the Ershov Hierarchy goes well beyond the c.e. languages,
we are interested primarily in the c.e. languages and their learnability with respect to u-correction
grammars. This implies that, for example, a CoruTxtEx-learner outputs “descriptions” of a
c.e. language as a member of the u-th level of the Ershov Hierarchy (whereas the latter level
also contains non-c.e. sets, if u denotes an ordinal larger than 1).

3 Hierarchy Results

In this section we prove some hierarchy results about learning correction grammars. Each of
these separation results is witnessed by a class of computable languages.

Our first main result (Theorem 19) shows that an increase in learning power is obtained — in
the context of TxtEx-learning correction grammars — when the number of corrections allowed
is counted by (notations for) larger and larger constructive transfinite ordinals.

Next (Theorem 21) we prove a strengthening of this hierarchy for all finite levels: for all
n ∈ N, there are classes of computable languages that can be TxtEx-learned by a learner
conjecturing k + 1-correction grammars that cannot be TxtBc-learned by any learner conjec-
turing k-correction grammars (not even from informant). We will show in Section 4 that this
strengthening is best possible: it cannot be extended beyond the ω-th level of the hierarchy.

3.1 The General CoruTxtEx Hierarchy

We will prove that for all u, v ∈ O such that u <o v there exist classes of computable languages
that are learnable by a TxtEx-learner that outputs v-correction grammars but such that no
TxtEx-learner can learn those classes using u-correction grammars, even if presented with in-
formants instead of texts. The general case will follow from the following result on the successor
case.

Notation: We use h(·, s) to denote the function which maps x to h(x, s).
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Theorem 17. For all n ∈ N, u ∈ O, Coru+o1TxtEx−CoruInfExn 6= ∅.

Proof. Let L = {L computable | L 6= ∅ ∧W u+o1
min(L) = L}. Clearly L ∈ Coru+o1TxtEx. Suppose

by way of contradiction that M CoruInfExn-identifies L. Without loss of generality assume
that all grammars e output by M satisfy that π1(e), π2(e), x are u-consistent through t, for all x
and t.

By the Kleene Recursion Theorem in the system W u+o1 there exists an e such that W u+o1
e =

{x | h(x,∞) = 1}, where h is a function informally defined in stages below (we will have that
e = min({x | h(x,∞) = 1})). Along with h we informally define another function F , such that
F is a count-down function and h and F witness that {x | h(x,∞) = 1} ∈ Σ−1

u+o1 (Definition 3).

Initially, h(x, 0) = 0 for all x; h(y, 1) = 0, for y < e, and h(y, 1) = 1, for y ≥ e. F (y, 0) = u+o1
and F (y, 1) = u, for all y. Let x1 = e+1. Go to stage 1 (we start with stage 1 for ease of notation).

We will have the invariants that, at the start of stage s,

(1) for x > xs + n, h(x, s) = 1 and F (x, s) = u.
(2) for x < xs, for all t > s, h(x, t) = h(x, s).
(3) For all x such that xs ≤ x ≤ xs + n, either

(3a) for i = M(h(·, s)[xs]),
h(x, s) = 1− θu

i (x, s), and
F (x, s) = ψπ2(i)(x, s), or

(3b) h(x, s) = 1, F (x, s) = u (in this case xs 6= xs−1, where we take x0 = 0).

Intuitively, we want the diagonalizing language to be L = {x | limt→∞ h(x, t) = 1}. Let Ls

denote the diagonalizing language as at the beginning of stage s, that is Ls = {x | h(x, s) = 1}.
At the start of stage s, we have settled the membership question for L on inputs x < xs (this is
given by invariant (2) above). In stage s, we check (based on ‘current’ value Ls of L), whether
M makes a mind change on χLs beyond χLs [xs] (for computability reasons, we do this check
only upto χLs [s]). If so, we fix the membership question for L on appropriate inputs so as to
preserve the mind change (see step 1 in the construction below); otherwise, we make sure that
the current conjecture of M on L (that is M(χL[xs])) is wrong (as viewed at time s + 1) on
inputs x with xs ≤ x ≤ xs + n (see step 2 in the construction). To achieve this latter property,
we use invariant 3 above, which allows us to make sure that L is different from the conjecture
M(χL[xs]) on inputs x with xs ≤ x ≤ xs + n. Invariant (1) just says that the x > xs + n are
‘unused’ and available for future diagonalization if and when we observe a mind change by M
on χL beyond χL[xs].

Stage s
1. If there exists a z, xs + n < z ≤ s, such that M(h(·, s)[z]) 6= M(h(·, s)[xs]), then

Let xs+1 = z.
For all x, let h(x, s+ 1) = h(x, s) and F (x, s+ 1) = F (x, s).
Go to stage s+ 1.
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2. Else,
2.1 Let i = M(h(·, s)[xs]).
2.2 For xs ≤ x ≤ xs + n, let

h(x, s+ 1) = 1− θu
i (x, s+ 1), and

F (x, s+ 1) = ψπ2(i)(x, s+ 1).
(Note that above change is valid, based on invariant 3 above).

2.3 For x < xs or x > xs + n, let
h(x, s+ 1) = h(x, s), and
F (x, s+ 1) = F (x, s).

2.4 Let xs+1 = xs.
Go to stage s+ 1.

End stage s

We note that the invariants hold by induction on s. Clearly, xs is monotonically non-
decreasing in s. Invariants (1) and (2) are satisfied by induction as either xs+1 > xs and
h(x, s + 1) = h(x, s) for all x (see step 1) or xs+1 = xs and h(x, s + 1) 6= h(x, s) only for x
with xs ≤ x ≤ xs + n, if any (see step 2).

For invariant (3) note that if xs+1 = xs, then for xs ≤ x ≤ xs +n, h(x, s+1) 6= h(x, s) implies
θu

i (x, s + 1) 6= θu
i (x, s) (by inductive property (3a)); if xs+1 6= xs, then xs+1 > xs + n, and thus

by invariant (1), (3b) holds (using s+ 1 instead of s in the property).
We now consider two cases.
Case 1: lims→∞ xs is infinite.
In this case, clearly, the function mapping x to limt→∞ h(x, t) is a computable function, and

on this function M makes infinitely many mind-changes. Furthermore, clearly, limt→∞ h(x, t) is
a characteristic function for a language in L, as e = min({x | h(x,∞) = 1}) and W u+o1

e = {x |
h(x,∞) = 1}.

Case 2: lims→∞ xs is finite.
Suppose limt→∞ xt = z = xs. Again, the function mapping x to limt→∞ h(x, t) is a com-

putable function, and a characteristic function for a language (say L) in L. Let χL denote the
characteristic function of L and let M(χL) denote M’s final conjecture when the input informant
is χL. We have that M(χL) = M(χL[z]), as the condition in step 1 did not succeed beyond stage
s. Furthermore, using invariant (3), M(χL[z]) makes errors on inputs x, for xs ≤ x ≤ xs + n.

From both the above cases, we have that e is a (u +o 1)-correction grammar for a language
in L which is not CoruInfExn-identified by M. ut

Corollary 18. For all n ∈ N, for all v ∈ O such that v is a notation for a limit ordinal, for all
u <o v, CorvTxtEx−CoruInfExn 6= ∅.

Proof. If v is a notation for a limit ordinal and u <o v then u +o 1 <o v. But CoruTxtEx ⊂
Coru+o1TxtEx by Theorem 17, and obviously Coru+o1TxtEx is included in CorvTxtEx. ut

By Theorem 17 and Corollary 18, we have the following Hierarchy Theorem. As a corollary
we obtain an even stronger version.
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Theorem 19. For all u, v ∈ O, if u <o v then for all n ∈ N
(a) CoruTxtExn ⊂ CorvTxtExn.
(b) CoruInfExn ⊂ CorvInfExn.

Corollary 20. For all v ∈ O, CorvTxtEx−
⋃

u<ov CoruInfExn 6= ∅.

Proof. Let Lu denote L as defined in the proof of Theorem 17 (for u as in the statement of
Theorem 17). Let L′

u = {{〈u, x〉 | x ∈ L} | L ∈ Lu}. Consider L =
⋃

u<ov L′
u.

Note that, for all u one can effectively (in u) find a Coru+o1TxtEx learner for Lu. Fur-
thermore, for all u, and a (u +o 1)-grammar (for L), one can effectively (from u and the
(u +o 1)-grammar) find a v-correction grammar for the set {〈u, x〉 | x ∈ L}. It follows that
L ∈ CorvTxtEx. Suppose now that L ∈

⋃
u<ov CoruInfExn. Let u <o v be such that

L ∈ CoruInfExn. Then, L′
u ∈ CoruInfExn, and thus Lu ∈ CoruInfExn. This contradicts

Theorem 17. ut

3.2 The Finite Levels: a Strong Hierarchy

In order to measure the increase in learning power unveiled by the previous results, it is natural
to ask: are there classes that can be TxtEx-learned by guessing a (u+o 1)-correction grammar
but such that no learner guessing u-correction grammars can learn those classes even if it is
allowed to conjecture infinitely many syntactically distinct but correct conjectures in the limit?
Our next result shows that the answer is positive for all the finite levels of the correction-
grammars hierarchy. In the next section we will show that it is impossible to obtain the analogous
strengthening of the hierarchy for all levels of the CoruTxtEx-hierarchy.

Theorem 21. For k ∈ N, Cork+1TxtEx−CorkInfBc 6= ∅.

Proof. Let L = {L computable | L 6= ∅ ∧W k+1

min(L) = L}.
Clearly, L ∈ Cork+1TxtEx. Now suppose by way of contradiction that L ∈ CorkTxtBc as

witnessed by M.

By the Kleene Recursion Theorem in the system W k+1, there exists an e such that W
k+1
e =

{x | h(x,∞) = 1}, where h can be informally defined in stages as follows. We will ensure that
h(x, ·) changes its mind for any x at most k+ 1-times. Thus, the definition of a function F such
that h and F witness {x | h(x,∞) = 1} ∈ Σ−1

k+1 is implicit in our construction.

We will also define finite sets S0 ⊆ S1 . . .. Intuitively, these sets denote the values of x whose

membership in L = W
k+1
e has already been fixed. In other words, for all s, for all x ∈ Ss, for all

t ≥ s, h(x, t) = h(x, s).
Notation: Let MC(h, x, s) = card({t < s | h(x, t) 6= h(x, t + 1)}) (thus, MC(h, x, s) de-

notes the number of mind changes in the sequence h(x, 0), h(x, 1), . . . , h(x, s)). Similarly, let
MCP (i, x, s) = card({t < s | θk

i (x, t) 6= θk
i (x, t+ 1)}).

We will have the following invariants for each s.
(1) For all x 6∈ Ss+1, MC(h, x, s+ 1) ≤ 1 +MCP (i, x, s), where i = M(h(·, s+ 1)[x]).
(2) For all x ∈ Ss+1, MC(h, x, s+ 1) ≤ k + 1.
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(3) If x 6∈ Ss+1 and x ≤ s, then h(x, s+ 1) 6= θk
M(h(·,s+1)[x])(x, s).

(4) Ss ⊆ Ss+1 and for all x ∈ Ss, for all t ≥ s, h(x, t) = h(x, s).
Here is intuitive idea of the proof. Intuitively, for any particular value x, for the diagonalizing

language L, one could ensure that W k
M(χL[x]) is different from L with respect to membership of x.

To do this, one can initially have x to be a member of L (whereas, initially the θk
M(χL[x])(x, 0) = 0).

Then, each time θk
M(χL[x])(x, ·) makes a mind change, one could do a corresponding correction

for membership of x in L. As θk
M(χL[x])(x, ·) makes at most k mind changes, there would be at

most k-corrections (in addition to the initial change from 0 to 1) regarding membership of x in
L.

However, for Bc-learning we need to do the above kind of diagonalization for infinitely many
x, which is problematic, as a diagonalization for larger x needs to be able to fix the value of χL for
all smaller values of x. To address this, we dovetail all the diagonalizations. For a diagonalizing
step for x1, we spoil a diagonalization for x2 if: (a) x2 < x1, and the corrections made for x2 are <
than the corrections made for x1 or (b) x1 < x2 ≤ s (where all x > s, have not yet been used for
any diagonalization). This would allow us to still argue that, for the largest k′ ≤ k+1 such that
infinitely many diagonalizing points x used k′-corrections, all points at which k′ corrections are
made are valid diagonalizing points (modulo some finite number of such points). Furthermore,
this would also allow us to argue that the language so constructed is computable. We now
proceed formally.

Initially, h(x, 0) = 0, for all x; h(x, 1) = 0, for x < e and h(x, 1) = 1 for all x ≥ e. Let S0 = ∅.
Let S1 = {x | x ≤ e}. Clearly, the invariants are satisfied in the beginning. Go to stage s = 1
(we start with stage 1, for ease of notation).

Begin Stage s:
1. If there exists an x ≤ s, x 6∈ Ss such that θk

M(h(·,s)[x])(x, s) = h(x, s), then pick the least such
x and go to step 2. Otherwise, go to step 3.

(* For i = M(h(·, s)[x]), note that invariant (1) implies that MC(h, x, s) ≤ 1+MCP (i, x, s−
1) ≤ 1 + MCP (i, x, s). Thus, θk

M(h(·,s)[x])(x, s) = h(x, s), implies, MC(h, x, s) ≤
MCP (i, x, s). Thus, step 2 modification of h(x, s+ 1) preserves invariant (1). *)

2. Let h(x, s+ 1) = 1− h(x, s). For y 6= x, let h(y, s+ 1) = h(y, s).
Let Ss+1 = Ss ∪ {y < x |MC(h, y, s+ 1) < MC(h, x, s+ 1)} ∪ {y | x < y ≤ s}.
(* Intuitively, {y < x |MC(h, y, s+ 1) < MC(h, x, s+ 1)} is added to Ss+1, as these y’s had

too few mind changes, and we need to freeze them to maintain computability of W
k+1
e . Set

{y | x < y ≤ s} is added to Ss+1 as the diagonalizations done up to now for these y are no
longer valid due to a change in the membership of x; thus, to maintain invariant (1) and
(3) we need to place such y into Ss+1. *)

Go to stage s+ 1.
3. For all x, let h(x, s+ 1) = h(x, s), and let Ss+1 = Ss.

Go to stage s+ 1.
End Stage s
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It is easy to verify that the invariants are satisfied. Also, using invariants (1), (2) we have
that {x | h(x,∞) = 1} ∈ Σ−1

k+1. Let L be the language for which h is the limiting characteristic
function. We will show below that L is computable. Thus, L ∈ L. We now argue that L is not
CorkTxtBc-identified by M.

Let k′ ≤ k + 1 be maximal such that there are infinitely many inputs x for which
MC(h, x,∞) = limt→∞MC(h, x, t) = k′. Let s be the largest stage such that MC(h, z, s+ 1) >
MC(h, z, s) ≥ k′ for some z. Such a largest stage s exists by the maximality of k′.

Note that if x > z, and MC(h, x, t+1) = k′ > MC(h, x, t), for some t > s, then for all y < x,
for all t′ > t, h(y, t′) = h(y, t), as either MC(h, y, t) ≥ k′, or y will be placed in St+1 at stage t.
It follows that all such x are not in

⋃
s′∈N S

s′ , and thus θk
M(χL[x])(x) 6= h(x,∞), by invariant (3).

Thus, L 6∈ CorkInfBc.

We now argue that L = W
k+1
e is computable. Let w be maximal such that card({t | h(w, t) 6=

h(w, t+1)}) > k′. Now, for each x > w, either x ∈
⋃

s∈N S
s, or card({t | h(x, t) 6= h(x, t+1)}) =

k′. It follows that L is computable, as for each x > w, h(x, t) = h(x, sx) for all t ≥ sx, where sx

is the least number such that x ∈ Ssx or card({t ≤ sx − 1 | h(x, t) 6= h(x, t + 1)}) = k′. Thus,
one can effectively decide membership in L. ut

The following corollary is immediate.

Corollary 22. Cork+1TxtBc−CorkInfBc 6= ∅.

We observe that the proof of Theorem 21 essentially also shows the following.

Theorem 23. For k ∈ N, Cork+1TxtEx−CorkInfEx∗ 6= ∅.

As an obvious corollary, we have a strong hierarchy with respect to TxtEx∗-learning:
Cor1TxtEx∗ ⊂ Cor2TxtEx∗ ⊂ . . ..

The proof of Theorem 21 can also be generalized to show the following.

Theorem 24. For k ∈ N, for all m ∈ N, Cork+1TxtEx−CorkInfBcm 6= ∅.

Proof. (Sketch) Let L be as defined in Theorem 21. For any L, let L′ = {〈x, y〉 | x ∈ L, y <
(m + 1)(k + 1)}. Let L′ = {L′ | L ∈ L}. It is easy to verify that L′ is in Cork+1TxtEx (as
L ∈ Cork+1TxtEx). Also, one can show that if L′ ∈ CorkInfBcm, then L ∈ CorkInfBc,
contradicting Theorem 21. ut

In Section 4 we will show that — surprisingly — the strengthenings of the general hierarchy
Theorem 17 given by Theorems 21, 23, and 24 cannot be generalized to the transfinite levels of
the hierarchy!

3.3 TxtBc∗-Learning Correction Grammars: a Partial Result

We close this section by showing a partial result on the existence of a hierarchy of learning criteria
for finite correction grammars with respect to TxtBc∗-learnability. The results of Section 3.2
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imply, among other things, the existence of hierarchies Cor1TxtEx∗ ⊂ Cor2TxtEx∗ ⊂ . . . and
Cor1TxtBcm ⊂ Cor2TxtBcm ⊂ . . . for every m ∈ N (recall that TxtEx∗ and TxtBc are
incomparable). TxtBc∗-learning is one of the most powerful learning paradigms, allowing the
learner to converge in the limit to infinitely many syntactically distinct grammars, each for some
finite variant of the target language.

Our next result shows that, in this model, learning 2-correction grammars is more powerful
than learning c.e. indices. It is open whether this result generalizes to all finite correction gram-
mars. However, we will show in the next section that there can be no transfinite hierarchy for
CoruTxtBc∗ learning above any notation for ω.

Theorem 25. Cor2TxtBc∗ −Cor1TxtBc∗ 6= ∅.

Proof. Let Li = {〈i, x〉 | x ∈ N}. We assume some ordering σ0, σ1, . . . of finite sequences. We
abuse notation slightly to say σ < n when σ = σi for some i < n. Let M0,M1, . . . denote a
computable enumeration of total learning machines such that for all L ∈ TxtBc∗, there exists
an i such that L ⊆ TxtBc∗(Mi) (one can show that such an enumeration exists by essentially
using the same argument as for TxtEx learning done in [33, Lemma4.2.2B]).

Let Pi be the following predicate:

(∀σ | content(σ) ⊆ Li)(∃τ | content(τ) ⊆ Li)(∃y)(∀x ≥ y)[x 6∈ WMi(στ)].

Let Li = {Li}, if Pi; Li = {S | ∅ ⊂ S ⊆ Li, card(S) <∞}, otherwise. Let L =
⋃

i∈N Li.
By definition Li 6⊆ TxtBc∗(Mi): if Pi holds then, Mi does not have a TxtBc∗-locking

sequence for Li, a necessary requirement for Mi to TxtBc∗-identify Li (see [6, 26] for details
about locking sequences); if Pi does not hold, then Mi does not TxtBc∗-identify one of the finite
subsets, content(σ), of Li — the σ which witnessed failure of Pi.

We now show L ∈ Cor2TxtBc∗. Given i, define gn
i (z, 0) = 0. gn

i (z, t+ 1) = 1, if and only if
(∀σ ≤ n | content(σ) ⊆ Li)(∃τ ≤ z | content(τ) ⊆ Li)(∃y ≤ z)(∀x | y ≤ x ≤ t)[x 6∈ WM(στ),t].

Note that gn
i (z, ·), for any z, changes its mind from 1 to 0 at most once, and never from 0 to

1 (except the initial change at gn
i (z, 1)). Thus, grammar for computing gn

i is — essentially — a
2-correction grammar.

Furthermore, if Pi holds, then for all n, for all but finitely many z, gn
i (z, t+ 1) = 1 (for any

z which exceeds the τ, y witnessing the Pi corresponding to each σ ≤ n). On the other hand, if
Pi is false, then let σ witness this failure. For each τ, y, let tτ,y be the corresponding value such
that for some x between y and tτ,y, x ∈ WMi(στ),tτ,y . Then, for all n ≥ σ, for all z, for the value
of t being the maximal of tτ,y, for τ ≤ z and y ≤ z, we will have that gn

i (z, t+ 1) becomes 0.
Now by outputting gn

i on inputs of length n, whose content is a non-empty subset of Li, one
has that L ∈ Cor2TxtBc∗. ut

4 Collapsing Results

In this section we show that Theorem 17 cannot be improved, along the lines of Section 3.2, for
the transfinite levels of the CoruTxtEx-hierarchy: every CoruTxtEx-learnable class is already
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behaviourally learnable by a learner outputting grammars that make at most ω mind-changes.
In the rest of the section we show analogous collapsing results involving TxtEx∗, TxtBca, for
a ∈ N ∪ {∗}.

For proofs of theorems in this section, intuitively, for a given program p for a limit-
ing computable function, we need to find the minimal (1-correction) grammar for the set
{x | limt→∞ ϕp(x, t) = 1}. To this end, we define gt

r as in lemma below, which approximates
this search. Intuitively, gt

r denotes r-th approximation for the minimal grammar i such that
Wi,t ⊆ {x | lims→∞ ϕp(x, s) = 1} and {x < t | lims→∞ ϕp(x, s) = 1} ⊆ Wi (note that, for any
fixed t, one can find such an i in the limit). Furthermore, for large enough t, such an i is the
minimal grammar for {x | lims→∞ ϕp(x, s) = 1}. For technical reasons, we additionally need that
the sequence gt

0, g
t
1, g

t
2, . . . is non-increasing.

Lemma 26. Suppose L is a c.e. language. Given a program p for limiting computably computing
χL, one can effectively (in p, i, t) define numbers gt

i , such that

(a) for all but finitely many t, for all but finitely many i, gt
i is the minimal ϕ-grammar for L,

and
(b) for all t, the sequence gt

0, g
t
1, . . . is a non-increasing sequence starting with t (that is, gt

0 = t,
and gt

r+1 ≤ gt
r, for all r, t).

Proof. Given a limiting computable program p, let gt
0 = t and let gt

r+1 = min({gt
r} ∪ {i < gt

r |
Wi,t ⊆ {x | ϕp(x, t+ r) = 1} and {x < t | ϕp(x, t+ r) = 1} ⊆ Wi,r}).

Now suppose p is a limiting computable program for χL and j is the minimal grammar for
L. Let t > j be a large enough number such that for all i < j, there exists an x < t, such that
(i) ϕp(x, ·) does not make a mind-change beyond t (that is for all t′ > t, ϕp(x, t

′) = ϕp(x, t)),
and (ii) x ∈ Wi if and only if x ∈ Wi,t and (iii) Wi and L differ at x.

It is then easy to verify that for all t′ > t, limr→∞ gt′
r converges to j. ut

Corollary 27. Let w be any O-notation for ω, and u ∈ O. There exists a computable function
h(·, ·) such that, for any W u-grammar q for a c.e. language L, for all but finitely many n, h(q, n)
is a Ww-grammar for L.

Proof. h(q, n) is defined as follows. Let p be such that p is a limiting computable program for
χL. Note that p can be obtained effectively from q. Let gt

i be as defined in Lemma 26 for p.
Let en be such that ϕen(x, 0) = 0 and ϕen(x, s + 1) = 1, if and only if x ∈ Wgn

s ,s. Thus, by
Lemma 26, for all but finitely many n, en is a limiting computable program for χL, and ϕen(x, ·)
changes its mind at most 2n+ 2 times.

By acceptability of Ww, one can effectively get a Ww-grammar in (from en, and thus from
q, n) for {x | limt→∞ ϕen(x, t) = 1}. We are now done by defining h(q, n) = in as above. ut

Corollary 28. Let w be any O-notation for ω, and u ∈ O. There exists a computable function
h(·) such that, for any W u-grammar q for a c.e. language L, h(q) is a Ww-grammar for a finite
variant of L.
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Proof. h(q) is defined as follows. Let p be such that p is a limiting computable program for χL.
Note that p can be obtained effectively from q. Let gt

i be as defined in Lemma 26 for p.

Let e be such that ϕe(x, 0) = 0 and ϕe(x, s + 1) = 1, if and only if x ∈ Wgx
s ,s. Thus, by

Lemma 26, for all but finitely many x, ϕe(x,∞) = χL(x), and ϕe(x, ·) changes its mind at most
2x+ 2 times.

By acceptability of Ww, one can effectively get a Ww-grammar i (from e, and thus from q)
for {x | limt→∞ ϕe(x, t) = 1}. We are now done by defining h(q) = i as above. ut

Theorem 29. For all u ∈ O, for all O-notation w for ω, CoruTxtEx ⊆ CorwTxtBc.

Proof. Let h be as defined in Corollary 27. Let M be CoruTxtEx-learner for L. Let M′(T [n]) =
h(M(T [n]), n). Theorem now follows from Corollary 27. ut

We now generalize Theorem 29 to show the following result.

Theorem 30. For all u ∈ O, for all O-notation w for ω, for all m ∈ N, CoruTxtEx2m ⊆
CorwTxtBcm.

Proof. This uses a trick similar to the one used by [13] to show TxtEx2m ⊆ TxtBcm.

Let h be as defined in Corollary 27. Let pat be a computable function such that Ww
pat(q,S,S′) =

(Ww
q ∪ S)− S ′, where S and S ′ are finite sets.

Let M be CoruTxtEx-learner for L. Let M′(T [n]) be defined as follows. Let Sn =
content(T [n]). Let S ′n be a set of the least m elements in {x | θu

M(T [n])(x, n) = 1} − Sn. Then let

M′(T [n]) = pat(h(M(T [n]), n), Sn, S
′
n).

Suppose T is a text for a language L which is CoruTxtEx2m-identified by M. Suppose M(T )
converges to q. Let X = W u

q −L and Y = L−W u
q . Now, clearly, for all but finitely many n, the

least m elements of X belong to S ′n (if X consists of ≤ m elements, then X ⊆ S ′n, for all but
finitely many n). Also, by Corollary 27, for all but finitely many n, h(q, n) is a Ww-grammar for
W u

q .

Case 1: X contains > m elements. In this case, for all but finitely many n,
Ww

pat(h(M(T [n]),n),Sn,S′n) = (W u
q ∪ Y )−X ′, where X ′ contains the least m elements of X. Thus, for

all but finitely many n, pat(h(M(T [n]), n), Sn, S
′
n) is a Ww-grammar for a card(X −X ′) (which

is ≤ m) variant of L.

Case 2: X contains ≤ m elements. In this case, for all but finitely many n,
Ww

pat(h(M(T [n]),n),Sn,S′n) = (W u
q ∪ Y ) − S ′n, where X ⊆ S ′n. Thus, for all but finitely many n

pat(h(M(T [n]), n), Sn, S
′
n) is a Ww-grammar for an (m− card(X))-variant of L.

From the above cases it follows that M′ CorwTxtBcm-identifies L. ut

Note that we have a hierarchy with respect to Ex∗ for all finite levels, by Theorem 23:
Cor1TxtEx∗ ⊂ Cor2TxtEx∗ ⊂ . . .. The next result shows that the hierarchy collapses at level
ω.

Theorem 31. For all u ∈ O, for all O-notation w for ω, CoruTxtEx∗ ⊆ CorwTxtEx∗.
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Proof. Let h be as defined in Corollary 28. Let M be CoruTxtEx-learner for L. Let M′(T [n]) =
h(M(T [n])). Theorem now follows from Corollary 28. ut

The same construction as above gives an analogous collapsing result with respect to TxtBc∗.
It should be noted here that it is open whether there exists a hierarchy of learning n-correction
grammars, for n ∈ N, with respect to the TxtBc∗-model. The following result shows that there
can be no hierarchy above the level ω.

Theorem 32. For all u ∈ O, for all O-notation w for ω, CoruTxtBc∗ ⊆ CorwTxtBc∗.

One can also show the following.

Theorem 33. For all u ∈ O, CoruTxtEx∗ ⊆ TxtBc∗.

Proof. Suppose M is a CoruTxtEx∗-learner for L. Then, on input T [s], the learner M′ first
determines a ps such that {x | limt→∞ ϕps(x, t) = 1} = W u

M(T [s]). Note that such a ps can be

found effectively from T [s]. Then, M′ determines gt
i as given by Lemma 26, for p = ps. Then M′

outputs a grammar p′s for the language {x | x ∈ Wgs
x
}.

Suppose T is a text for L which is CoruTxtEx-identified by M. Then M(T ) converges to a
W u-grammar q for a finite variant of L. Thus, by Lemma 26, for all but finitely many s, for all
but finitely many i, gs

i , as constructed on input T [s] above, is a grammar for W u
q . Thus, for all

but finitely many s, for all but finitely many x, x ∈ Wp′s if and only if x ∈ L. ut

We now prove a collapsing result at level ω for TxtBc-learning correction grammars. We
also include anomalies in the treatment, to obtain a stronger result. Note that, by Theorem 24,
for every m ∈ N there is a hierarchy Cor1TxtBcm ⊂ Cor2TxtBcm ⊂ . . . of learning finite
correction grammars with respect to TxtBc-learning with anomalies.

Lemma 34. Fix m ∈ N. There exists a computable function f such that for all z and texts
T such that Wz =2m content(T ), for all but finitely many t, f(z, T [t]) is a grammar for an
m-variant of content(T ).

Proof. This is based on a technique of [13]. By S-m-n theorem, there exists a computable f
such that f(z, T [n]) may be defined as follows. Let Sn = content(T [n]). Let S ′n be the set of least
m elements in Wz,n − Sn (if Wz,n − Sn contains less than m elements then S ′n = Wz,n − Sn). Let
Wf(z,T [n]) = (Wz ∪ Sn)− S ′n.

Let Y = content(T )−Wz and X = Wz − content(T ). We now consider two cases.
Case 1: card(X) ≥ m. Let X ′ be the set of least m elements of X. Now, for all but finitely

many t, Y ⊆ St and S ′t = X ′; thus, Wh(z,T [t])∆content(T ) = X −X ′, which is of cardinality at
most m.

Case 2: card(X) ≤ m. Now, for all but finitely many t, Y ⊆ St and X ⊆ S ′t; thus,
Wh(z,T [t])∆content(T ) = S ′t −X, which is of cardinality at most m.

The Lemma follows from above cases. ut

Theorem 35. For all u ∈ O, for all O-notation w for ω, for all m ∈ N, CoruTxtBcm ⊆
CorwTxtBcm.
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Proof. Suppose M is given. Define M′ as follows. Suppose T is a text for a language L which
is CoruTxtBcm-identified by M. Let

U t
p = {x | (∃t′ ≥ t)[θu

p (x, t′) = 1]},

U t
p,r = {x | (∃t′ ≤ r)[θu

p (x, t+ t′) = 1]}.
Intuitively, (U t

p)t=0→∞ is an approximation from above for the language W u
p (that is U t

p ⊇
U t+1

p , for all t, and
⋂

t∈N U
t
p = W u

p ). (U t
p,r)r=0→∞ is an approximation from below of U t

p.
Below, let pi denote M(T [i]). Let

gt,S,S′

r = min({t} ∪ {j′ < t | j′ ∈ S ∧ (∀i ∈ S ′)[card(Wj′,t − U t
pi,r

) ≤ m]}).

Note that for fixed t, S, S ′, gt,S,S′
r is monotonically non-increasing in r.

Here is an intuitive, but not entirely correct, idea of the proof of the Theorem. Suppose S is a
finite collection of grammars, such that S contains the minimal grammar for the input language
L, and each member of S is a grammar for a superset of L. Suppose S ′ is a finite collection
of numbers i such that pi is a u-correction grammar for a superset of L, where at least one
such pi is a u-correction grammar for an m-variant of L. For S, S ′ as above, for large enough
t, limr→∞ gt,S,S′

r would converge to a grammar j′ ≤ minimal grammar for L, such that j′ is a
grammar for a 2m-variant of L. This would suffice to get a TxtBcm-learner using techniques
similar to that used in Proof of Theorem 30. We are not exactly able to get (even in the limit)
S, S ′ as required above. However, as the analysis below shows using appropriate approximations
St, S

′
t suffices (see statement (*) below). We now proceed formally.

Now for any t, let St,r = {i ≤ t | content(T [t]) ⊆ Wi,r}, and S ′t,r = {i ≤ t |
card(content(T [t]) − U t

pi,r
) ≤ m}. It is easy to verify that St,r and S ′t,r are monotonically

non-decreasing (in r) and bounded in cardinality by t + 1. Let St = limr→∞ St,r = {i ≤ t |
content(T [t]) ⊆ Wi}, and S ′t = limr→∞ S ′t,r = {i ≤ t | card(content(T [t])− U t

pi
) ≤ m}.

We will later show that,

(*) for all but finitely many t, limr→∞ g
t,St,S′t
r converges to a grammar z ≤ j such that

Wz =2m L, where j is the minimal grammar for L. Here, z may be different for different
(large enough) t’s; however, all these z’s are ≤ j.

Let itr = g
t,St,r,S′t,r
r . Note that limr→∞ itr = limr→∞ g

t,St,r,S′t,r
r = limr→∞ g

t,St,S′t
r . Thus, for all

but finitely many t, limr→∞ itr = it is a grammar for a 2m-variant of L, and is bounded by the
minimal grammar for L. Furthermore, for a fixed t, card({r | itr 6= itr+1}) ≤ (t+1)∗(t+1)∗(t+1).

Let f be as defined in Lemma 34. Define p′t such that ϕp′t
(x, 0) = 0, and for t > 0, ϕp′t

(x, r) =
1, if and only if x ∈ Wf(itr,T [t]),r, and then let M′(T [t]) be a Ww-grammar for the language
{x | ϕp′t

(x,∞) = 1}. By acceptability of Ww, such a Ww-grammar can be obtained effectively
from p′t. Now for all but finitely many t, for all but finitely many r, itr is a grammar for a
2m-variant of L which is bounded by the minimal grammar for L. Thus, by Lemma 34, for all
but finitely many t, for all but finitely many r, f(itr, T [t]) is a grammar for an m-variant of L.
Theorem thus follows from the below proof of (*).
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We now show that (*) holds. Let j be the minimal grammar for L. Let k be minimal such
that pk is a u-correction grammar for an m-variant of L. Let t be so large that the following
holds.

(a) t > j, (thus j ∈ St).
(b) t > k, (thus k ∈ S ′t).
(c) for all i < j, such that Wi 6⊇ L, content(T [t]) 6⊆ Wi. Thus, i ∈ St and i < j, implies L ⊂ Wi.
(d) for all i such that card(L−{x | θu

pi
(x,∞) = 1}) > m, we have i < t and card(content(T [t])−

U t
pi

) > m; thus, i 6∈ S ′t. Hence, S ′t consists only of i such that card(L −W u
pi

) ≤ m. Thus,
(∀i ∈ S ′t)[card(Wj,t − U t

pi
) ≤ m].

(e) for all i < j, such that Wi ⊃ L and card(Wi − L) > 2m, there exists at least (m + 1) x’s in
Wi,t such that, for all t′ ≥ t, θu

pk
(x, t′) = 0.

It follows from (a) and (d) that limr→∞ g
t,St,S′t
r converges to a grammar i ≤ j. Furthermore,

using (b), (c), and (e), it follows that Wi ⊇ L, and card(Wi − L) ≤ 2m. ut

5 Other Results

5.1 Trade-offs with Anomalies

In Section 4 we have proved a number of collapsing results for learning correction grammars.
These results have shown that the transfinite hierarchy of learning correction grammars criteria
is specific to the TxtEx model of learning. Now we consider another question: are there trade-
offs between learning c.e. indices, learning u-correction grammars and the number of anoma-
lies allowed? The following theorem shows that learning c.e. indices with more anomalies gives
dramatic increase of learning power compared to learning correction grammars of any ordinal
complexity with less anomalies allowed. The proofs are straightforward lifts from other contexts
(see, e.g., [12]).

Theorem 36. For all u ∈ O, for all n ∈ N,
(a) TxtEx2n+1 −CoruTxtBcn 6= ∅.
(b) TxtBcn+1 −CoruTxtBcn 6= ∅.
(c) TxtExn+1 −CoruTxtExn 6= ∅.
(d) TxtEx∗ −

⋃
n∈N CoruTxtBcn 6= ∅.

(e) CoruInfEx∗ ⊆ CoruInfBc.
(f) For w an O-notation for ω, E ∈ CorwInfBc.

Proof. The class L = {L ∈ E | L =2n+1 N} witnesses (a) and (b). The class L = {L ∈ E |
L =n+1 N} witnesses (c). The class L = {L ∈ E | L =∗ N} witnesses (d). (e) can be proven by
patching the input, along the same lines as InfEx∗ ⊆ InfBc (see [13]). Harrington’s proof of R,
the class all computable functions, being in Bc∗ (see [15]) can also be used to show (f). We omit
the details. ut
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Essentially, the anomaly hierarchies {TxtIn}n∈N, with I ∈ {Ex,Bc} are very stable:12 e.g.,
(b) and (c) show that the extra learning power of allowing one more anomaly in the final conjec-
ture overplays the power of learning correction grammars of any transfinite ordinal complexity
u.

5.2 Learning Succinct Correction Grammars

In scientific inference, parsimony of explanations is considered highly desirable. Grammar size
is one of many ways to measure parsimony of grammars [21, 27]. It is known, for computability-
theoretic inductive inference, that requiring the final and correct grammars to be minimal size
[42] is highly restrictive on inferring power [21, 22] (and that the resultant inferring or learning
power is dependent on which acceptable programming system is employed). Also known is the
adverse effect on learning power of requiring the final and correct grammars to be merely within
a computable parsimony factor of minimal size grammars [28, 16] (but that the resulting inferring
power is independent of the underlying acceptable programming system [21]). Hence, parsimony
restrictions of even the weaker kind described just above limit inferring power.

For c.e. L, let MinGram(L) be the minimal i such that Wi = L. For L ∈ TxtEx as witnessed
by M, if there is a computable function g such that, for every L ∈ L, for all texts T for L,
M(T ) ≤ g(MinGram(L)), then we say L ∈ TxtMEx (as witnessed by M and g). In this setting
we call g a parsimony factor. The final grammars of a TxtMEx-learner are, in a certain sense,
nearly minimal-size. Kinber [28] was the first to show that TxtMEx ⊂ TxtEx. For example,
the class Zero∗ = {{〈x, f(x)〉 | x ∈ N} | f is a computable function and (∀∞x)[f(x) = 0]}
witnesses this separation [28]. Chen [16] later showed that Zero∗ is not even in TxtMExn for
every n ∈ N.

By contrast, the next Theorem shows that the class Zero∗ is learnable with nearly-minimal-
size final conjectures if the learner uses basic correction grammars (i.e., 2-correction grammars)
instead of standard grammars.

Theorem 37. There exists a learner M which Cor2TxtEx-identifies Zero∗, and for some com-
putable function g, for all texts T for L ∈ Zero∗, M(T ) ≤ g(MinGram(L)).

Proof. Let e1 be minimal grammar for Y = {〈x, 0〉 | x ∈ N}. Let h be computable, 1–1 and
increasing function such that h(i, j) is a W 2 grammar for Wi∆Wj = (Wi ∪Wj)− (Wi ∩Wj) (as
one can effectively, from i and j, find grammars for Wi ∪Wj and Wi ∩Wj, using s-m-n theorem
[40] such an h can be easily constructed).

Define a learner M as follows. Given a text T for L ∈ Zero∗, M finds, in the limit, the finite
set S of elements in L∆Y (note that this S can be determined, in the limit, as for all x ∈ N, L
contains a unique y such that 〈x, y〉 ∈ L). From this S, M computes, in the limit, the minimal
grammar e2 for S. (Note that for finite sets, one can determine minimal ϕ-grammars in the
limit). Then M on T converges to h(e1, e2).

12 An inspection of the original proofs shows that virtually any criterion that requires convergence in the limit to some
kind of correct grammar for the target language can be beaten by allowing one more anomaly in the limit.
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For L ∈ Zero∗, it is easy to verify that MinGram(L∆Y ) ≤ h′(MinGram(L)), for some
computable function h′, and thus M(T ) ≤ h(e1, h

′(MinGram(L))) ≤ g(MinGram(L)), for some
computable function g. ut

Note that in Theorem 37 above, the final conjecture of M is within a computable factor of
minimal grammars, not of minimal correction grammars. As a corollary, we have that one can
learn very succinct correction grammars, when compared to ordinary grammars.

This can also be compared with the result mentioned above by Case and Royer [14]: correc-
tion grammars for some c.e. languages can be computable-in-∅(1) more succinct than ordinary
grammars for them. However, it should be observed that the latter result is not the reason for
our Theorem 37. The fact that no machine can learn nearly minimal-size c.e. indices for Zero∗

but some machine can learn correction grammars that are within a computable factor of the
minimal c.e. index has to do with the learner’s inability to get hold of succinct grammars, rather
than with the existence of succinct grammars.

6 Conclusions

In the present paper we have investigated a new learning paradigm in which the learner outputs
correction grammars instead of ordinary c.e. indices.

We have shown that learning correction grammars of larger and larger complexity enhances
learning power over learning c.e. indices. Perhaps, humans may be making use of this by learn-
ing correction grammars instead of ordinary grammars. In the context of TxtEx-learning, an
infinite hierarchy of more and more powerful learning criteria is obtained (Theorem 19). The
increase in learning power is measured by notations for constructive transfinite ordinals used for
algorithmic count-down of corrections. If u and v are notations in O for transfinite ordinals and u
is smaller than v in the notation system, then one can learn more — in the TxtEx-model — by
conjecturing v-correction grammars than by conjecturing u-correction grammars. Some partly
hedged, “information-theoretic” intuition is given for possibly explaining these results and other
such mathematical results.

For correction grammars with a fixed finite number of corrections, we have shown that the
hierarchy can be strengthened: there are classes of languages that are TxtEx-learnable with
k + 1-correction grammars such that no Bc-learner can learn those classes using k-correction
grammars, not even from the characteristic function of the graph of the language.

Surprisingly, we have shown that some interesting collapsing phenomena occur at the first
transfinite level: for example, every class in CoruTxtEx for u ∈ O is already in CorwTxtBc
with w a notation for ω. The same is also true for every class in CoruTxtBc.

From the Cognitive Science perspective, our hierarchy results can be read as suggesting that
the drawback of using correction grammars instead of standard ones (i.e., the need of self-
corrections) may be compensated by an increase of learning power.

In this respect we note that many of our results can be adapted to vacillatory learning [11].
TxtFexa

b with b, a ∈ N∪{∗} is the vacillatory learning criterion allowing the learner to vacillate
between ≤ b a-variants of the target language, CoruTxtFexa

b is the version using correction
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grammars, CoruInfFexa
b is the version with informants. The hierarchy proof from [11] can be

adapted to show that we have a hierarchy CoruFexa
1 ⊂ CoruFexa

2 ⊂ . . . of vacillatory learning
correction grammars. A modification of the proof of Theorem 17 can be used to show that
Coru+o1TxtEx−CoruInfFexn

∗ 6= ∅. Similarly, proof of Theorem 21 (see also Theorem 23) yields
Corn+1TxtEx−CornInfFex∗∗ 6= ∅. Proof of Theorem 31 yields CoruInfFex∗b ⊆ CorwInfFex∗b
and CoruTxtFex∗b ⊆ CorwTxtFex∗b , for w a notation for ω.13

The question whether there exists a hierarchy of learning finite correction grammars with
respect to TxtBc∗-learning is open. We showed that TxtBc∗ ⊂ Cor2TxtBc∗ and conjecture
that the general result will require different methods of proofs.

Also of interest for the future is the investigation of “complexity” results along the lines of
Theorem 37.
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