
Graphs realised by r.e. equivalence relations1

Alexander Gavruskina, Sanjay Jainb, Bakhadyr Khoussainova, Frank
Stephanc

aDepartment of Computer Science, The University of Auckland, New Zealand,
a.gavruskin@auckland.ac.nz and bmk@cs.auckland.ac.nz

b School of Computing, National University of Singapore Singapore 117417, Republic of
Singapore, sanjay@comp.nus.edu.sg

c Department of Mathematics, National University of Singapore 10 Lower Kent Ridge
Road, Singapore 119076, Republic of Singapore, fstephan@comp.nus.edu.sg

Abstract

We investigate dependence of recursively enumerable graphs on the equality
relation given by a specific r.e. equivalence relation on ω. In particular we
compare r.e. equivalence relations in terms of graphs they permit to represent.
This defines partially ordered sets that depend on classes of graphs under
consideration. We investigate some algebraic properties of these partially
ordered sets. For instance, we show that some of these partial ordered sets
possess atoms, minimal and maximal elements. We also fully describe the
isomorphism types of some of these partial orders.

1. Introduction

Recursively enumerable (r.e.) structures are given by a domain, recursive
functions representing basic operators in the structure, and some recursively
enumerable predicates, among which there is a predicate E representing the
equality relation in the structure. When E is fixed, various algebraic prop-
erties of r.e. structures with the equality relation E depend heavily on the
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equivalence relation E. Furthermore, various computability-theoretic prop-
erties of E depend on algebraic properties of structures in which the equality
relation is E. For example, Novikov constructed a finitely generated group
with undecidable word-problem; in other words, there is a group which can be
represented using an r.e. but nonrecursive equivalence relation E (as equality
of the group) but not using a recursive equivalence relation E. On the other
hand, for Noetherian rings [29], Baur [3] showed that every r.e. Noetherian
ring is a recursive ring, implying that the underlying equality E is always
a recursive relation. So only recursive equality relations E can be used to
represent Noetherian rings.

Our aim is to investigate recursively enumerable graphs emphasising the
role of the r.e. equivalence relation E representing the equality. In the paper
[18] we initiated this program and studied general properties of r.e. structures,
particularly various classes of algebras and linear orders. In this paper, we
study recursively enumerable graphs, their properties, and their dependence
on the equality relation. Later we will define various classes of graphs, but
for the meantime for the reader by graph we mean a set of vertices together
with a set of edges between the vertices where self-loops are allowed.

Our focus on graphs is motivated by the fact that for every algebraic
structure one can construct a graph such that the structure and the graph
are interpretable in each other through the first-order logic [20]. Thus, con-
sideration of graphs gives us a general framework under which we can inves-
tigate the relationship between various properties of r.e. structures and their
dependence on underlying equality relation E. We expect that the general
framework provided in this paper will be further developed for studying the
relationship between r.e. equivalence relations and various types of struc-
tures such as groups, Boolean algebras, partial orders and so on. In the next
section, we proceed more formally.

1.1. Basic Definitions

Here is a simple graph-theoretic terminology. A directed graph is a pair
(V ; Edge) where Edge is a binary relation on the set V of vertices. By a graph
we mean a pair (V ; Edge) where Edge is a binary symmetric and irreflexive
relation. Thus, for graphs (V ; Edge) the set of edges is simply a collection
of unordered pairs. Finally, a pair (V ; Edge) is called a pseudograph if Edge
is a binary symmetric relation on V . Thus, pseudographs can be viewed
as graphs in which self-loops, that is pairs (x, x), are allowed as edges. We
denote the classes of graphs, directed graphs and pseudographs by Graph,
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Dgraph, and Pgraph, respectively. For any graph (V ; Edge), and x ∈ V , we
let Edge(x) = {x′ : (x, x′) ∈ Edge}.

We start with the following example in order to provide a central defini-
tion that connects r.e. equivalence relations with graphs. Let G be a finitely
presented group with a presentation P and generators g1, . . . , gn. Consider
the Cayley graph Γ(G) of the group with respect to the generators. Recall
that the vertices of the Cayley graph Γ(G) are elements of the group, and
an edge is put between vertices x and y if and only if there is a generator gi
such that x = ygi or x = yg−1i . The vertices of the graph can be represented
as words over the alphabet Σ = {g1, . . . , gn, g−11 , . . . , g−1n }. On the set Σ? of
all words over the alphabet Σ consider the following relation E:

E = {(u, v) : the words u and v represent the same element in G}.

This relation is an equivalence relation on Σ?. Since G is finitely presented,
the relation E is recursively enumerable. Thus, the Cayley graph Γ(G) can
be defined as follows:

1. The vertices of the graph are E-equivalence classes.

2. The edge relation Edge consists of all pairs ([u]E, [v]E) such that for
some generator gi we have either (ugi, v) ∈ E or (ug−1i , v) ∈ E, where
[x]E denotes the equivalence class containing x.

An important observation here is that the edge relation Edge is indepen-
dent of the representatives of equivalence classes. This example suggests to
single out those graphs whose vertices are E-equivalence classes and whose
edge relations Edge are independent of the representatives of the equivalence
classes. Note that we can code the set of all words Σ? by natural numbers.
Therefore, the equality relation E and the edge relation Edge can be viewed
as r.e. binary relations on ω the set of natural numbers.

In this paper, we always assume that our equivalence relations E are r.e.
equivalence relations on the set of natural numbers ω. We note that Ershov
[10], and following him Odifreddi [30], call r.e. equivalence relations positive
equivalence relations.

Let E be an r.e. equivalence relation on ω. We say that an n-ary re-
lation R on ω respects E if for all x1, y1, x2, y2, . . . , xn, yn ∈ ω such that
(x1, y1), . . . , (xn, yn) ∈ E we have (x1, . . . , xn) ∈ R if and only if (y1, . . . , yn) ∈
R. Note that if n = 1, then R is simply a unary relation of ω, and R respects
E if and only if R is a union of E-equivalence classes.
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Let [x]E denote the equivalence class of x with respect to the equivalence
relation E, that is, {y : (x, y) ∈ E}.

For graphs, we will be using a binary r.e. relation Edge. An r.e. binary re-
lation Edge ⊆ ω2 respects E if for all x1, y1, x2, y2 ∈ ω such that (x1, y1) ∈ E
and (x2, y2) ∈ E we have (x1, x2) ∈ Edge if and only if (y1, y2) ∈ Edge. If
Edge ⊆ ω2 respects E then Edge induces a binary relation on the quotient
ω/E. We denote this edge relation by Edge/E. Note that, for Edge respect-
ing E, Edge(x)/E = (Edge/E)([x]E) = {[y]E : (x, y) ∈ Edge}. Note that
the vertices of the graph (ω,Edge) are x ∈ ω, but the vertices in the graph
(ω/E; Edge/E), for an r.e. set Edge respecting E, are the E-equivalence
classes [x]E, x ∈ ω.

To ease the notation, we will be denoting graphs of the form (ω/E; Edge/E)
by simply (ω; Edge)/E.

Definition 1. Let E be an r.e. equivalence relation.

1. A directed E-graph is a structure of the form (ω; Edge)/E, where Edge
is an r.e. binary relation respecting E.

2. An E-graph is a structure of the form (ω; Edge)/E, where Edge is a
symmetric, irreflexive and r.e. binary relation respecting E.

3. An E-pseudograph is a structure of the form (ω; Edge)/E, where Edge
is a symmetric and r.e. binary relation respecting E.

It is obvious that every directed E-graph (E-graph, E-pseudograph) is also
a directed graph (graph, pseudograph). We say that a graph (directed graph,
pseudograph) is recursively enumerable if it is isomorphic to an E-graph
(directed E-graph, E-pseudograph) for some r.e. equivalence relation E.

Let C be a class of graphs (pseudographs, directed graphs), where we identify
graphs up to isomorphism. Given an r.e. equivalence relation E we would
like to single out those graphs in the class C that are isomorphic to E-graphs,
as given in the following definition.

Definition 2. Given an r.e. equivalence relation E and a graph (directed
graph, pseudograph) G, we say that E realises G if and only if there is an r.e.
relation Edge such that Edge respects E and G is isomorphic to (ω; Edge)/E.
If E does not realise G, then we say that E omits G. We let KC(E) denote
all those graphs from C which are realised by E.
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In some proofs, we need to consider a join (also called disjoint union) of two
equivalence relations. E0 ⊕ E1 = {(2x, 2y) : (x, y) ∈ E0} ∪ {(2x + 1, 2y +
1) : (x, y) ∈ E1}. Similarly, one can define a join of n equivalence relations:
E0 ⊕ E1 ⊕ . . . ⊕ En−1 = {(nx + i, ny + i) : i < n, (x, y) ∈ Ei}. (Note that,
alternatively, one could have defined E0 ⊕ E1 ⊕ . . . ⊕ En−1 as ((. . . ((E0 ⊕
E1)⊕E2) . . .)⊕En−1). The mechanism used for the paper is just for ease of
notation).

1.2. Examples

Now we present several examples that illustrate Definition 2 given above.

Example 3. Suppose E is an r.e. equivalence relation on ω. If ω/E is
finite, then a graph G = (V ; Edge) belongs to KGraph(E) if and only if the

cardinality of V equals the cardinality of ω/E.

In the example above, recursive enumerability of E is used essentially. We
note that the example above holds true also if E is a co-r.e. equivalence
relation. In view of this example, from now on, all our graphs will be countably
infinite, that is, graphs whose set of vertices is an infinite set. Thus, unless
otherwise specified, we assume that all r.e. equivalence relations E considered
in this paper are infinite (that is, ω/E is infinite).

Example 4. Let E be the identity relation idω on ω. Then the class KGraph(E)

consists of all graphs (ω; Edge) where Edge is an r.e. set of unordered pairs.
In particular, this class contains all recursive graphs.

Example 5. Let X ⊆ ω be a r.e. set. Consider the following relation E(X):

E(X) = {(x, y) : x = y} ∪ {(x, y) : x, y ∈ X}.

Each equivalence class of E(X) is either a singleton {x} where x 6∈ X or
is the set X itself. A permutation directed graph is a directed graph of the
form (A; Edge), where Edge determines a permutation on A. If (a, a) ∈ Edge
for some a ∈ A, where Edge defines a permutation directed graph on A, then
a is called a fixed point. For X being r.e. and coinfinite, [every permutation
directed graph from KDgraph(E(X)) has a fixed point] if and only if [X is

a nonrecursive set]. To see this, note that if X is recursive, then it is easy
to construct a permutation directed graph in KDgraph(E(X)) which does not

have a fixed point. This can be done by mapping X to y and y to X, for
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some fixed y ∈ X, and having some recursive permutation of elements of
X − {y} without a fixed point. On the other hand, if (ω; Edge)/E(X) ∈
KDgraph(E(X)) does not have a fixed point, then for any fixed x ∈ X and

(the unique) y such that (x, y) ∈ Edge, X = {z : (∃y′ 6= y)[(z, y′) ∈ Edge]},
which is r.e., and thus X is recursive.

The paper [18] calls permutation directed graphs permutation algebras and
the reader is referred to that paper for several properties of E-permutation
directed graphs. We will be using the r.e. equivalence relation E(X) of this
example throughout the paper.

Example 6. Let E be an r.e. but not recursive equivalence relation. Then
the class KDgraph(E) does not contain the successor directed graph (Z, S),

where
S = {(x, y) : x and y are integers and x+ 1 = y}.

Indeed, if (Z, S) ∈ KDgraph(E) as witnessed by (ω; Edge)/E then E must

be recursive. To see this, for distinct x, y, (i) (x, y) ∈ E if (x, y) is enumer-
ated in E, and (ii) (x, y) 6∈ E if there exist r > 2, z1, z2, . . . , zr such that
(zi, zi+1) ∈ Edge, for 1 6 i < r, and either x = z1 and y = zr or y = z1
and x = zr (that is, there exists a directed path from x to y or y to x in the
directed graph represented by (ω; Edge)/E).

Example 7. A complete graph is a graph that has edges between all pairs
x, y of its vertices, where x 6= y. We call a pseudograph G an n-complete
pseudograph if G has exactly n vertices with self-loops and has edges between
all pairs x, y of its vertices, where x 6= y. Call G a fully complete pseudograph
if there exists an edge between any pair of vertices of G (including self loops).
We observe the following:

1. Every r.e. equivalence relation realises a fully complete pseudograph;

2. For each n ∈ ω there exists an r.e. equivalence relation E such that E
realises a k-complete pseudograph if and only if k > n.

Part (1) is obvious. For part (2) we proceed as follows. Let X1, . . . , Xn be
pairwise disjoint r.e., but nonrecursive, sets such that ω− (X1 ∪ . . .∪Xn) is
infinite. Consider the r.e. equivalence relation E(X1, . . . , Xn):

(x, y) ∈ E(X1, . . . , Xn) ⇔ (x = y) ∨ (
n∨

s=1

(x, y ∈ Xs)).
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Assume that all the sets X1, . . . , Xn are recursively enumerable but not recur-
sive. Consider any k-complete pseudograph G = (ω; Edge)/E(X1, . . . , Xn).
Consider any xi ∈ Xi, for 1 6 i 6 n. Then, (xi, xi) ∈ Edge; other-
wise, Xi would be co-r.e. and thus a recursive set as x 6∈ Xi if and only
if (x, xi) ∈ Edge. Hence, G must have at least n vertices with self-loops.
Finally, it is easy to verify that the r.e. equivalence relation E(X1, . . . , Xn)
realises all k-complete pseudo graphs for all k > n: we can take the self
loops for the vertices corresponding to X1, . . . Xn and (k − n) elements from
ω − (X1 ∪ . . . ∪Xn).

Example 8. If an infinite graph G has finitely many edges then every r.e.
equivalence relation E realises G.

The example above shows that for every E the class KGraph(E) is not empty.

Now we give the following definition through which we show, in Proposition
10 below, the influence of the r.e. equivalence relations E on algebraic prop-
erties of graphs realised by E.

Definition 9. The transversal of a r.e. equivalence relation E, denoted by
tr(E), is the set {n : (∀x)[x < n⇒ (x, n) 6∈ E]}.

Thus, the transversal tr(E) is the set of all minimal elements taken from the
equivalence classes of E. It is easy to see that for recursively enumerable E,
E is Turing equivalent to tr(E).

Recall that a set X of natural numbers is hyperimmune if there does not
exist a recursive function g such that g(i) > xi for all i, where x0 < x1 < x2 <
. . . and X = {x0, x1, . . .}. Equivalently, if X is hyperimmune, then there does
not exist a recursive function g such that g(x) > min{y ∈ X : y > x}. We
also say that a set X is hypersimple if X is recursively enumerable and its
complement is hyperimmune [32]. We call a graph G = (V ; Edge) locally
finite if the set Edge(v) is finite for all v ∈ V . A locally finite E-graph
G = (ω; Edge)/E is strongly locally finite if there exists a recursive function,
which we call a witness function, that given an n ∈ ω produces a tuple
m1, . . . ,mk such that the following properties hold:

1. (n,mi) ∈ Edge for i = 1, . . . , k;

2. For every y such that (n, y) ∈ Edge, there exists an mi for which
(y,mi) ∈ E.
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A graph G = (V ; Edge) is called absolutely locally finite if and only if every
connected set of vertices is finite (here a set of vertices V ′ ⊆ V is said to be
connected (in G) if and only if for all u, v ∈ V ′, there exist z1, . . . , zk ∈ V ′
such that (zi, zi+1) ∈ Edge, for 1 6 i < k, and z1 = u, zk = v). Now we
present a simple proposition whose proof is essentially borrowed from [21],
where E-algebras were considered (also see [18]).

Proposition 10. Suppose E is an r.e. equivalence relation. If the transver-
sal tr(E) is hyperimmune then every strongly locally finite E-graph must be
absolutely locally finite.

Proof. Suppose Edge is r.e. and G = (ω; Edge)/E is a strongly locally finite
E-graph with a witness function f . Assume by way of contradiction that G
has an infinite connected subset X of vertices with e ∈ tr(E) being least such
that [e]E ∈ X. Thus, for all x ∈ ω, there exists a y ∈ tr(E) satisfying y 6 x+e
and [y]E ∈ X, such that for some z, [z ∈ tr(E), (y, z) ∈ Edge and z > x+ e].
Hence, g(x) = max{f(y) : y 6 x + e} > min{z ∈ tr(E) : z > x + e},
contradicting tr(E) being hyperimmune. �

1.3. Reducibilities

The definition of the class KC(E) depends on two parameters: the class C
of graphs (directed graphs, pseudographs) and the r.e. equivalence relation
E. When we fix an r.e. equivalence relation E, the class KC(E) calls for a
description of those graphs from C that can be realised over E. From this
point of view the class KC(E) represents a graph-theoretic content of the
universe ω/E. When we fix a class C of graphs, one considers those r.e.
equivalence relations E that realise graphs from C. The collection of these
r.e. equivalence relations can be viewed as a computability-theoretic content
of the class C. These observations call for the investigation of the relationship
between r.e. equivalence relations in terms of graphs (from the class C) they
realise. Formally, this is explained through the following definitions (also,
see [18]).

Definition 11. Let C be a class of graphs (pseudographs or directed graphs)
and let E1 and E2 be r.e. equivalence relations. We say E1 is C-reducible to
E2, written E1 6C E2, if and only if every graph in C realised by E1 is also
realised by E2. In particular, we have the following reductions when C is the
class of directed graphs, pseudographs or graphs.
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1. E1 6Dgraph E2 if and only if all directed graphs realised by E1 are

realised by E2;

2. E1 6Pgraph E2 if and only if all pseudographs realised by E1 are realised

by E2;

3. E1 6Graph E2 if and only if all graphs realised by E1 are realised by

E2.

Sometimes we use a terminology borrowed from recursion theory. For in-
stance, similar to m-degrees or Turing degrees, we say that E1 and E2 have
the same C-degree, written E1 ≡C E2, if and only if E1 6C E2 ∧ E2 6C E1.
The reducibility 6C naturally induces the partial order on the set of all C-
degrees. Without much confusion we use the same symbol 6C to denote this
partial order on C-degrees. Thus, there are two lines of investigation. One is
to study basic properties of the partial order 6C on the set of all C-degrees.
The other is to investigate the graphs from KC(E) by selecting various classes
C of graphs. In this paper we initiate the study in both directions.

Most reducibilities (if not all) on r.e. equivalence relations and sets that
have been studied aim to capture recursion-theoretic and set-theoretic com-
plexities between r.e. equivalence relations. Typically a reduction from E to
E ′ tells us that E ′ is a harder problem to solve than E. For instance, Turing
reducibility from E to E ′ implies that by having an oracle with access to E ′

we can design an algorithm that decides E. In contrast, our reducibilities
given in Definition 11 aim to compare r.e. equivalence relations E and E ′ in
terms of their algebraic content — namely the classes KC(E) and KC(E ′)
that they represent.

1.4. Connections to related work

The paper [18] initiated the study of E-structures in general setting. In par-
ticular, it investigated an important class L of pseudographs, namely the
class of linearly ordered sets (where (x, y) ∈ Edge ⇔ x 6 y). It obtained
some basic results about the partial order 6L and built certain r.e. equiva-
lence relations E for which the classes KL(E) can easily be described. For
instance, it constructed r.e. equivalence relations E that realise only n many
linear orders, where n is fixed [18]. It also characterised some classes of lin-
ear orders that can be realised by r.e. equivalence relations of type E(X).
The paper [18] also studied the C-reducibility in the cases when C is chosen
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as some classes of universal algebras. We also mention Bernardi and Sorbi
[4, 5] as well as Ershov [10, 11] who studied various reducibilities between r.e.
equivalence relations. The many-one reducibility, or m-reducibility, between
r.e. equivalence relations has been revisited due to the works [12]-[15]. Below
we give the definition of m-reducibility in order to relate it to this paper.
Friedman and Fokina [13] considered reducibilities between equivalence re-
lations in a more general context; however, in the context of this paper we
need a special case when the two r.e. equivalence relations compared have
the domain ω. This variant of the reducibility was first introduced for sets by
Post [31] and later used by Malcev [25, 26] and subsequently Ershov [10, 11]
in both the context of all equivalence relations on the set of natural numbers
and in the restricted context of the r.e. case; Bernardi and Sorbi [5] begun the
first systematic study on r.e. equivalence relations and many-one reducibility.

Now we recall m-reducibility. For r.e. equivalence relations E1, E2 on
ω, we say that E1 is m-reducible to E2, written E1 6m E2, if and only
if there exists a recursive function f such that for all x, y ∈ ω we have
[(x, y) ∈ E1 ⇔ (f(x), f(y)) ∈ E2]. This naturally induces the equivalence
relation ≡m between E1 and E2 given as E1 6m E2 ∧E2 6m E1. In this case
it is said that E1 and E2 have the same m-degree. It is not hard to see that
6m has the largest element among all the m-degrees [2, 5, 10, 16, 24, 27].

One can also consider the following equivalence relation ∼m between
equivalence relations. We say that E1 and E2 are ∼m-equivalent, written
E1 ∼m E2, if and only if there exists a recursive function f witnessing
E1 6m E2 such that all equivalence classes of E2 appear in the range of f .
Note that ∼m is an equivalence relation that implies ≡m. When comparing
∼m with ≡m, it turns out that ∼m is a more restrictive condition than ≡m,
namely ≡m does not always imply ∼m. This stands in contrast to one-one
reducibility between r.e. subsets of ω [32]. We also note that if X1, X2 are
two infinite r.e. sets then for the r.e. equivalence relations E(X1) and E(X2)
(defined in Example 5) we have the following: E(X1) 6m E(X2) if and only if
X1 61 X2 [9, 11, 28]. Hence, m-reducibility is nearer to one-one reducibility
than to many-one reducibility between r.e. subsets of ω. Coskey, Hamkins
and Miller [8, 9] and Gao and Gerdes [16] also contributed to the study of r.e.
equivalence relations and m-reducibility. Finally, we mention a recent paper
by Andrews, Lempp, Miller, Ng, San Mauro and Sorbi [2] that presents a
comprehensive study of m-reducibility between r.e. equivalence relations, in
particular, answering several questions posed in the work of Gao and Gerdes
[16].
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2. Isles

Let C be a class of pseudographs (directed graphs, graphs). Intuitively, there
is not much connection between 6C-reducibility and m-reducibility on r.e.
equivalence relations. In fact, we observe that the definitions of 6m and 6C

imply thatm-reducibility is an arithmetic definition while6C-reducibility is a
Σ1

1-definition. However, in this section we show that for some natural classes
of pseudographs, one might find connections between these two reducibilities.
In this section we introduce such a class. We call pseudographs from this
class isles. Here is the definition of isles.

Definition 12. An isle or an island graph is a pseudograph which has in-
finitely many isolated vertices. Formally, an isle is a pseudograph (V ; Edge)
such that there are infinitely many vertices x ∈ V satisfying Edge(x) = ∅.
Denote the class of all isles by Isle.

Now we can recast Definition 11 for the class Isle of all isles. Namely, we
say that E 6Isle E

′ if and only if every isle realised by E is also realised by
E ′. As we mentioned above, the importance of this class of pseudographs
stems from the fact that Isle-reducibility can, in some ways, be related to
the m-reducibility. This will be explained in this section. Furthermore, we
give a characterisation of all the isles that can be realised by all infinite r.e.
equivalence relations; the characterisation involves a graph-theoretic concept
of clique graphs. In addition, we construct natural examples of r.e. equiva-
lence relations which only realise these isles. We will also prove that there
are the least and the greatest Isle-degrees.

2.1. Connection between m-reducibility and Isle-reducibility

In recursion theory, often for the partially ordered set (P ;6) given by some
reducibility 6, the greatest element is called universal. Intuitively, univer-
sal degrees represent the hardest problems to which other problems can be
reduced. For instance, the m-reducibility has a universal degree. The main
result of this subsection is the following theorem:

Theorem 13. If E 6m E ′ then E 6Isle E
′. Moreover, E ′ is Isle-universal

if and only if E ′ is m-universal.

Proof. First we show that E 6m E ′ implies E 6Isle E
′. Let f be a recursive

function witnessing E 6m E ′, that is, (x, y) ∈ E ⇔ (f(x), f(y)) ∈ E ′.
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Let Edge be an r.e. relation on ω respecting E such that the pseudo graph
(ω; Edge)/E is an isle. One defines

(x′, y′) ∈ Edge′ ⇔ (∃(x, y) ∈ Edge)[(f(x), x′) ∈ E ′ ∧ (f(y), y′) ∈ E ′].

It is clear that Edge′ is an r.e. relation which respects E ′. Furthermore,
(x′, y′) is in Edge′ if and only if x′ ∈ [f(x)]E′ and y′ ∈ [f(y)]E′ for some edge
(x, y) ∈ Edge. In addition, {[z]E′ : z 6∈

⋃
x∈ω[f(x)]E′}∪{[f(x)]E′ : Edge(x) =

∅} is infinite (that is, the set of vertices in (ω; Edge′)/E ′ which are not
an image (for f) of any vertex in (ω; Edge)/E or an image of an isolated
vertex in (ω; Edge)/E is infinite). Hence, {[z]E′ : Edge′(z) = ∅} is infinite.
Thus, (ω; Edge′)/E ′ is an isle. The pseudograph (ω; Edge′)/E ′ is isomorphic
to (ω; Edge)/E through the map defined as follows. For vertices [x]E with
Edge(x) 6= ∅, the isomorphism is given by f . For the rest of the vertices, the
isomorphism is given by a bijective function that maps {[x]E : Edge(x) = ∅}
to {[z]E′ : Edge′(z) = ∅}. We note that we may not be able to use f by
default to establish the isomorphism as the range of f may not intersect all
E ′ equivalence classes.

It follows from above that every m-universal r.e. equivalence relation is
Isle-universal. Now assume that E ′ is Isle-universal. Our goal is to show that
E ′ is m-universal. So, let E be an r.e. equivalence relation defined on ω. We
want to show that there is a recursive function f that witnesses E 6m E ′.

We construct the following graph. The set of vertices of the graph is the
disjoint union ω∪{a, b, c, d, s0, s1, s2, . . . , t0, t1, t2, . . .}. The set Edge of edges
of the graph consist of the following edges (along with their symmetric ver-
sions) (s3k, a), (s3k+1, b), (s3k+2, c), (sk, sk+1), (n, d), for all n ∈ ω and (h, sk),
whenever (k, h) ∈ E. All the vertices ti are completely isolated. Define Ẽ
on the set of vertices of the graph so that Ẽ is E on ω and is the identity
equivalence relation on the rest of the vertices. The relation Ẽ is an r.e.
equivalence relation. In addition, the set Edge of edges of the graph built
respect Ẽ. Thus, the graph obtained is an Ẽ–graph. Moreover, the graph is
an isle because of the completely isolated vertices ti.

Since E ′ is Isle-universal, there exists an E ′-respecting relation Edge′ such
that the graph G ′ = (ω; Edge′)/E ′ is isomorphic to the graph constructed
above. Hence there are a′, b′, c′, d′, s′0 such that [a′]E′ , [b′]E′ , [c′]E′ , [d′]E′ , [s′0]E′

are the copies (in G ′) of the vertices a, b, c, d, s0 (in G). Now one can use these
representatives to build an algorithm recovering the counterparts (in G ′) of
the vertices sk (in G) as follows. To find s′k such that [s′k]E′ corresponds to
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sk, one starts from s′0 and finds inductively for ` = 1, 2, . . . , k that vertex s′`
such that (s′`, s

′
`−1) ∈ Edge′, and (s′`, a

′) ∈ Edge′ in the case that ` modulo 3
is 0, (s′`, b

′) ∈ Edge′ in the case that ` modulo 3 is 1, (s′`, c
′) ∈ Edge′ in the

case that ` modulo 3 is 2. Having s′k, one can find a vertex f(k) such that
(f(k), s′k) ∈ Edge′ and (f(k), d′) ∈ Edge′. Clearly this function f is recursive.

Now the claim is that f is an m-reduction from E to E ′: If (x, y) ∈ E,
then [x]E = [y]E and thus (sx, x) and (sy, x) (sx, y) and (sy, y) are all in
Edge. Therefore, (s′x, f(x)) and (s′y, f(x)), (s′x, f(y)) and (s′y, f(y)) are all
in Edge′ and thus (f(x), f(y)) ∈ E ′. If (x, y) 6∈ E, then {z ∈ ω : (sx, z) ∈
Edge, (d, z) ∈ Edge} is disjoint from {z ∈ ω : (sy, z) ∈ Edge, (d, z) ∈ Edge}.
Thus, {z ∈ ω : (s′x, z) ∈ Edge′, (d′, z) ∈ Edge′} is disjoint from {z ∈ ω : (s′y, z) ∈
Edge′, (d′, z) ∈ Edge′}. This implies that, [f(x)]E′ 6= [f(y)]E′ . So f has the
properties of an m-reduction. �

Since m-reducibility has universal elements [2, 5, 10, 16, 24, 27], we have the
following corollary.

Corollary 14. The Isle-reducibility has universal elements.

2.2. The existence of the least element in the Isle-degrees

In this subsection we prove that Isle-reducibility has the least element. We
also construct an example of an infinite chain in the set of Isle-degrees. We
start with the following definition that singles out those isles for which the
set of edges is finite.

Definition 15. We call an r.e. isle finitary if and only if there are only
finitely many vertices in the isle which have an edge to other vertices or
themselves. That is, an isle (ω; Edge)/E is a finitary isle if and only if the
set Edge/E is finite. If an isle is not finitary then we call it an infinitary
isle.

The following lemma is easy to see.

Lemma 16. Every r.e. equivalence relation E realises all finitary isles.

Proof. If an isle is finitary and E is an r.e. equivalence relation with infinitely
many equivalence classes then the set Edge can be represented by a finite list
of pairs (x1, y1), . . . , (xn, yn) and therefore, one obtains that the relation

Edge = {(v, w) : (∃m ∈ {1, . . . , n})[(v, xm) ∈ E ∧ (w, ym) ∈ E]}
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respects E and represents the given isle in ω/E. Thus, the r.e. equivalence
relation E realises the given isle. �

The next result shows that the least element with respect to Isle-reducibility
is determined by the class of all finitary isles. To prove this, we recall cohesive
sets. Namely, an infinite set Z is cohesive if no r.e. set X exists that splits Z
into two infinite subsets, that is, no r.e. X exists such that both Z ∩X and
Z ∩ (ω−X) are infinite. Maximal sets are recursively enumerable sets whose
complements are cohesive. Maximal sets are a well-known topic studied in
recursion theory [30, 32].

Theorem 17. If the transversal tr(E) of an r.e. equivalence relation E is
a cohesive set then the equivalence relation E realises only finitary isles. In
particular, for every maximal set X, the r.e. equivalence relation E(X) is the
least element with respect to Isle-reducibility.

Proof. By Lemma 16 above, E realises all finitary isles. For the rest of
the proof assume that tr(E) is a cohesive set. Let Edge be an r.e. relation
representing the edges of an isle realised by E. Now let Y = {y : (∃x)[(x, y) ∈
Edge]}. Since Edge represent edges of the isle, there are infinitely many
pairwise non E-equivalent x which are not in Y . Note that Y respects E.
Hence, the set Y must be a union of finitely many E-equivalence classes as
otherwise Y would split tr(E) into two infinite subsets. Thus, there are only
finitely many E-equivalence classes in Y . It follows that Edge represents a
finite isle. Theorem now follows using Lemma 16. �

Note that the Isle-least element contains infinitely many m-degrees. The
reason is that if X and Y are maximal sets of different Turing degrees then
E(X) and E(Y ) are m-incomparable yet E(X) and E(Y ) are Isle-equivalent.
Hence, recursion-theoretically, two r.e. equivalence relations realising the
same isles might be quite different.

Proposition 18. The set of all Isle-degrees contains an infinite chain.

Proof. Let X be a maximal set. For each n > 3, let En be defined as the
join of E(X) with itself n times, that is, (m,m′) ∈ En if and only if m = m′

(mod n) and [bm/nc = bm′/nc or [bm/nc ∈ X and bm′/nc ∈ X]]. It is clear
that En 6m En+1 and thus En 6Isle En+1.

Now let Gn = (ω; Edgen)/En, where Edgen = {(m,m′) : m 6= m′ (mod
n), and m 6= 0 (mod n), m′ 6= 0 (mod n)}. Note that Gn is an isle graph
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with (n − 1) infinite subparts, each of whose vertices have an edge to the
vertices of the other (n− 2) subparts.

Suppose by way of contradiction that Gn is realisable in En−1, for some
n > 3. Suppose the realisation is via (ω; Edge)/En−1. Then, let α0, α1, . . . , αn−2
be representatives such that each (αi, αj) ∈ Edge, for i 6= j, where i, j < n−1.
Let Ai = {x : (∀j < n− 1, i 6= j)[(x, αj) ∈ Edge]}. Then, the sets Ai are dis-
joint infinite sets respecting En−1. Thus, for each k < n−1, {(n−1)x+k : x ∈
X} ⊆ Ai or {(n − 1)x + k : x ∈ X} ∩ Ai = ∅. By X being maximal we
immediately have that, for each i < n− 1, there exists a k < n− 1 such that
{(n − 1)x + k : x ∈ X} ∩ Ai 6= ∅; moreover by disjointness of different Ai,
it follows that there exists a permutation k0, k1, . . . , kn−2 of 0, 1, 2, . . . , n− 2
such that {(n−1)x+ki : x ∈ X} ⊆ Ai and {(n−1)x+kj : x ∈ X}∩Ai = ∅
for j 6= i, where i, j < n− 1. Hence, as each Ai covers infinitely many En−1
equivalence classes, we have by maximality of X that, for i < n− 1, Ai is a
finite variant of {(n − 1)x + ki : x ∈ ω}. But then, ω −

⋃
i<n−1Ai is finite

and thus (ω; Edge)/En−1 is not an isle and does not realise Gn. �

2.3. Realising infinitary isles

In this subsection we characterise those r.e. equivalence relations that
realise infinitary isles. The characterisation is given in terms of a well-known
concept in graph theory, the notion of clique which is adapted to the concept
of isles.

Definition 19. A clique-isle is an isle for which there is a set C such that
(x, y) is an edge of the isle if and only if x, y ∈ C and x 6= y. A full-clique-isle
is an isle for which there is a set C such that (x, y) is an edge of the isle if
and only if x, y ∈ C.

Note that both clique-isles and full-clique-isles (over a graph with countably
many vertices) are uniquely determined by the cardinality of C and their first-
order theories are ℵ0-categorical. It turns out, as we prove in the theorem
below, those r.e. equivalence relations that realise infinitary clique isles can
be characterised in terms of m-reducibility.

Theorem 20. An r.e. equivalence relation E realises an infinitary clique-isle
if and only if idω 6m E.

Proof. (⇒) Assume that E realises an infinitary clique-isle. Let Edge be
the set of edges of this isle graph. Now we need to prove that idω 6m E by
constructing a recursive function f : ω → ω such that (f(i), f(j)) 6∈ E for

15



all pairwise distinct i, j. Choose f(0), f(1) as any pair of vertices satisfying
(f(0), f(1)) ∈ Edge. Now let, inductively, for n > 2, f(n) be the first value
x found such that (f(m), x) ∈ Edge for all m < n. Note that this search
terminates since the graph has an infinite clique and f(0), . . . , f(n − 1) all
belong to the infinite clique. Clearly, f(n) also belongs to the infinite clique.
Also note that (f(n), f(i)) 6∈ E for all i < n since the infinite clique-isle does
not contain self-loops. Hence, (f(i), f(n)) 6∈ E for all i < n. Therefore, the
function f indeed witnesses that idω 6m E.

(⇐) Consider the following graph (V ; Edge). The set V is ω and (i, j) ∈ Edge
if and only if i 6= j and both i and j are even. The graph constructed is
an infinitary clique-isle realised by idω. Therefore idω 6m E implies, by
Theorem 13, that E realises this isle. �

The theorem above allows us to easily prove the following statement:

Proposition 21. There exists an r.e. equivalence relation E that realises an
infinitary full-clique isle but omits all infinitary clique isles.

Proof. Let S be a simple set and g : ω → S be a recursive bijection. Consider
the r.e. equivalence relation E(g(S)).

It is first shown that idω 66m E(g(S)). Suppose by way of contradiction
that f witnesses idω 6m E(g(S)). Thus, as S is simple, range of f contains
infinitely many elements of S. Hence, as f can map at most one element of
ω to an element of g(S), g−1(f(ω) ∩ S) is an infinite r.e. set containing at
most one element of S, a contradiction to S being simple.

It follows using Theorem 20 that E(g(S)) does not realise an infinitary
clique-isle. The binary relation Edge = {(i, j) : i, j ∈ S} respects E(g(S)).
Hence, (ω; Edge)/E(g(S)) is an infinitary full-clique-isle. �

Now we characterise r.e. equivalence relations that realise infinitary full-
clique-isle graphs.

Theorem 22. For every r.e. equivalence relation E, the following statements
are equivalent:

(a) E realises an infinitary isle;

(b) E realises an infinitary full-clique-isle;
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(c) There is an r.e. set X respecting E such that X contains infinitely
many E-equivalence classes and leaves out infinitely many E-equivalence
classes.

Proof. (a) ⇒ (c): If E realises an infinitary isle with edge-relation Edge
then one can define X = {x : (∃y)[(x, y) ∈ Edge]}; the set X is r.e. and
contains infinitely many equivalence classes of E. The set X is also disjoint
from infinitely many equivalence classes of E. Furthermore, by definition, X
respects E.

(c)⇒ (b): This can be done by defining that (x, y) is an edge if and only
if x, y ∈ X. The edge-relation clearly respects E. It is also an r.e. relation;
furthermore, it follows from the properties of X that the resulting graph is
an infinitary full-clique-isle.

(b) ⇒ (a): This follows directly from the definition, as every infinitary
full-clique-isle is an infinitary isle. �

2.4. The Isle-degrees have a unique atom

In Theorem 17 we proved that the partial order of the Isle-degrees has the
least element. Our next theorem shows that there is an atom in this partial
order. Recall that an atom in a partially ordered set (X,6) with the least
element z is a member a of X such that a 6= z and no x exists strictly between
z and a. Note that the theorem proves even more. Namely, not only the Isle-
degrees have an atom, but also this atom is a lower bound of all non-zero
Isle-degrees, which implies that the atom is unique. This in particular shows
that the Isle-degrees are not dense.

Let W0,W1, . . . be a standard acceptable numbering of all r.e. sets. Let
edge0, edge1, . . . be a standard acceptable numbering of all r.e. sets of (undi-
rected) edges. Wi,t denotes Wi enumerated in t time steps. We assume
without loss of generality that Wi,t ⊆ {0, 1, . . . , t− 1}.

For a set A, we let A(x) = 1 if x ∈ A, and A(x) = 0 if x 6∈ A.

Theorem 23. There exists an r.e. equivalence relation E such that E realises
an infinitary isle and for every r.e. equivalence relation E ′, if E ′ realises an
infinitary isle then E 6Isle E

′.

Proof. The idea is to construct an r.e. equivalence relation E and a maxi-
mal set X such that the following goals are met for any r.e. set Y and r.e.
symmetric set Edge of pairs:
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Goal 1 – X respects E and X/E is infinite;

Goal 2 – If Y respects E and Y/E is infinite, then X ⊆ Y ;

Goal 3 – If Edge respects E and Edge/E contains infinitely many disjoint
non-self-loop edges (that is, if there exist infinitely many edges
(x0, y0), (x1, y1), . . . in Edge such that [x0]E, [y0]E, [x1]E, [y1]E, . . .
are all distinct), then (x, y) ∈ Edge for all x, y ∈ X.

We will construct such r.e. equivalence relation E and the maximal set X
later in the proof. For now, assume that we have constructed such E and X.
Our goal is to show that every isle G = (ω; Edge)/E realised by E falls into
one of the following five types:

Type 1 – The isle G is finitary;

Type 2 – Edge/E is a finite variant of {([x]E, [x]E) : x ∈ X};

Type 3 – For some r.e. set Z respecting E with Z/E being finite, Edge/E
is a finite variant of {([x]E, [y]E) : x, y ∈ X or x ∈ X ∧ y ∈ Z or
x ∈ Z ∧ y ∈ X};

Type 4 – For some r.e. set Z respecting E with Z/E being finite, Edge/E is
a finite variant of {([x]E, [y]E) : x ∈ X ∧ y ∈ Z or x ∈ Z ∧ y ∈ X};

Type 5 – For some r.e. set Z respecting E with Z/E being finite, Edge/E
is a finite variant of {([x]E, [y]E) : x ∈ X ∧ y ∈ Z or x ∈ Z ∧ y ∈
X} ∪ {([x]E, [x]E) : x ∈ X}.

It is clear that all of the isles of the above types can be realised by E using
the fact that X is an r.e. set. Now we show that there are only these five
types of isles realised by E. So, let G = (ω; Edge)/E be an isle realised by
E.

Let Y = {x : Edge(x) 6= ∅}. If Y/E is finite, then the isle G is of the
first type.

If Y/E is infinite, then, by the second goal, X ⊆ Y . As the graph is an
isle and X is maximal, it follows that almost all non-elements of X must also
be outside Y . Let Z ′ = {x ∈ Y : Edge(x)/E is infinite}. Consider the case
when Z ′/E is infinite. By the third goal, for all x, y ∈ X, (x, y) ∈ Edge.
Thus, X ⊆ Z ′. Note that if x ∈ Z ′ − X then Edge(x)/E is infinite, and
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thus by second goal X ⊆ Edge(x). Hence {(x, y) : x ∈ X ∧ y ∈ Z ′ or
x ∈ Z ′ ∧ y ∈ X} ⊆ Edge. As X is maximal, we have that Y −X and hence
Z ′−X, Y −Z ′ are all finite. Thus, Edge/E contains only finitely many pairs
([x]E, [y]E) with both x, y 6∈ X (as Y − X is finite) and only finitely many
pairs ([x]E, [y]E) such that x ∈ X and y 6∈ (X ∪Z ′) (as there are only finitely
many such y, and for such y, Edge(y)/E is finite). Thus, G is of the third
type.

The remaining case is that Z ′/E is finite. For each x ∈ Z ′, Edge(x)/E is
infinite, thus by the second goal X ⊆ Edge(x). It follows that X ×Z ′ ∪Z ′×
X ⊆ Edge. Now, (a) Edge/E contains only finitely many pairs ([x]E, [y]E)
with both x, y 6∈ X (as Y − X is finite), (b) Edge/E contains only finitely
many pairs ([x]E, [y]E) such that x ∈ X and y 6∈ (X ∪ Z ′) (as there are only
finitely many such y, and for such y, Edge(y)/E is finite), and (c) Edge/E
contains only finitely many pairs ([x]E, [y]E) such that x, y ∈ (X − Z ′) and
[x]E 6= [y]E (as otherwise, by the third Goal, X×X ⊆ Edge and thus Z ′/E is
infinite). Furthermore, if Edge/E contains infinitely many ([x]E, [x]E) then
by the second goal, it contains ([x]E, [x]E) for all x ∈ X. It follows that G
is of the fourth or the fifth type (where, it is of the fourth type if Edge/E
contains finitely many ([x]E, [x]E), and is of the fifth type if Edge/E contains
infinitely many ([x]E, [x]E)). Note that if Z is empty, then the fourth and
fifth types collapse to first and second types respectively.

Note that whenever a relation E ′ realises an infinitary isle then by The-
orem 22 there is an r.e. set X ′ respecting E ′ such that X ′ contains infinitely
many equivalence classes and is disjoint from infinitely many equivalence
classes. Therefore it is easy to verify that E ′ realises all the isles of the first,
the second, the third, the fourth and the fifth types. Hence, E 6Isle E

′.
Thus it remains to show that the above mentioned E and X can be con-

structed. The construction will use movable markers a0, a1, . . . which are at
the same time the least members of their respective equivalence classes; each
marker an has a current position an,t and a limit position an,∞ = limt an,t.
To each an, one assigns the e-state at stage t as

st(e, n, t) =
∑
d<e

2−d−1 ·Wd,t(an,t).

Furthermore, one maintains an enumeration Xt (at stage t) of X and an r.e.
equivalence relation Et approximating E where (x, y) ∈ E0 ⇔ x = y, and
(x, y) ∈ E ⇔ (∃t)[(x, y) ∈ Et]. Note that throughout the construction it is
maintained that (x, y) ∈ Et ⇒ x = y ∨ x, y ∈ Xt in order to enforce that
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the equivalence classes of numbers outside X will remain singletons. We also
consider a number pos(X,n, t) which is defined only for an with an,t /∈ Xt

and which is the number of m < n with am,t /∈ Xt.
In the following, requirements are defined with actions assigned to them.

Without explicitly giving the priority of the requirements, we just state the
constraints needed: (a) the ordering of the requirements is linear such that for
each requirement there are only finitely many requirements of higher priority,
and (b) R0,i has higher priority than R0,i+1 and R1,i,j has higher priority than
R1,i′,j′ whenever i + j < i′ + j′ and R2,i,j,e has higher priority than R2,i′,j′,e′

whenever i+ j + e < i′ + j′ + e′.
In addition, note that a requirement only receives attention at stage t if

it needs attention at stage t, it is among the t highest priority requirements
and it is the highest priority requirement needing attention (a void step can
be done if none of the t highest priority requirements need attention at stage
t).

1. Requirement R0,i. This requirement aims at maximizing the e-state of
non-members of X. The overall aim of requirements R0,· is to achieve
goal 1.

The requirement R0,i needs attention at stage t if and only if ai,t /∈ Xt

and there is an aj,t /∈ Xt with j > i such that st(e, i, t) < st(e, j, t) for
e = pos(X, i, t).

If R0,i receives attention at stage t then Xt+1 = Xt ∪ {ak,t : i 6 k < j}
and all other parameters remain unchanged. The effect of the require-
ment is that the e-state of the e-th element in the complement of X
goes up from st(e, i, t) at stage t, to st(e, j, t + 1) > st(e, j, t) at stage
t+ 1.

2. Requirement R1,i,j. This requirement intends to make sure that when-
ever Wj intersects more than 2 · (i + j + 1) equivalence classes and
ai belongs to an equivalence class of X then Wj intersects the one of
ai; here the factor 2 is due to the fact that we consider whether Wj

contains (i + j) distinct equivalence classes from either X or from the
complement of X — separate bound is used for the complement of
Xt to ensure that small enough elements of complement of Xt are not
spoiled by this requirement (in order to make sure that complement of
X is infinite).

The overall aim of requirements R1,·,· is to achieve goal 2.
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The requirement R1,i,j needs attention at stage t if and only if (i) ai,t ∈
Xt and (ii) there is no (x, ai,t) ∈ Et with x ∈ Wj,t, and (iii) there is a
k > i + j and (y, ak,t) ∈ Et such that y ∈ Wj,t and either ak,t ∈ Xt or
pos(X, k, t) > i+ j.

If R1,i,j receives attention at stage t with parameter k as in the pre-
vious paragraph then one defines that (x, y) ∈ Et+1 ⇔ [(x, y) ∈ Et ∨
((x, ai,t) ∈ Et ∧ (y, ak,t) ∈ Et) ∨ ((x, ak,t) ∈ Et ∧ (y, ai,t) ∈ Et)] and
ah,t+1 = ah+1,t for all h > k. All other parameters remain unchanged.

3. Requirement R2,i,j,e. This requirement wants to make sure that (ai,∞,
aj,∞) ∈ edgee whenever edgee respects E, ai,∞, aj,∞ ∈ X and there is
an edge (ak,∞, ak′,∞) ∈ edgee with k, k′ being sufficiently large. The
overall aim of requirements R2,·,·,· is to achieve goal 3.

The requirement R2,i,j,e needs attention at stage t if and only if (i)
ai,t, aj,t ∈ Xt and (ii) there are no (x, ai) ∈ Et and (y, aj) ∈ Et with
(x, y) ∈ edgee,t and (iii) there are k, k′ > i+j+e with (i 6= j ⇒ k 6= k′)
and (ak,t, ak′,t) ∈ edgee,t and ak,t /∈ Xt ⇒ pos(X, k, t) > i + j + e and
ak′,t /∈ Xt ⇒ pos(X, k′, t) > i+ j + e.

If R2,i,j,e receives attention with parameters k, k′ as in the previous
paragraph then Xt+1 = Xt∪{ak,t, ak′,t}. If i 6= j, then the Et+1 equiva-
lence classes of ai,t+1 is the union of the Et equivalence classes of ai,t and
ak,t, the Et+1 equivalence classes of aj,t+1 is the union of the Et equiv-
alence classes of aj,t and ak′,t. In case i = j, the Et+1 equivalence class
of ai,t is the union of the Et equivalence classes of ai,t, ak,t and ak′,t. All
other equivalence classes remain unchanged. Furthermore, ah,t+1 is the
h-th member of {a0,t, a1,t, . . .}− {ak,t, ak′,t}, that is, ah,t+1 is defined as
follows (where (h > k) denotes the value of the characteristic function
of > on (h, k))

ah,t+1 =


ah+(h>k)+(h+1>k′),t if k < k′;
ah+(h+1>k)+(h>k′),t if k > k′;
ah+(h>k),t if k = k′.

The overall construction follows the pattern of a standard finite injury con-
struction. Initially, Xt = ∅, and ai,0 = i. At stage t, if there is a requirement
needing attention among the t requirements with highest priority then among
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the requirements needing attention that with the highest priority receives at-
tention; otherwise, no requirement receives attention and all parameters are
the same at stage t+ 1 as at stage t.

It can be easily verified that each requirement, after it is no longer injured
by higher priority requirements, needs attention and acts only finitely often.
Furthermore, only finitely many requirements can enumerate the e-th non-
element of Xt into Xt+1; hence, from some time on, the current e-th non-
element will never be enumerated into Xt and therefore will remain outside
X forever. This is necessary in order to enforce that X is coinfinite. In
addition, it is guaranteed that the equivalence classes of ai and aj can only
be merged by finitely many requirements; similarly there are only finitely
many requirements which can make ai,t+1 becoming ak,t for some k > i. If t
is large enough, that is, if all these requirements do no longer act at stage t
or beyond, then ak,t = ak,∞ for all k 6 max{i, j} and the equivalence classes
of ai,∞, aj,∞ will not merge but remain different throughout the construction.
Another ingredient of the construction is that for every t ∈ ω ∪ {∞}, a0,t <
a1,t < a2,t < . . ., and Xt ∪ {a0,t, a1,t, . . .} = ω; here X∞ just denotes X.

Furthermore, the requirements of type R0,i make sure that X is maximal.
This is done by ensuring that whenever an,∞ is the e-th non-element of X
then there is no m > n with an,∞ /∈ X and st(e, n,∞) < st(e,m,∞) where
st(d, k,∞) = limt st(d, k, t) for all d, k; this limit exists. It is also easy to
see that whenever Wj intersects infinitely many equivalence classes then the
requirements R1,i,j make sure that all the equivalence classes with ai,∞ ∈ X
will intersect Wj. Similarly the requirements R2,i,j,e will make sure that in
the limit (ai,∞, aj,∞) ∈ edgee whenever edgee respects X and ai,∞, aj,∞ ∈ X
and one can find sufficiently many disjoint non-self-loop pairs in edgee. This
permits to conclude that all three goals are met by the construction. �

The next result shows that there is no third-least Isle-degree, instead, the
second-least Isle-degree is the meet of two larger degrees.

Theorem 24. The second least Isle-degree is the meet of two incomparable
degrees.

Proof. The idea is to make modifications of the construction of E from The-
orem 23 in order to construct r.e. equivalence relations E1 and E2 such that
E <Isle E1, E <Isle E2 and all common lower bounds E ′ of E1, E2 satisfy
E ′ 6Isle E. The modified goals for the relation E1 are the following, for any
r.e. set Y and r.e. symmetric set Edge of pairs:
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Goal 1 – X respects E1, X/E1 is infinite, and elements of X/E1 are “grouped
into pairs” in an r.e. way;

Goal 2 – If Y respects E1 and Y/E1 is infinite then X ⊆ Y ;

Goal 3 – If Edge respects E and Edge/E contains infinitely many disjoint
non-self-loop edges (that is, if there exist infinitely many edges
(x0, y0), (x1, y1), . . . in Edge such that [x0]E1 , [y0]E1 , [x1]E1 , [y1]E1 , . . .
are all distinct), then either Edge contains (x, y) for all x, y ∈ X or
Edge contains {([x]E1 , [y]E1) : [x]E1 , yE1 belong to the same pair in
the “grouping of X/E1 into pairs” (including the case of x = y) }
plus only finitely many pairs from {([x]E, [y]E) : [x]E1 , [y]E1 belong
to different pairs in the “grouping of X/E1 into pairs”}.

Here “grouping of X/E1 into pairs” means that there is an r.e. equivalence
relation E ′1 such that if an equivalence class of E ′1 is contained in X then
it is the union of two equivalence classes of E1 else it is identical with an
equivalence class of E1 outside X. The goals are realised by an adjustment
of the priority construction from Theorem 23. The pseudographs realised by
E1 contain the first to fifth type from Theorem 23 (with E replaced by E1

in the corresponding definition) plus the following two:

Type 6 – Edge/E1 is a finite variant of {([x]E1 , [y]E1) : x, y ∈ X ∧ (x, y) ∈
E ′1};

Type 7 – For some r.e. set Z respecting E1 with Z/E1 being finite, Edge/E
is a finite variant of {([x]E1 , [y]E1) : x ∈ Z∧y ∈ X or x ∈ X∧y ∈ Z
or x, y ∈ X ∧ (x, y) ∈ E ′1}.

The goals for the relation E2 are the following, where the maximal set X
to be constructed will be the disjoint union of r.e. sets X ′ and X ′′ both
respecting E2 such that the following goals are met for any r.e. set Y and
r.e. symmetric set Edge of pairs:

Goal 1 – X,X ′, X ′′ respect E2 and X/E2, X
′/E2 and X ′′/E2 are all infinite;

Goal 2 – If Y respects E2 then, (i) if Y contains infinitely many equivalence
classes of E2 outside X ′, then X ′′ ⊆ Y and (ii) if Y which contains
infinitely many equivalence classes of E2 outside X ′′, then X ′ ⊆ Y ;
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Goal 3 – If Edge respects E2, and there exists a U ⊆ Edge respecting E2

such that U/E2 contains infinitely many disjoint non-self-loop edges
(that is, if there exist infinitely many edges (x0, y0), (x1, y1), . . . in U
such that [x0]E2 , [y0]E2 , [x1]E2 , [y1]E2 , . . . are all distinct), then (for
each such U)

• if all pairs in U are from X ′×X ′′∪X ′′×X ′ then Edge contains
{(x, y) : x ∈ X ′ ∧ y ∈ X ′′ or x ∈ X ′′ ∧ y ∈ X ′};
• if all pairs in U are fromX ′×X ′ then Edge contains {(x, y) : x, y ∈
X ′};
• if all pairs in U are fromX ′′×X ′′ then Edge contains {(x, y) : x, y ∈
X ′′}.

Besides the five types of r.e. equivalence relations from Theorem 23 (with E
replaced by E2), the following additional types of graphs are realised by E2

(where b′, b′′ ∈ {0, 1, 2} and b′′′ ∈ {0, 1}):

Type 8 – For some r.e. sets Z ′, Z ′′ respecting E2, with Z ′/E2 and Z ′′/E2

being finite, b′, b′′ ∈ {0, 1, 2} and b′′′ ∈ {0, 1}, Edge/E is a finite
variant of:

{([x]E2 , [y]E2) : x, y ∈ X ′∧ b′ = 1 or x, y ∈ X ′∧ (x, y) ∈ E2∧ b′ = 2
or x, y ∈ X ′′ ∧ b′′ = 1 or x, y ∈ X ′′ ∧ (x, y) ∈ E2 ∧ b′′ = 2 or
x ∈ X ′ ∧ y ∈ X ′′ ∧ b′′′ = 1 or x ∈ X ′′ ∧ y ∈ X ′ ∧ b′′′ = 1 or
x ∈ Z ′ ∧ y ∈ X ′ or x ∈ X ′ ∧ y ∈ Z ′ or x ∈ Z ′′ ∧ y ∈ X ′′ or
x ∈ X ′′ ∧ y ∈ Z ′′}.

Note that this generic type 8 comprises some of the types one, two, three,
four and five, in the case that b′ = b′′ = b′′′ and Z ′ = Z ′′. One can see that
no graph can happen to be at the same time of types six or seven and of type
eight; hence every graph realised by both E1 and E2 is also of one of the first
five types, thus realised by E. This shows that E1 and E2 form a pair with
greatest lower bound E. �

3. Partition graphs

In this section we consider another class of graphs that we call partition
graphs. We denote this class by Part. As for isles we provide several char-
acterisation results and examples. An importance of this class of graphs is
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that the Part-reducibility induced by Part behaves somewhat orthogonally
to the Isle-reducibility induced by isles.

3.1. A general graph-theoretic construction

Let G = (V ; Edge) be a graph. We say that two vertices v1 and v2 are anti-
clique equivalent if and only if for all vertices w ∈ V we have (v1, w) ∈ Edge if
and only if (v2, w) ∈ Edge. Note that the above indeed gives an equivalence
relation. We call the equivalence classes anti-clique components of the given
graph. If v1 and v2 are anti-clique equivalent then there is an automorphism
of the graph sending v1 and v2 to each other and fixing all other vertices
of the graph. Note that any two vertices adjacent via an edge can not be
in the same anti-clique component. The definition allows us to collapse the
equivalence classes and form the following graph G ′ (where, [v] denotes the
anti-clique component of G containing v).

1. Vertices of G ′ are the anti-clique components;

2. The edge relation Edge′ is induced by the edge relation of G, that is,
([v], [w]) ∈ Edge′ if and only if (v, w) ∈ Edge.

Clearly, the definition of Edge′ does not depend on the representatives of
the anti-clique components. Moreover, the mapping v → [v] establishes a
homomorphism from G onto G ′. For the next definition, recall that a complete
graph is a graph that has edges between all pairs x, y of its vertices, where
x 6= y.

Definition 25. Let H be a graph. We say that a graph G is an H-partition
graph if the reduced graph G ′ is isomorphic to H. We say that G is a partition
graph if it is a H-partition graph for some complete graph H.

Note that in the definition above we allow H to be finite. Every H-partition
graph can be built using the graphH = (VH ; EdgeH) in the following manner.
With every vertex h ∈ Vh associate a non-empty set Ah such that Ah∩Ah′ =
∅ for all distinct h, h′ ∈ VH . Define the graph G = (V ; Edge) as follows:

1. The set V is the union
⋃

hAh;

2. The set Edge contains (x, y) if and only if there exist (u, v) ∈ EdgeH
such that x ∈ Au and y ∈ Av.
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It is clear that G is an H-partition graph and the anti-clique components of
G are the sets Ah. The family {Ah : h ∈ VH} forms a partition of the domain
of G. Using these arguments, partition graphs can be characterised as in the
proposition below.

Proposition 26. A graph G = (V ; Edge) is a partition graph if and only if
there is a partition A0, A1, . . . of the set of vertices such that (x, y) ∈ Edge if
and only if no k exists for which x, y ∈ Ak.

Note that in the proposition above, for the partition graph G, the sets
A0, A1, . . . stated are the anti-clique components of G. We denote the class of
partition graphs with Part; this induces the Part-reducibility on r.e. equiva-
lence relations.

3.2. Basic properties of the classes KPart(E)

The graph (V ; Edge) in which all vertices are completely isolated, that is
Edge = ∅, is clearly a partition graph. The anti-clique component of this
graph is V itself. An infinite complete graph is also an example of a parti-
tion graph. The anti-clique components of the complete graph are singletons.
These are two examples of trivial partition graphs. However, these two triv-
ial partition graphs are complete opposites of each other in terms of r.e.
equivalence relations that realise them.

Theorem 27. The following statements are true:

1. Every r.e. equivalence relation E realises the trivial partition graph in
which all vertices are completely isolated;

2. An r.e. equivalence relation E realises an infinite complete graph if and
only if E is recursive.

Proof. The first part of the proposition is clearly true. For the second part,
if E is recursive then it is clear that E realises a complete graph. In the
other direction, assume that an r.e. equivalence relation E realises a complete
graph (ω; Edge)/E. Then for all x and y, we have (x, y) 6∈ E if and only if
(x, y) ∈ Edge. Hence, E is a recursive relation. �

In the study of r.e. equivalence relations, Maltsev [25] introduced the con-
cept of precomplete equivalence relation and studied their properties. An r.e.
equivalence relation E is precomplete if and only if for every partial-recursive
function ψ : ω → ω there is a total-recursive function f such that for all
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n ∈ dom(ψ), we have (ψ(n), f(n)) ∈ E. Lachlan [24] showed that all pre-
complete universal r.e. equivalence relations form one ∼m degree. The result
below relates precomplete r.e. equivalence relations with partition graphs.
We use the fact that no two distinct equivalence classes of precomplete r.e.
equivalence relations are recursively separable [25]. Also, recall that we fol-
low the convention that our r.e. equivalence relations have infinitely many
equivalence classes.

Theorem 28. Every precomplete r.e. equivalence relation realises only the
trivial partition graph in which all vertices are isolated. Thus, every precom-
plete r.e. equivalence relation is Part-reducible to all other r.e. equivalence
relations.

Proof. Let E be a precomplete r.e. equivalence relation. We want to prove
that E realises exactly one partition graph: the graph in which all vertices
are isolated. So, assume that a partition graph G = (ω; Edge)/E is realised
by E and G has at least two anti-clique components. Let us select x and y
from these two anti-clique components. Now for every z we define f(z) = 0
if (x, z) is enumerated into Edge before (y, z) and define f(z) = 1 if (y, z) is
enumerated into Edge before (x, z). Thus defined recursive function f recur-
sively separates the E-equivalence classes of x and y. This, as we mentioned
above, contradicts with the fact that E is precomplete. �

Corollary 29. The partial order given by Part-reducibility has the least el-
ement.

Note that there also exist non-precomplete equivalence relations E which
realize only the trivial partition graph in which all vertices are isolated. For
example there are universal r.e. equivalence relations that yield partitions
which are recursively inseparable, but are not precomplete, see e.g. [2, 4, 24,
27].

We would like to observe the way precomplete r.e. equivalence relations
behave with respect to various reducibilities. From a recursion-theoretic
point of view the precomplete relations are the most complex. This is at-
tested by the fact that precomplete r.e. equivalence relations are universal
with respect to m-reducibility [5]. From an algebraic point of view, how-
ever, precomplete r.e. equivalence relations behave quite unexpectedly. For
instance, as we have already proven, for the class Isle of isles all m-universal
r.e. equivalence relations (including the precomplete ones) form the largest
Isle-degree. In contrast, for the class of partition graphs the precomplete
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relations belong to the least Part-degree. This also stands in contrast to the
situation when we consider linear orders [18]; namely, no linear order can be
realised over m-universal r.e. equivalence relations.

3.3. Partition graphs with infinite anti-clique components

Here we investigate r.e. equivalence relations that realise partition graphs
with infinite components. For instance, we show that some m-universal r.e.
equivalence relations are more powerful than precomplete ones in terms of
partition graphs they realise. We also show some connections between m-
reducibility and Part-reducibility. We start with two lemmas that are inter-
esting on their own.

Lemma 30. If one of the anti-clique components of an r.e. H-partition graph
G = (V ; Edge) is infinite then the graph is realised by some m-universal r.e.
equivalence relation.

Proof. Let E0, E1, . . . be an effective enumeration of all r.e. equivalence rela-
tions. As in [26], consider the r.e. equivalence relation univ given by

(〈x, y〉, 〈x′, y′〉) ∈ univ ⇔ x = x′ ∧ (y, y′) ∈ Ex.

It is not hard to see that univ is a universal r.e. equivalence relation [10].
Now assume that Ez is an r.e. equivalence relation which realises an H-graph
G = (ω; Edge′)/Ez such that one of the anti-clique components of G is infinite.
Fix z′, a member of one of the infinite anti-clique components of G. Now we
define the following Edge relation on ω/univ:

(〈x, y〉, 〈x′, y′〉) ∈ Edge ⇔ (x = z ∧ x′ = z ∧ (y, y′) ∈ Edge′)

∨ (x = z ∧ x′ 6= z ∧ (y, z′) ∈ Edge′)

∨ (x 6= z ∧ x′ = z ∧ (y′, z′) ∈ Edge′).

The definition of Edge says that Edge has on the slice indexed by z an image
of Edge′ and that it extends the anti-clique component of 〈z, z′〉 to contain
all the univ r.e. equivalence classes with a representative 〈x′, y〉 where x′ 6= z.
This adds infinitely many vertices to the infinite anti-clique component of z′.
Thus, the graph (ω; Edge)/univ is isomorphic to the graph G. �

Lemma 31. Let E be an r.e. equivalence relation with a non-recursive equiv-
alence class [x]E. Then in every partition graph realised over E the element
[x]E belongs to an infinite anti-clique component.
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Proof. Assume that some partition graph G = (V ; Edge) is realised by E and
that the anti-clique component of G containing x is finite. Let x, y1, y2, . . . , yn
be representatives of the anti-clique component. We can decide the equiv-
alence class of x as follows. On input z, search until either (x, z) ∈ E or
(z, ym) ∈ E for m ∈ {1, 2, . . . , n} or (x, z) ∈ Edge is satisfied. The search
always terminates and the conditions in the search are disjoint; in the case
that the first condition is found to be true then z is in the equivalence class
of x; in the case that the second or third condition is found to be true then
z is not in the equivalence class of x. �

There are several consequences of the lemmas above. We start with the
following theorem.

Theorem 32. An r.e. partition graph G = (V ; Edge) is realised by some
m-universal r.e. equivalence relation if and only if one of the anti-clique
components of G is infinite.

Proof. In one direction, assume that a partition graph G is realised by E and
G has an infinite anti-clique component. By Lemma 30, G is realised by the
universal r.e. equivalence relation univ. In the other direction, assume that
some partition graph G = (V ; Edge) is realised by a universal r.e. equivalence
relation E and that all anti-clique components of G are finite. Since E
is universal, there must exist a non-recursive r.e. equivalence class [x]E of
E. By Lemma 31, the element [x]E must belong to an infinite anti-clique
component of G. This contradicts with the choice of G. �

The next consequence of the two lemmas gives us a full description of the
class KPart(univ), where univ is as in Lemma 30. The equivalence relation
univ was first introduced by Maltsev [26].

Corollary 33. The class KPart(univ) consists of all r.e. partition graphs
that posses at least one infinite anti-clique component.

It is worthwhile to mention that univ and precomplete r.e. equivalence rela-
tions are in the same m-degree. The corollary above puts these two promi-
nent r.e. equivalence relations into completely opposite ends of Part-degrees.
Finally, from the proof of Lemma 30 and Lemma 31, we can extract the
following three facts about Part-reducibility.

Corollary 34. Suppose E,E ′ are r.e. equivalence relations. Assume that
E 6m E ′ is witnessed by a recursive function f . If E has a non-recursive
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equivalence class and the set Y = {y : (∃x)[(y, f(x)) ∈ E ′]} is recursive, then
E 6Part E

′.

Proof. Indeed, let G be a graph realised over E via (ω; Edge)/E and let [z′]E
be a non-recursive equivalence class of E. By Lemma 31, [z′]E belongs to an
infinite anti-clique component of G.

Now, let (x, y) ∈ Edge′ if and only if (x′, y′) ∈ Edge, where f(x′) = x and
f(y′) = y or x 6∈ Y and (z′, y) ∈ Edge or y 6∈ Y and (x, z′) ∈ Edge. Essen-
tially, the above puts all members not in Y to be in the anti-clique component
of [z′]E. It is easy to verify that G is isomorphic to (ω; Edge′)/E ′. �

Corollary 35. If E and E ′ are r.e. equivalence relations and E contains
some non-recursive equivalence class then E 6Part E ⊕ E

′.

In this corollary it is important that E contains a non-recursive equivalence
class. Indeed, consider idω as E and E(X) as E ′ where X is not a re-
cursive set. The identity relation idω realises the complete infinite graph.
The r.e. equivalence relation idω ⊕ E(X) is not a recursive relation. Hence,
by Theorem 27, idω ⊕ E(X) does not realise the complete graph. Thus,
idω 66Part idω ⊕ E(X). However, note that idω ⊕ E(X) realises non-trivial
partition graphs.

Corollary 36. If E realises a partition graph whose all anti-clique compo-
nents are finite, then each equivalence class of E is recursive. �

3.4. Existence of Part-universal degree

A natural question about Part-degrees is whether Part-degrees contain the
universal degree. The results above show that, as opposed to the case of
Isle-degrees, m-universal r.e. equivalence relations are not Part-universal. It
turns out Part-degrees have the universal degree witnessed by the identity
r.e. equivalence relation idω. This is proved in the theorem below.

Theorem 37. The identity r.e. equivalence relation idω constitutes the uni-
versal Part-degree.

Proof. Suppose E, Edge are r.e. and G = (ω; Edge)/E is an r.e. partition
graph. We want to show that G can be realised over the r.e. equivalence
relation idω. If G has finitely many anti-clique components, then it is clear
that G can be realised over idω. So, assume that G has infinitely many
anti-clique components.
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Note that the set {y : (∀x < y)[(x, y) ∈ Edge]} is an infinite r.e. set.
Thus, one can effectively list an infinite increasing sequence 0 = k0 < k1 <
k2 . . . of members of ω such that for all i, for all x < ki, (x, ki) ∈ Edge.

Let Es be recursive approximation to E such that each Es is a recursive
set (whose decision procedure can be obtained effectively from s), E0 =
{(x, x) : x ∈ ω}, Es ⊆ Es+1, and

⋃
sE

s = E.
Let Es,n = Es ∩ {(x, y) : x, y 6 n} (that is, Es,n is a restriction of Es

over the domain {0, 1, . . . , n}).
Let s0 = 0. For n > 1, inductively define sn to be the least number greater

than sn−1 such that Esn,kn gives some equivalence relation for {0, 1, . . . , kn}.
Let S = {x : x = min{y : (x, y) ∈ E}}. Note that ki ∈ S for each

i ∈ ω. Let Sn = {x 6 kn : x = min{y : (x, y) ∈ Esn,kn}}. Note that (Sn)n∈ω
approximates S, and for all n, S ∩ Sn ⊆ S ∩ Sn+1.

Intuitively, our aim now is to define a partial function f (which may
not be partial recursive) such that f gives a bijection from S to ω and —
correspondingly — define a relation Edge′ = {(f(x), f(y)) : x, y ∈ S, (x, y) ∈
Edge} (which will turn out to be r.e.). This will give us that G is realised
over idω.

For this purpose, approximations fn, n ∈ ω, whose programs are ob-
tainable effectively from n, will be defined below such that the following
properties are satisfied:

(A) Each fn is 1–1 on its domain Sn.

(B) If for some x ∈ S, fn(x) is defined, then for all m > n, fm(x) = fn(x);

(C) If for some x 6∈ S, fn(x) is defined, then for some m > n, fm(km) =
fn(x).

Let f0(0) = 0 (note that S0 = {0}). We now define fn+1 on the domain Sn+1

as follows.

(i) For x ∈ Sn+1 ∩ Sn, fn+1(x) = fn(x);

(ii) fn+1(kn+1) = min(ω − {fn+1(x) : x ∈ Sn ∩ Sn+1});

(iii) For z ∈ Sn+1−Sn−{kn+1}, define fn+1(z) such that fn+1 is 1–1, and for
all z ∈ Sn+1− (Sn∪{kn+1)}, fn+1(z) does not belong to {fn+1(kn+1)}∪
(
⋃

i6n{fi(x) : x ∈ Si}). Note that this can be easily achieved.
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We now show that (A) to (C) hold. (A) is clearly ensured by the definition.
(B) holds as Sn ∩ S ⊆ S ∩ Sn+1 for all n and part (i) in the definition above.
To show (C), suppose fj(x) is defined for some x 6∈ S. Then, let n > j be
the least such that x 6∈ Sn. Now, for all m > n, fm will not use fj(x) in its
range via (iii) above. Thus, the first time fj(x) will be in the range of fm
(for some m > n), is due to (ii) and thus (C) holds (note that there will be
first such time as the ki’s are distinct, and thus via (ii) every element in ω is
used in the range).

Using (A) and (B) it also follows that f(x) = limn→∞ fn(x), is defined on
its domain S.

Let Edge′ = {(fn(x), fn(y)) : n ∈ ω, x, y 6 kn and (x, y) ∈ Edge}. Note
that Edge′ is clearly an r.e. set.
Claim: Edge′ = {(f(x), f(y)) : x, y ∈ S, (x, y) ∈ Edge}.

Clearly, if x, y ∈ S and (x, y) ∈ Edge, then for large enough n, we have
x, y 6 kn, x, y ∈ Sn and thus (f(x), f(y)) = (fn(x), fn(y)) ∈ Edge′ (where
f(x) = fn(x), f(y) = fn(y) follow from (B)). On the other hand, suppose
(fn(x), fn(y)) is in Edge′ due x, y 6 kn and (x, y) ∈ Edge. Then we consider
the following cases.

Case 1: x, y ∈ S.
Then, by (B) we have that (f(x), f(y)) = (fn(x), fn(y)), and hence it is

okay to have (fn(x), fn(y)) ∈ Edge′.
Case 2: x 6∈ S, y 6∈ S.
Then, by (C), for some m > n, ` > n fn(x) = fm(km) = f(km) and

fn(y) = f`(k`) = f(k`). Furthermore, kn, k` ∈ S and (km, k`) ∈ Edge. Hence
it is okay to have (f(km) = fn(x), f(k`) = fn(y)) ∈ Edge′.

Case 3: x 6∈ S, y ∈ S.
Then, by (C), for some m > n fn(x) = fm(km) = f(km). Furthermore,

fn(y) = f(y). Note also that y 6 kn < km. Thus, (y, km) ∈ Edge, and hence
it is okay to have (f(km) = fn(x), f(y) = fn(y)) ∈ Edge′.

Case 4: x ∈ S, y 6∈ S is similar to Case 3.
This completes the proof of the claim and the theorem. �

4. On the Ideal of Finitary R.E. Equivalence Relations

In this section we consider partition graphs which have only finitely many
anti-clique components, and correspondingly r.e. equivalence relations which
only realise partition graphs which have finitely many anti-clique compo-
nents.
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Definition 38. We call an infinite partition graph G finitary if the number
of its anti-clique components is finite.

Definition 39. We call an r.e. equivalence relation E finitary if all partition
graphs realised by E are finitary partition graphs. We denote by F the class
of all r.e. finitary equivalence relations.

It will be shown later that F forms an ideal with respect to 6Part (see
Theorem 47 below).
It is easy to fully characterise isomorphism types of finitary partition graphs.
This is done through the following definition.

Definition 40. Let G = (V ;E) be a finitary partition graph. The isomor-
phism invariant of G is the tuple (i,m, k1, . . . , km), where i is the number of
infinite anti-clique components, m is the number of finite anti-clique compo-
nents and k1, . . ., km is the sequence, in non-decreasing order, of the car-
dinalities of all finite anti-clique components of the graph G. Call the pair
(i,m) the type of the graph G.

Note that the sequence k1, . . ., km might repeat the same number. It is easy
to see that two finitary partition graphs are isomorphic if and only if they
have the same isomorphism invariants. This implies that there are countably
many isomorphism types of finitary partition graphs. Note that if (i,m) is a
type of a finitary partition graph, then i > 0.

Now we prove two easy lemmas. The first implies a recursion-theoretic prop-
erty, the second implies an algebraic property of finitary partition graphs.

Lemma 41. Every anti-clique component of an r.e. finitary partition graph
G is recursive.

Proof. Suppose G = (ω; Edge)/E where E and Edge are r.e. sets. Since G is
finitary, let x1, . . . , xk be representatives of the different anti-clique compo-
nents of G. Now, the anti-clique component containing xi is Ai = {y : (∀j 6=
i, 1 6 j 6 k)[(y, xj) ∈ Edge]}. Thus, each Ai is an r.e. set. Since the Ai’s
partition ω, it immediately follows that Ai is recursive. �

Thus, for any r.e. finitary partition graph G, one can form another r.e. finitary
partition graph G ′, by merging any given subset of its partitions.

Lemma 42. If every equivalence class of an r.e. equivalence relation E is not
recursive, then all anti-clique components of partition graphs realised over E
are infinite.
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Proof. The proof is a simple consequence of Lemma 31. �

Now we prove the following lemma which is useful in characterising which
finitary partition graphs are realisable by E ∈ F .

Lemma 43. Suppose r.e. equivalence relation E only realises finitary parti-
tion graphs. Let

n(E) = max{i : E realises a partition graph with i many infinite anti-clique components};

m(E) = max{i : E realises a partition graph with i many finite anti-clique components}.

Then, for (n,m) satisfying 1 6 n < 1 + n(E) and m < 1 +m(E), E realises
finitary partition graph of type (n,m) (here, we take 1 + ω = ω).

Proof. We analyse several cases for the parameters n(E) and m(E). Note
that, by Lemma 31 every equivalence class [x]E that belongs to a finite anti-
clique component of some E-partition graph must be a recursive set. Hence,
E has exactly m(E) recursive equivalence classes.

Case 1: n(E) = ω and m(E) = ω. We want to show that E realises a
finitary partition graph of type (n,m) for 1 6 n < ω,m < ω. Indeed, take
any isomorphism invariant (n,m, k1, . . . , km). Let G be any E-partition graph
of type (n′,m′), where n′ > n. Select an infinite anti-clique component, say
C, in G. We change G to G ′ by (1) adding all [x]E that belong to finite
anti-clique components of G to C, and (2) combining n′ − n many infinite
anti-clique components all different from C with C. In this way, we changed
G to G ′ in which the original C has enlarged to a new anti-clique component.
The new graph G ′ has type (n, 0). Now select k1 + . . . + km recursive E-
equivalence classes and change G ′ to G ′′ by forming new m many anti-clique
components (using these k1 + . . .+ km E-equivalence classes) of cardinalities
k1, . . ., km. The resulting graph G has type (n,m).

Case 2: n(E) = ω and m(E) = r < ω. As noted above E has exactly r many
recursive equivalence classes, say [x1]E, . . . , [xr]E. By Lemma 41, no partition
graph G over E has more than r many finite anti-clique components. Consider
any (n,m) where m 6 r. We want to show that E realises a partition graph
of type (n,m). Let G be an E-partition graph of type (n′,m′), where n 6 n′.
Select one infinite anti-clique component, say C. As in the previous case,
we change G to G ′ by (1) adding all [x]E that belong to finite anti-clique
components of G to C, and (2) combining n′ − n many infinite anti-clique
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components all different from C with C. In this way, we changed G to G ′ in
which the original C has enlarged to a new anti-clique component. The new
graph G ′ has type (n, 0). Now select m many recursive equivalence classes
and change G ′ to G ′′ by making each of these recursive classes a singleton
anti-clique component. The resulting graph G has type (n,m).

The other two cases when n(E) < ω and m(E) = ω, and n(E) < ω and
m(E) < ω are treated in a similar fashion. �

The above lemma leads to the following definition.

Definition 44. An r.e. equivalence relation E has type (n,m) if n and m are
the largest cardinalities with the following property. For all natural numbers
i, j with 1 6 i < n and j < m, the relation E realises finitary partition graphs
of type (i, j).

We would like to construct r.e. equivalence relations E which realise only
finitary partition graphs.

Theorem 45. Let X be a simple set. Then E(X) realises a partition graph
G if and only if G is finitary whose type is of the form (1,m), where m ∈ ω.

Proof. Suppose G = (ω; Edge)/E(X) is a partition graph realised by E(X).
Then the anti-clique component of G containing X is infinite by Lemma 31.
Let x ∈ X. The set S = {z : (z, x) ∈ Edge} is recursively enumerable,
respects E, and is contained in the complement of X. Thus, S must be
finite. Thus, G is of type (1,m) for some m.
Now consider a graph G whose isomorphism invariant is given by (1,m, k1, . . . , km).
To construct an E(X)-graph isomorphic to G, we select a set T ⊂ ω − X
of size k1 + . . . + km, and build a partition graph whose anti-clique compo-
nents are ω − T , T1, . . . , Tm, where T is the disjoint union of T1, . . ., Tm of
cardinalities k1, . . . , km, respectively. �

Theorem 45 above states that for simple sets X, the r.e. equivalence relation
E(X) has type (2, ω). By Theorem 28, a precomplete r.e. equivalence relation
E has type (2, 1). The next theorem gives us a full description of finitary r.e.
equivalence relations.

Theorem 46. For each pair (n,m) such that 1 < n 6 ω and 1 6 m 6 ω
there exists an r.e. equivalence relation of type (n,m).
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Proof. Let E be a precomplete r.e. equivalence relation. Let E⊕n denote
the disjoint union of E with itself n times. The r.e. equivalence relation
E1 defined as (x, y) ∈ E1 if and only if x = y or x > m, y > m and
(x−m, y−m) ∈ E⊕n. Then, E1 has type (n+ 1,m+ 1). Indeed, otherwise,
as in the proof of Theorem 28, we would be able to recursively separate some
pair of equivalence classes of the precomplete r.e. equivalence relation E.

For n > 1, consider the r.e. equivalence relation E2 defined as the follow-
ing disjoint union

E(X1)⊕ . . .⊕ E(Xn),

where each Xi is a simple set. The type of this r.e. equivalence relation
is (n + 1, ω). Clearly, the above r.e. equivalence relation realises finitary
partition graphs of type (i, k), for i 6 n and k ∈ ω. Now, assume that
there is a finitary partition graph (ω; Edge)/E2 of type (i, k), where i >
n. For 1 6 j 6 n, select xj ∈ Xj. Consider the r.e. set {y : (y, x1) ∈
Edge & . . . & (y, xn) ∈ Edge}. Since i > n, this set contains infinitely
many E2-equivalence classes. Hence, there exists an infinite r.e. subset in
the complement of some Xj, 1 6 j 6 n. This contradicts Xj being simple.
Similar argument also shows that all partition graphs realised by E2 are
finitary.

Now we show that there is an r.e. equivalence relation of type (ω, 1).
Consider the r.e. equivalence relation E3 defined as the product of E(X),
where X is simple, with a precomplete r.e. equivalence relation E ′. Thus,

(〈n1,m1〉, 〈n2,m2〉) ∈ E3 if and only if [(n1, n2) ∈ E(X) ∧ (m1,m2) ∈ E ′].

Note that every equivalence class of E3 is not recursive. This is because each
equivalence class of E3 is either of the form {i}×[n]E′ or of the form X×[n]E′

for some n. Hence, by Lemma 31, every anti-clique component of a partition
graph G realised by E3 is infinite.

Let G = (ω; Edge)/E3 be a partition graph realised over E3. We want
to show that G has finitely many anti-clique components. Take two distinct
equivalence classes [x]E′ and [y]E′ of the precomplete r.e. equivalence relation
E ′. Then for all i and j such that (i, j) ∈ E(X) the E3-equivalence classes
[〈i, x〉]E3 and [〈j, y〉]E3 are in the same anti-clique component of G. Otherwise,
as proved in Theorem 28, it is easy to show that the equivalence classes
[x]E′ and [y]E′ would be recursively separable. Hence, the following holds.
For every i 6∈ X, all E3-equivalence classes of the form {i} × [n]E′ , where
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n ∈ ω, belong to the same anti-clique component of G. Similarly, all E3-
equivalence classes of the form X × [n]E′ , where n ∈ ω, are also in the
same anti-clique component of G. Now fix a ∈ X. Consider the following
set {i : (〈i, 0〉, 〈a, 0〉) ∈ Edge}. This is an r.e. set in the complement of X.
This set must be finite. Therefore, G must have finitely many anti-clique
components. This proves that the type of E3 is (ω, 1).

The r.e. equivalence relation E3 allows us to build r.e. equivalence rela-
tions of type (ω,m + 1) as follows. Given m consider the r.e. equivalence
relation E4 defined as (x, y) ∈ E4 if and only if x = y or [x > m, y > m, and
(x, y) ∈ E3]. It is not hard to see that the type of E4 is (ω,m+ 1).

It remains to show that there is an r.e. equivalence relation E realising
all finitary partitions only, that is, KPart(E) = {G : G has finitely many
anti-clique components}. The type of such r.e. equivalence relation is clearly
(ω, ω). Consider the r.e. equivalence relation E3 built above. Let E5 be the
disjoint union of E3 and E(X), where X is simple: E5 = E3 ⊕ E(X). Now,
using the arguments above that E3 has type (ω, 1) and that E(X) has type
(2, ω), it is not too hard to show that E5 has the desired type (ω, ω). �

Lemma 43 and Theorem 46 imply the following result that gives us a full
characterisation of Part-reducibility in the class F of all finitary r.e. equiva-
lence relations.

Theorem 47. On the class F the order 6Part satisfies the following prop-
erties:

1. The set F forms an ideal, that is, (i) for all E ∈ F if E ′ 6Part E
then E ′ ∈ F , and (ii) for all E,E ′ ∈ F there is E ′′ ∈ F such that
E ≤Part E

′′ and E ′ ≤Part E
′′.

2. For all E1 and E2 from F if E has type (n,m) and E ′ has type (n′,m′)
then E 6Part E

′ ⇔ n 6 n′ ∧m 6 m′.

3. The degree-structure of F ordered by Part-reducibility is isomorphic to
the two-dimensional grid-order ({(n,m) : n,m ∈ ω ∪ {ω}};6), where
6 is the component-wise order on the set of pairs.

Proof. By Lemma 43, every E ∈ F has a unique type (1 + n(E), 1 +m(E)).
Part 1(i) follows by definition of F . Part 1(ii) follows by using Theorem 46

to construct an E ′′ with type (max{n, n′},max{m,m′}), where (n,m) and
(n′,m′) are types of E and E ′ respectively.
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Part 2 follows by definition of type and Lemma 43.
By Lemma 43 every E ∈ F has a unique type, and by Theorem 46, for

every type (n,m), 1 < n 6 ω and 1 6 m 6 ω, there is an E ∈ F of type
(n,m). Part 3 now follows from part 2. �

5. Graphs in general

In this section we investigate the global structure of all r.e. equivalence
relations with respect to Graph-reducibility. For instance, we prove that
this partially ordered set possesses infinitely many maximal elements, the
least element, and atoms. Our constructions of the least element and the
atoms are based on the constructions of the least elements and atoms for
the Isle-degrees. We denote by EG the set of all Graph-degrees under Graph-
reducibility and we start with the result that the partially ordered set EG has
infinitely many maximal elements.

Our proof is adapted from a similar proof in [18], where r.e. universal
algebras are studied. An r.e. graph G is said to be computably categorical
if for any r.e. graph H isomorphic to G there exists a recursive function
f : ω → ω that induces an isomorphism from G to H.

Lemma 48. If KGraph(E) contains a computably categorical graph then E

determines a maximal element in the partially ordered set EG.

Proof. Assume that E 6Graph E
′. LetH be a computably categorical graph

in KGraph(E). Then H ∈ KGraph(E ′). Hence there exist an E-graph G and

an E ′-graph G ′ such that G ∼= G ′ ∼= H. Since H is computably categorical,
there is a recursive f : ω → ω that induces an isomorphism from G to G ′. This
recursive isomorphism establishes a bijection between ω/E and ω/E ′. Using
f , it is easy to show that every E-graph can be isomorphically mapped to an
E ′-graph, and every E ′-graph can be isomorphically mapped to an E-graph.
Hence, KGraph(E) = KGraph(E ′), and therefore E ≡Graph E

′. �

We now provide a simple construction that builds computably categorical
graphs. Let E be an r.e. equivalence relation. We construct the following
graph G. The set of vertices of the graph is ω. The set Edge of edges of the
graph are as given below (along with their symmetric versions):

(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3), (6k+5, 0), (6k+7, 1), (6k+9, 2), (2k+5, 2k+7),

(2k+5, 2k+6), (4, 2k+6) for all k ∈ ω and (2n+5, 2m+6) for all (m,n) ∈ E.
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Then Edge respects the relation E ′ consisting of idω∪{(2n+6, 2m+6) : (n,m) ∈
E}.

The idea behind the construction is that [2n + 6]E′ represents [n]E and
that n 7→ 2n+ 6 is an m-reduction from E to E ′. Furthermore, the vertices
{0, 1, 2} are used to make a direction of modulo counting on the vertices
5, 7, 9, . . . so that we can determine the vertices 7, 9, 11, . . . starting from
vertex 5 (see more on this below).

Note that in the graph the set {0, 1, 2, 3} is unique as it is the only 4-
clique in the graph. In this 4-clique, 3 is not linked to any other vertex and
0 is the only vertex which is linked to 5 where 5 is the unique vertex which
neighbours a member of the clique and has exactly one neighbour (outside
the clique) which neighbours a member of the clique. The vertices 7, 9, 11, . . .
are neighbours of one of the members of the 4-clique and have two neighbours
(outside the clique) which are neighbours of one of the members of the 4-
clique. Furthermore, 7, 9, 11, . . . are at a distance two from vertex 4. Node
4 is the unique vertex which has distance 3 from the nearest member of the
clique.

Now, suppose G is isomorphic to r.e. graphH. Then, knowing representatives
of the vertices 0, 1, 2, 3, 4, 5 in H, one can inductively find representatives in
H for all the other vertices from G as follows. Knowing a representative of
6k + 5 (which is a neighbour of 0) in H, one can find a representative for
6k+7 inH by searching for a vertex inH which is (i) a neighbour of both, the
representative of 6k+5 and the representative of 1, and (ii) is at a distance 2
from the representative of 4. A representative for 6k+9 is found by searching
for a vertex in H which is (i) a neighbour of both, representative of 6k+7 and
the representative of 2, and (ii) is at a distance 2 from the representative of
4. A representative for 6k+ 11 is found by searching for a vertex in H which
is (i) a neighbour of both, representative of 6k + 9 and the representative
of 0, and (ii) is at a distance 2 from the representative of 4. Representative
of 6k + 13 is found by considering it as 6(k + 1) + 7 and using the above
method, and so on. Furthermore, having a representative of a vertex of the
form 2k + 5, one can find a representative of a vertex of the form 2k + 6 by
searching for a vertex in H which is a neighbour of both, representative of 4
and representative of 2k+5. This permits to find representatives in H for all
vertices in G, thus giving us an isomorphism from G to H. Thus the graph
(ω; Edge)/E ′ is computably categorical.

Theorem 49. There exist infinitely many maximal elements in the partially
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ordered set EG.

Proof. Note that if we obtain, based on the method given before this theorem,
from two r.e. equivalence relations E1 and E2 consisting only of non-recursive
equivalence classes, two r.e. equivalence relations E ′1, E

′
2, then KGraph(E ′1) =

KGraph(E ′2) would imply that E ′1 and E ′2, and hence E1 and E2 are m-

equivalent (as the isomorphism between E ′1 and E ′2 cannot map non-recursive
equivalence classes to recursive equivalence classes).

As there are infinitely many different m-degrees formed using r.e. equiv-
alence relations consisting only of non-recursive equivalence classes, and r.e.
equivalence relations E ′ with a computably categorical graph represent a
maximal degree in the graph-reduction, theorem follows. �

Thus, the theorem shows how different C-degrees can be for various classes of
graphs. For instance, in the cases of Isle-degrees and Part-degrees, there are
universal elements in each. In contrast, in the case of Graph-degrees there
are infinitely many maximal elements.

In view of the theorem above, a natural question arises if the set of all
Graph-degrees has the least element. For instance, we have already proven
that the Isle-degrees and Part-degrees possess the least element. It turns out
that we can use, in the theorem below, the r.e. equivalence relation E and
the maximal set X constructed in the proof of Theorem 23.

Theorem 50. The set EG of all Graph-degrees possesses the least degree.

Proof. Consider the set X and the r.e. equivalence relation E constructed in
Theorem 23. Let f : ω → X be a recursive bijective mapping. Define the
following r.e. equivalence relation on ω: E ′ = {(n,m) : (f(n), f(m)) ∈ E}.
Our goal is to show that every graph realised by E ′ must have finitely many
edges. This will prove that E ′ is the least element of Graph-degrees.

To obtain a contradiction, assume that E ′ realises a graph G ′ = (ω; Edge′)/E ′

with infinitely many edges. Using the r.e. relation Edge′ and the function f ,
define the following set of edges respecting E: Edge = {(x′, y′) : (x′, f(x)) ∈
E, (y, f(y)) ∈ E, (x, y) ∈ Edge′}.

For each x, the set Edge′(x) must be a union of finitely many E ′-equivalence
classes. Otherwise, the set Edge(f(x)) is a union of infinitely many E-
equivalence classes, and does not contain [f(x)]E — however, by construction
of X, every r.e. set Y ⊆ ω that is a union of infinitely many E-equivalence
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classes contains X. Hence, each Edge′(x) is a union of finitely many E ′-
equivalence classes. Thus, each Edge(f(x)) is a union of finitely many E-
equivalence classes. Therefore, since Edge′/E ′ (and hence Edge/E) is infinite
and each Edge(f(x)) is a union of finitely many E-equivalence classes, there
are infinitely many disjoint pairs ([f(x)]E, [f(y)]E) ∈ Edge/E (that is, for any
distinct ([f(x′)]E, [f(y′)]E), ([f(x′′)]E, [f(y′′)]E) in this infinite list of edges,
[f(x′)]E, [f(y′)]E, [f(x′′)]E and [f(y′′)]E are all distinct). But in this case, by
the properties of X and E, it must be the case that (x, y) ∈ Edge for all
x, y ∈ X, and thus E (and hence E ′) has self-loops. Hence, every graph
realised by E must have finitely many edges. �

Recall that a graph is called locally finite if and only if every vertex has an
edge to only finitely many vertices. It turns out locally finiteness can be used
to characterise certain atoms in the partially ordered set EG.

Theorem 51. Exactly two atoms E1 and E2 in the Graph-degrees EG realise
non-locally finite graphs.

Proof. The first atom E1 is obtained as follows. Consider the r.e. equivalence
relation E ′ from Theorem 50. Define E1 as follows: (x, y) ∈ E1 ⇔ (x =
0∧ y = 0)∨ (x > 0∧ y > 0∧ (x− 1, y− 1) ∈ E ′). Now a graph realised by E1

has either finitely many edges or its set of edges is the union of finitely many
edges with all the edges defined by the relation {0} × {1, 2, . . .}/E1. Any
E 6graph E1 either realises only graphs with finitely many edges or realises
all graphs realised by E1; hence E1 represents an atom.

Now we show how to construct the second atom E2. One can modify the
construction of Theorem 23 such that one obtains an r.e. equivalence relation
E2 and an r.e. set X containing infinitely many equivalence classes of E2 and
being disjoint from another infinite number of equivalence classes of E2 such
that the following properties hold:

• If an r.e. set Y respects E2 and contains infinitely many equivalence
classes of X then X ⊆ Y ;

• If an r.e. set Y respects E2 and contains infinitely many equivalence
classes not contained in X, then Y = ω;

• If an r.e. edge-relation Edge respects E2 and contains infinitely many
pairs (x1, y1), (x2, y2), . . . such that all [xi]E2 and [yj]E2 are pairwise
different then Edge contains a self-loop.
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Clearly, E2 realises every graph with finitely many edges and also realises
every graph whose set of edges is determined by a union of a set with finitely
many edges and a set of the form (X × F ∪ F ×X)/E2, where F is a union
of finitely many equivalence classes not contained in X.

Now one has to show that every graph G = (ω; Edge)/E2 realised by E2 is
of the form described above. For all x ∈ X, Edge(x)/E2 is finite (otherwise,
Edge(x) contains X and thus there is a self-loop). For y 6∈ X, Edge(y)/E2

is either finite or a finite variant of X/E2 (otherwise, Edge(y) = ω and thus
there is a self-loop). Furthermore, the r.e. set Y = {y : (∃x ∈ X)[(x, y) ∈
Edge]} is different from ω (otherwise, one could find, for every finite set F ,
an edge (x, y) ∈ Edge with both [x]E2 , [y]E2 not in F ; this would imply, by
the third condition in the construction of E2 above, that the graph would
have a self-loop). Hence Y can contain only finitely many equivalence classes
besides the members of X. Now, iterating the above argument (as Y − X
is finite), one can show that the set Y itself is a union of finitely many
equivalence classes. Similarly, one can show that Edge/E does not contain
infinitely many edges ([x]E2 , [y]E2), with both x, y /∈ X (otherwise, as for
x 6∈ X, Edge(x)/E2 contains only finitely many equivalence classes outside
X, by third clause in the construction of E2, G will have a self-loop). Thus,
for some finite union of equivalence classes F disjoint to X, Edge/E2 is a
finite variant of {([x]E2 , [y]E2) : x ∈ X ∧ y ∈ F or x ∈ F ∧ y ∈ X}.

Assume now that E 6graph E2 and that E realises a graph (ω; Edge)/E
with infinitely many edges. As the graph is also realised by E2, Edge/E is a
finite variant of {(x, y) : x ∈ X ′ ∧ y ∈ F ′ or x ∈ F ′ ∧ y ∈ X ′}, for F ′ being a
union of finitely many E-equivalence classes and X ′ being a union of infinitely
many E-equivalence classes which leaves out infinitely many E-equivalence
classes and X ′ ∩ F ′ = ∅. Let y1, y2, . . . , yk be a set of representatives of F ′.
Then, X ′ is a finite variant of {x : (x, y1), (x, y2), . . . , (x, yk) ∈ Edge}. Thus,
X ′ is recursively enumerable. It follows that all the graphs realised by E2

are also realised by E and hence E ≡Graph E2.

Now, for the last part, consider an r.e. equivalence relation E that realises
a graph (ω; Edge)/E such that for some x, Edge(x)/E is infinite. Then the
set X = {y : (x, y) ∈ Edge} is an r.e. set which respects E. If ω/E−X/E is
finite, say for example {[x]E, [x

′]E, [x
′′]E}, then E realises every graph with

finitely many edges and every graph whose edges are a union of a finite set
and the set [x]E × ({[x′]E, [x′′]E} ∪ X/E). Hence the first atom discussed
above is Graph-reducible to E. If ω/E −X/E is infinite, then E realises all
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the graphs of the second atom. Hence every E which realises a graph which
is not locally finite is indeed above at least one of the atoms. �

Corollary 52. The partial order EG contains the sequence E0 <Graph E1 <Graph
E2 <Graph . . . of type ω such that, for all i > 1, no r.e. equivalence relation

E exists with Ei <Graph E <Graph Ei+1.

Proof. Consider the first atom E constructed in Theorem 51 (in the theorem
we denoted it by E1). Define Ei such that, (x, y) ∈ Ei if and only if [x = y
or [x > i and y > i and (x − i, y − i) ∈ E]] Now, it is not too hard to show
that the sequence defined satisfies the corollary. �

It is currently an open question whether there are infinitely many atoms in
the Graph-degrees. Note that all but the two atoms given by Theorem 51
must be given by r.e. equivalence relations which only realise locally finite
graphs.
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