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The paper is a survey of recent results on algorithmic learning (inductive inference)
of languages from full collection of positive examples and some negative data. Dif-
ferent types of negative data are considered. We primarily concentrate on learning
using (1) carefully chosen finite negative data (2) negative counterexamples pro-
vided when conjectures contain data not in the target language (3) negative coun-
terexamples obtained from a teacher (formally, oracle), when a learner queries the
oracle if an hypothesis is contained in the target language. We also explore how
least counterexamples and counterexamples of bounded size fair against arbitrary

counterexamples. The effects of random negative data are also briefly considered.

1. Introduction

Based on motivations from theories of language acquisition by children,

Gold10 developed an algorithmic model of learning (in the limit) from ex-

amples. This model may be described as follows. A learner receives as

input, one by one, x0, x1, . . ., where, {x0, x1, . . .} is exactly the target lan-

guage, except possibly for a special pause symbol (which is useful for dealing

with empty language). Note that there is no particular order among the

elements x0, x1, . . ., and repetitions are allowed. As the learner is receiving

this data, it conjectures a sequence of grammars, g0, g1, . . . which are in-

tended as descriptors of the target language. The learner can be regarded

as successful if eventually the sequence of grammars stabilizes to a grammar

g which generates/enumerates/accepts the target language. This model of

learning is called TxtEx in the literature (Txt stands for “text”, which

is a complete positive data presentation, and “Ex” stands for explanatory

learning). Note that it is more interesting to consider learnability of a
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class of languages by a single learner (since, if we are only interested in

learning one fixed language, then some learner — which just outputs the

grammar for the fixed language — can easily learn it). The influence of

Gold’s paradigm to understanding human language learning is discussed

in Pinker24, Wexler and Culicover28, Wexler27 and Osherson, Stob and

Weinstein21.

Note that in the above model, the learner only receives elements of the

language as input. It is not given any explicit information about elements

not in the target language. This was based on the studies by linguists which

hypothesised that children rarely, if ever, get negative information (see for

example, Brown and Hanlon5, Hirsh-Pasek, Treiman and Schneiderman11

and Demetras, Post and Snow8).

Along with the above model of learning from positive data, Gold also

studied learning from both positive and negative data. In this model, a

learner is given all elements of the language, one by one, marked as positive,

as well as all non-elements of the language, one by one, marked as negative.

This criteria of learning is called InfEx. However based on studies about

child learning, it is unrealistic to expect that children get all the negative

data. On the other hand, as some studies point out, see Brown and Hanlon5,

Hirsh-Pasek, Treiman and Schneiderman11 and Demetras, Post and Snow8,

children do get something more than just positive data.

The aim of the current paper is to survey some models of learning, where

some amounts of negative data is provided to the learner. We will first con-

sider two models of providing some core negative data to the learner. These

models and results are based on work by Shinohara26, Fulk 9, Motoki18

and Baliga, Case and Jain1. We will then consider the case where nega-

tive data is provided to the learner via counterexamples to its conjectures.

This is based on the philosophy that parents often correct their children

by providing them counterexamples. This part is based on work done by

the authors13,12. We also introduce and briefly consider a model in which

learners are provided with random negative examples.

Before we study different models of negative data, it is useful to also con-

sider some variants of the basic model of learnability from text as described

above. Case and Lynes6 (see also Osherson and Weinstein22) studied the

case where the final hypothesis of the learner may not be accurate, but have

upto n errors (finite number of errors). This criteria of learning is called

TxtExn (TxtEx∗). This was motivated by the fact that humans rarely,

if ever, learn a language perfectly. Case and Lynes6 (also see Osherson

and Weinstein22) considered the case when learner need not syntactically
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converge to a grammar, but eventually output only correct grammars (i.e.,

semantically converge rather than syntactically converge). In this model for

all but finitely many n, the grammar gn is a grammar for the target lan-

guage. This criteria of learning is called TxtBc-learning. Bc here stands

for behaviorally correct. TxtBcn and TxtBc∗ can be naturally defined.

Fulk9 considered the case when, in addition to positive data, the learner

is provided with a grammar for the complement of the language. Note that

one can generate complete negative data using the grammar for the com-

plement of the language. Fulk went on to show that this allows the learner

to learn more than what can be learned using informants, that is using

both complete positive and complete negative data. Though interesting,

this model is quite unrealistic in the sense that children are definitely not

given a grammar for the complement of the language. Most of the lit-

erature (see for example, Brown and Hanlon5, Hirsh-Pasek, Treiman and

Schneiderman11 and Demetras, Post and Snow8) also argues that children

do not get complete negative data. What is more realistic is that a learner

is provided with some negative data, probably carefully selected or based

on what the child has learnt (that is in a way based on child’s current con-

jecture). Jain and Sharma15 considered a modification where the learner

instead of being given a grammar for the complete L, is given only a gram-

mar for a subset of L, where this subset satisfies some density constraints.

Despite being somewhat weaker than Fulk’s model, it still seems unrealistic

to expect that children are provided with grammars for any parts of the

complement of the target language.

Based on this, Shinohara26 considered the case where the learner is

given ≥ n (n fixed beforehand) arbitrary negative examples along with

the complete positive data about the language. Clearly, this is possible

only when complement of the language does contain at least n elements.

Shinohara showed that this method of presenting negative data is not useful,

in the sense that it does not give any learnability advantages over just

positive data. Extending this work, Baliga, Case and Jain1 considered

the case that the learner is given upto n carefully chosen elements of the

complement of the language. These negative examples may be considered

as core negative data. Intuitively, this was aimed to model the situation

when a teacher carefully selects the negative examples to be provided to the

student. Indeed, as expected this model turned out to be quite powerful.

For example, it can be shown that the class of all recursively enumerable

sets, E , can be learned by some learner in TxtEx sense, when it additionally

receives upto two carefully selected negative examples. Even one carefully
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selected negative example is enough if one allows upto one error in the final

grammar, or allows behaviourally correct learning. In contrast one carefully

selected negative example is not enough to learn the class E according to

TxtEx crtieria, though it still can be shown to be quite useful.

The reason for this apparent gains by having only one or two negative

examples in the above model is based on the fact that one can “code”

information into these negative data, allowing the learner to essentially ex-

tract a grammar for the target language from the negative data. To avoid

such coding, Baliga, Case and Jain (motivated by a model considered by

Motoki18) considered the following modification. For each possible target

language, besides the core negative data, the learner may be given some

further negative data. This model of learning is called open negative data,

reminding one of the basic open sets for the topology with respect to which

enumeration operators are continuous. As the learner may not be able to

distinguish core negative data from the other negative data, the effects of

“coding” are somewhat eliminated. This model turned out to be quite use-

ful in studying the effects of negative data. In particular, above criteria

lie strictly between TxtEx and InfEx models of learning. Let NegOnI

(NegO∗I) denote the criteria of learning formed when the core negative in-

formation is of size at most n (the core negative information is of finite size),

and I is the basic model of learning (such as Exa, or Bca). It can be shown

that NegO∗I turns out to be of the same power as InfI. Furthermore, each

additional element allowed in the core, gives learnability advantages (that is

NegOn+1I allows learning strictly more classes compared to NegOnI). On

the other hand, the finite negative core information is not enough to over-

come extra errors (that is, one can learn something in TxtExn+1 model of

learning, but cannot in NegO∗TxtExn model of learning). Additionally, it

was shown that small packets of negative information also lead to increased

speed of learning. This result agrees with a psycholinguistic hypothesis of

McNeill correlating the availability of parental expansions with the speed of

child language development. McNeill17 posits that there is faster learning

of language for children in homes in which more corrections (usually in the

form of possibly exemplary expansions) are given. These corrections are, in

part, a form of negative information.

Note that in both models considered above, one selects carefully neg-

ative examples based on the language being learned. However, in reality

often negative examples are formed more as “counterexamples” based on

errors done by child, rather than being preselected. To model such a situa-

tion, authors13 considered a criteria of learning where the learner is given a
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negative counterexample to each of its conjectures, if it exists. This model

of learning is called NCEx. This model turned out to be robust with

respect to different variations (giving least counterexamples, or the coun-

terexamples being delayed). Besides the usual hierarchy results showing

the advantages of having counterexamples, the paper13 contrasts this cri-

teria with TxtEx and InfEx, showing that in some cases structurally it

behaves more like “InfEx” rather than like “TxtEx”. For example, re-

sults such as (a) if L ∈ NCEx then so is L ∪ S, for any finite class S of

recursive languages, (b) NCEx∗ ⊆ NCBc follow more along the lines of

results in learning from informants. On the other hand, it is shown that in

some cases full negative data, informant, is needed for learning, and just

counterexamples are not enough. A surprising result, in the case of behav-

iorally correct learning is that the whole class E can be learned in NCBc1

model — making it more powerful than even learning from informants! (by

contrast NCBc ⊂ InfBc and NCExa ⊆ InfEx
a).

An interesting complexity aspect is that, for Ex model, though NCEx is

a strict subset of InfEx, it can sometimes give huge complexity advantages.

That is, in some cases one can learn a class in NCEx model using only

n mind changes, whereas learning with informants requires exponentially

many mind changes. In a variation of NCEx model, where least negative

counterexamples are given, one can even show that there are classes which

are learnable using 1 mind change, though learning with informants re-

quires unbounded number of mind changes! Though, as mentioned above,

several variations of negative counterexample models do not give different

learning power, there is often complexity advantages which may result from

a particular variation.

Learning from counterexamples also addresses a general concern about

overgeneralization in learning. When one only receives positive data, then

overgeneralized hypothesis cannot be corrected based on input data alone.

However, if negative counterexamples are provided to the learner, then one

can address this issue.

One can view getting counterexamples, as asking a “subset query” about

the conjecture to a teacher. However in the usual model of learning from

subset queries, a learner is allowed to query about other languages (besides

just the conjectured language) being subsets of target language. This led

us12 to consider learning with subset (and other kind of) queries. It can be

shown that if a TxtEx learner is allowed finitely many (but unbounded)

subset queries, then the learning ability is same as that in the NCEx

model. If the learner is allowed infinitely many subset queries, then a
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learner (using texts) can learn all the recursively enumerable languages.

Thus it is more interesting to study the case when the number of queries is

bounded. Authors showed several results comparing the criteria of learning

with negative counterexamples and subset queries, and giving hierarchies

based on number of queries allowed. They also showed hierarchies based on

variations of the query model where no answers are accompanied by least,

arbitrary, or no counterexamples.

An interesting research work to consider would be to see how random

negative examples work — this may be more closer to how humans learn

languages. It can be shown that often random negative examples do help.

2. Preliminaries

2.1. Notation

Any unexplained recursion theoretic notation is from Rogers25. N denotes

the set of natural numbers, {0, 1, 2, 3, . . .}. ∗ denotes a non-member of N

and is assumed to satisfy (∀n)[n < ∗ < ∞]. ∅ denotes the empty set. ⊆, ⊂,

⊇ and ⊃ respectively denote subset, proper subset, superset, and proper

superset. card(S) denotes the cardinality of S. S1 =n S2 denotes card((S1−

S2) ∪ (S2 − S1)) ≤ n; S1 =∗ S2 means that card((S1 − S2) ∪ (S2 − S1))

is finite. ↓ denotes defined and ↑ denotes undefined. max(·), min(·) denote

the maximum and minimum of a set, respectively, where max(∅) = 0 and

min(∅) =↑. 〈i, j〉 stands for an arbitrary, computable, one-to-one encoding

of all pairs of natural numbers onto N (see for example25).

The quantifiers ‘
∞

∀ ’, and ‘
∞

∃ ’ essentially from Blum4, mean ‘for all but

finitely many’ and ‘there exist infinitely many’, respectively. The quantifier

‘∃!’ means ‘there exists a unique’.

ϕ denotes a fixed acceptable programming system for the partial com-

putable functions: N → N (see the books25,16). ϕi denotes the partial

computable function computed by program i in the ϕ-system.

Wi denotes domain(ϕi). Wi is, then, the r.e. set/language (⊆ N) ac-

cepted (or equivalently, generated) by the ϕ-program i. E will denote the

set of all r.e. languages. L, with or without decorations, ranges over E . L

denotes the complement of L. L, with or without decorations, ranges over

subsets of E . L = {Li | i ∈ N} is called an indexed family iff there exist a

recursive function f such that f(i, x) = 1 iff x ∈ Li.
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2.2. Some Notions from Language Learning

We now consider some basic notions in language learning. Following def-

inition gives the concepts of data that is presented to a learner. Part (a)

considers the notion of positive data, and part (b) considers the case when

both positive and negative data are given.

Definition 2.1. (Gold10)

(a) A text T is a mapping from N into (N ∪ {#}). The content of a

text T , denoted content(T ), is the set of natural numbers in the range of

T .

(b) An infinite information sequence I is a mapping from N to (N ×

{0, 1}) ∪ {#}, such that if (x, b) appears in the sequence, then (x, 1 − b)

does not appear in the sequence. The content of an information sequence I

denoted content(I), is the set of pairs in the range of I. PosInfo(I) = {x |

(x, 1) ∈ content(I)}, and NegInfo(I) = {x | (x, 0) ∈ content(I)}.

(c) T is a text for L iff content(T ) = L. I is an information sequence

for L iff PosInfo(I) = L and NegInfo(I) = L.

(d) T [n] denotes the initial segment of T of length n. Similarly, I[n]

denotes the initial segment of I of length n.

We let T (I), with or without superscripts, range over texts (information

sequences).

Intuitively, #’s in the texts/information sequences denote pauses in the

presentation of data. For example, the only text for the empty language is

just an infinite sequence of #’s. Note that by our convention on information

sequences, PosInfo(I) ∩ NegInfo(I) = ∅.

A finite sequence σ is an initial segment of a text or an infi-

nite information sequence. One can similarly define content(σ) (and

PosInfo(σ), NegInfo(σ) in case of σ being initial segment of an information

sequence).

SEQ denotes the set of all finite initial segments of texts. SEG denotes

the set of all finite initial segments of information sequences. Note that

SEQ and SEG can be coded onto N .

Definition 2.2. A language learning machine is an algorithmic device

which computes a mapping from SEQ (or SEG) into N .

Later we will consider variation of learning machines. For convenience

of exposition we avoid defining these variants until we need them.
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We let M, with or without decorations, range over learning machines.

We say that M(T )↓ = i ⇔ (
∞

∀ n)[M(T [n]) = i]. Convergence on informa-

tion sequences is similarly defined.

We now define some common criteria for learning. Our first criterion is

based on learner, given a text for the language, converging to a grammar

for the language.

Definition 2.3. (Gold10, Case and Lynes6, Osherson and Weinstein22) Let

a ∈ N ∪ {∗}.

(a) M TxtExa-identifies L (written: L ∈ TxtExa(M)) ⇔ (∀ texts T

for L)(∃i | Wi =a L)[M(T )↓ = i].

(b) TxtExa = {L | (∃M)[L ⊆ TxtExa(M)]}.

The criterion we call TxtEx0 is due to Gold10. The a > 0 case is from

Case and Lynes6 (Osherson and Weinstein22 independently introduced the

a = ∗ case). We refer the reader to Pinker24, Wexler and Culicover28,

Wexler27, Osherson, Stob, and Weinstein19,20,21, and Jain et al14 for further

discussion on the paradigm.

The next definition is based on learner semantically rather than syntac-

tically converging to the grammar(s) for the language.

Definition 2.4. (Case and Lynes6) Let a ∈ N ∪ {∗}.

(a) M TxtBca-identifies L (written: L ∈ TxtBca(M)) ⇔ (∀ texts T

for L)(
∞

∀ n)[WM(T [n]) =a L].

(b) TxtBca = {L | (∃M)[L ⊆ TxtBca(M)]}.

The a ∈ {0, ∗} cases were independently introduced by Osherson and

Weinstein22,23. The corresponding notion in the case of learning functions

was introduced by Bārzdiņš2 and Case and Smith7.

We now consider the corresponding learning criteria when information

sequences are provided to the learner.

Definition 2.5. (Gold10 and Case and Lynes6 Let a ∈ N ∪ {∗}.

(a) M InfExa-identifies L (written: L ∈ InfExa(M)) ⇔ for all infor-

mation sequences I for L, M(I)↓ and WM(I) =a L.

InfEx
a = {L | (∃M)[L ⊆ InfEx

a(M)]}.

(b) M InfBc
a-identifies L (written: L ∈ InfBc

a(M)) ⇔ for all infor-

mation sequences I for L, (
∞

∀ n)[WM(I[n]) =a L].

InfBc
a = {L | (∃M)[L ⊆ InfBc

a(M)]}.
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We often write TxtEx (respectively, TxtBc, InfEx, InfBc) for

TxtEx0 (respectively, TxtBc0, InfEx0, InfBc0).

The following theorem gives some basic comparison between the criteria

of inference discussed above. Note that by definition, for all a ∈ N ∪ {∗},

TxtExa ⊆ InfExa ∩ TxtBca, and (TxtBca ∪ InfExa) ⊆ InfBca.

Theorem 2.1. (Gold10, Blum and Blum3, Case and Lynes6 and Case and

Smith7) For all n ∈ N , the following hold.

(a) TxtExn+1 − InfExn 6= ∅.

(b) TxtEx∗ −
⋃

m∈N InfExm 6= ∅.

(c) TxtBc− InfEx∗ 6= ∅.

(d) TxtBcn+1 − InfBc
n 6= ∅.

(e) TxtBc∗ −
⋃

m∈N InfBc
m 6= ∅.

(f) TxtEx2n ⊂ TxtBcn.

(g) TxtEx2n+1 − TxtBcn 6= ∅.

(h) InfEx∗ ⊆ InfBc0.

(i) InfEx − TxtBc∗ 6= ∅.

(j) E ∈ InfBc∗.

3. Identification with Finite Negative Information

We first consider the model where an apparently small finite set of negative

information is given in addition to text. In part (a) of both Definitions 3.1

and 3.2 just below, S is the core of negative information. The learner gets

(besides the positive data) exactly this core negative data (marked as such)

and no other negative data.

Definition 3.1. (Baliga, Case and Jain1) Suppose a, b ∈ N ∪ {∗}.

(a) M NegFbTxtExa-identifies L ∈ E (written: L ∈

NegFbTxtExa(M)) ⇔ (∃S ⊆ L | card(S) ≤ b)(∀I | PosInfo(I) = L &

NegInfo(I) = S)[M(I)↓ and WM(I) =a L].

(b) NegFbTxtExa = {L ⊆ E | (∃M)[L ⊆ NegFbTxtExa(M)]}.

Definition 3.2. (Baliga, Case and Jain1) Suppose a, b ∈ N ∪ {∗}.

(a) M NegFbTxtBca-identifies L ∈ E (written: L ∈

NegFbTxtBca(M)) ⇔ (∃S ⊆ L | card(S) ≤ b)(∀I | PosInfo(I) = L &

NegInfo(I) = S)(
∞

∀ n)[WM(I[n]) =a L].

(b) NegFbTxtBca = {L ⊆ E | (∃M)[L ⊆ NegFbTxtBca(M)]}.

By definition, for all a, NegF0TxtExa = TxtExa and

NegF0TxtBca = TxtBca.
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The next theorem illustrates the gain in learning power obtained by

using sets of negative information with cardinality at most one/two.

Theorem 3.1. (Baliga, Case and Jain1) E ∈ NegF2TxtEx ∩

NegF1TxtEx1 ∩NegF1TxtBc.

In contrast to the above result, we have:

Theorem 3.2. (Baliga, Case and Jain1) E 6∈ NegF1TxtEx.

However NegF1TxtEx is still quite powerful as shown by the following

theorem.

Theorem 3.3. (Baliga, Case and Jain1)

(a) {L ∈ E | L is infinite} ∈ NegF1TxtEx.

(b) NegF1TxtEx − TxtBc∗ 6= ∅.

(c) NegF1TxtEx − InfBcn 6= ∅.

(d) TxtEx1 ⊂ NegF1TxtEx.

(e) InfEx ⊆ NegF1TxtEx.

For i ≥ 2, it is open at present whether TxtExi ⊂ NegF1TxtEx.

4. Some other Negative Information Models

Shinohara26 considered giving to the learner atleast (but arbitrary) n neg-

ative data items.

Definition 4.1. (Shinohara26) Let n ∈ N .

(a) Suppose L has at least n elements. M PPn-identifies L (written

L ∈ PPn(M)), iff for all information sequences I such that PosInfo(I) = L

and card(NegInfo(I)) ≥ n, M(I) converges to a grammar for L.

(b) PPn = {L | (∃M)[L ⊆ PPn(M)]}.

Theorem 4.1. (Shinohara26) Let n ∈ N . Suppose for any L ∈ L, L

contains at least n elements. Then L ∈ TxtEx iff L ∈ PPn.

Fulk considered giving the grammar for the complement of L to the

learner. For this notion consider M as being given two inputs: (a) a gram-

mar, and (b) a text. Convergence of M(i, T ) can be defined as usual.

Definition 4.2. (Fulk9)

(a) M CTxtEx-identifies L (written: L ∈ CTxtEx(M)) iff for all i

such that Wi = L, for all texts T for L, M(i, T ) converges to a grammar

for L.
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(b) CTxtEx = {L | (∃M)[L ⊆ CTxtEx(M)]}.

Fulk showed that having a grammar for the complement gives tremen-

dous advantages.

Theorem 4.2. (Fulk9) Let n ∈ N . CTxtEx − InfBcn 6= ∅.

Fulk also considered the case when instead of being given a grammar

for complement of L, the learner is given a sequence of grammars all but

finitely many of which are grammars for L. It is not known at present

whether this gives any advantages over informants.

Jain and Sharma15 considered giving a grammar for a subset of the

complement of the language being learned, where this subset has certain

density.

Motoki18 considered a form of open negative information as follows.

Definition 4.3. (Motoki18) M identifies L using advisor AL iff for all

information sequences I such that PosInfo(I) = L and NegInfo(L) ⊇ AL,

M(I) converges to a grammar for L.

We use a general definition, though Motoki was mainly interested in indexed

families.

Motoki showed that there exists a class L 6∈ TxtEx, such that a learner

M can identify each L ∈ L using some advisor AL, where card(AL) ≤ 1.

Motoki also gave a characterization of indexed families which can be learned

using some advisor. We will be discussing a general form of open negative

information in the next section.

5. Identification with Open Negative Information

We now consider another model of presenting negative information to learn-

ing machines. Here the negative information is supplied in a manner re-

minding one of the basic open sets for the topology with respect to which

enumeration operators are continuous. This is the first topology described

in Exercise 11–35, page 217 of Rogers25. These models were motivated in

part by those considered by Motoki18 (see Definition 4.3 above) and those

in Section 3 above. Basically, this model allows the possibility of more neg-

ative information being supplied in addition to the finite cores of negative

information.

Definition 5.1. (Baliga, Case and Jain1) Suppose a, b ∈ N ∪ {∗}.
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(a) M NegObTxtExa-identifies L ∈ E (written: L ∈

NegObTxtExa(M)) ⇔ (∃S ⊆ L | card(S) ≤ b)(∀I | PosInfo(I) = L &

S ⊆ NegInfo(I) ⊆ L)[M(T )↓ and WM(I) =a L].

(b) NegObTxtExa = {L ⊆ E | (∃M)[L ⊆ NegObTxtExa(M)]}.

Thus, in contrast with Definition 3.1, in above model the learner must

satisfy the stronger constraint that it needs to learn when the negative

information present in the data given to it is any S ′ such that S ⊆ S′ ⊆ L

(here S′ may be infinite).

Definition 5.2. (Baliga, Case and Jain1) Suppose a, b ∈ N ∪ {∗}.

(a) M NegObTxtBca-identifies L ∈ E (written: L ∈

NegObTxtBca(M)) ⇔ (∃S ⊆ L | card(S) ≤ b)(∀I | PosInfo(I) = L &

S ⊆ NegInfo(I) ⊆ L)(
∞

∀ n)[WM(I[n]) =a L].

(b) NegObTxtBca = {L ⊆ E | (∃M)[L ⊆ NegObTxtBca(M)]}.

Clearly, for all a, NegO0TxtExa = TxtExa and NegO0TxtBca =

TxtBca.

Theorem 5.1 below shows that the NegO∗ criteria are equivalent to

supplying all the negative (as well as the positive) information to a learning

machine.

Theorem 5.1. (Baliga, Case and Jain1) For all a ∈ N ∪ {∗},

NegO∗TxtExa = InfEx
a and NegO∗TxtBca = InfBc

a.

Thus, in particular we have E ∈ NegO∗TxtBc∗, and NegO∗TxtEx ⊆

NegF1TxtEx.

Note that if we consider languages such that informant for a language

can be effectively obtained from its text, then above theorem shows that

NegO type negative data does not help.

As a corollary to Theorem 5.1, using Theorems 2.1 and 3.3, we have

Corollary 5.1. (Baliga, Case and Jain1)

(a) For all n ∈ N , TxtExn+1 − NegO∗TxtExn 6= ∅;

(b) For all n ∈ N , TxtBcn+1 − NegO∗TxtBcn 6= ∅;

(c) TxtBc− NegO∗TxtEx∗ 6= ∅;

(d) NegF1TxtEx − NegO∗TxtBcn 6= ∅;

(e) NegF1TxtEx − NegO∗TxtEx∗ 6= ∅.

The above Corollary shows that there are classes of languages which can

be learned with n + 1 mistakes, but not with n, no matter how much open
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negative information is provided in the n mistake case. In other words,

the gap left by the possible extra anomaly can be greater in information

content than the information provided by open negative information.

The following theorem generalizes Theorem 2.1(f).

Theorem 5.2. (Baliga, Case and Jain1) For all a ∈ N ∪ {∗} and j ∈ N ,

[NegOaTxtEx2j ⊂ NegOaTxtBcj ].

The following result contrasts with Theorem 2.1(g).

Theorem 5.3. (Baliga, Case and Jain1) TxtEx∗ ⊂ NegO1TxtBc.

The next theorem contrasts nicely with Theorem 5.1 above. It provides

classes of languages which can be learned with n + 1 pieces of core open

negative information, but not with n, no matter how many anomalies are

permitted in the n piece case. In other words, the extra possible negative

information can be greater in information content than the information

that may be omitted by the anomalies.

Theorem 5.4. (Baliga, Case and Jain1)

(a) NegO1TxtEx − NegO0TxtBc∗ 6= ∅.

(b) For all n ∈ N , NegOn+1TxtEx − NegOnTxtEx∗ 6= ∅.

(c) For all n ∈ N , NegOn+1TxtEx −
⋃

j∈N NegOnTxtBcj 6= ∅.

The previous theorem has the following straightforward corollary.

Corollary 5.2. (Baliga, Case and Jain1) For all a ∈ N ∪ {∗} and j, n ∈

N ,

(a) NegOnTxtExa ⊂ NegOn+1TxtExa and

(b) NegOnTxtBcj ⊂ NegOn+1TxtBcj.

5.1. Complexity Advantages of Open Negative Information

McNeill17 posits that there is faster learning of language for children in

homes in which more corrections (usually in the form of, possibly exem-

plary, expansions) are given. These corrections are, in part, a form of neg-

ative information. Theorem 5.5 below shows that an improvement in speed

(measured by mind-changes) can result from the presence of open negative

information even when the classes themselves can be learned without the

negative information.

For this section it is convenient to modify the definition of the learning

machine to the following.
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Definition 5.3. A language learning machine is an algorithmic device

which computes a mapping from SEQ (or SEG) into N ∪ {?}.

Intuitively the outputted ?s represent the machine not yet committing

to an output. This avoids biasing the number of mind changes before a

learning machine converges.

In the next definition, the subscript b represents a bound on the number

of mind changes allowed before convergence.

Definition 5.4. (Case and Smith7, Case and Lynes6) Suppose a, b ∈

N ∪ {∗}. We say that M TxtExa
b -identifies L ⇔ [[L ∈ TxtExa(M)]∧

(∀ texts T for L)[card({x | [? 6= M(T [x])] ∧ [M(T [x]) 6= M(T [x + 1])]}) ≤

b]].

One can similarly define NegOcTxtExa
b .

Next theorem shows the speed advantage of having open negative infor-

mation.

Theorem 5.5. (Baliga, Case and Jain1) There exists a class of languages

L such that,

(a) L ∈ TxtEx,

(b) L ∈ NegO1TxtEx0, and

(c) L 6∈
⋃

n∈N TxtEx∗

n.

We now list some of the open problems regarding this model.

(a) For i ≥ 1, E ∈ NegOiTxtBc∗? Here note that E ∈ NegO∗TxtBc∗.

(b) By Theorem 2.1(g), TxtEx2j+1 −TxtBcj 6= ∅. Similarly, can it be

shown that, for i ≥ 1, NegOiTxtEx2j+1 − NegOiTxtBcj 6= ∅?

(c) For i ≥ 1, is NegOiTxtEx∗ ⊂ NegOi+1TxtBc? So far we know

that NegO∗TxtEx∗ ⊂ NegO∗TxtBc.

6. Learning with Negative Counterexamples

We now consider providing negative data to the learner via counterexam-

ples to the conjectures of the learner. We will be considering three variants

of the model. Intuitively, for learning with negative counterexamples, we

may consider the learner being provided a text, one element at a time, along

with a negative counterexample to the latest conjecture, if any. The list of

negative counterexamples may be modeled as a second text provided to the

learner. Thus the learning machines get as input two texts, one for posi-

tive data, and other for negative counterexamples. We say that M(T, T ′)

converges to a grammar i, iff for all but finitely many n, M(T [n], T ′[n]) = i.
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In the basic model of learning from positive data and negative coun-

terexamples, if a conjecture contains elements not in the target language,

then a negative counterexample is provided to the learner. NC in the

definition below stands for negative counterexample.

Definition 6.1. (Jain and Kinber13) Suppose a ∈ N ∪ {∗}.

(a) M NCExa-identifies a language L (written: L ∈ NCExa(M)) iff

for all texts T for L, and for all T ′ satisfying the condition:

T ′(n) ∈ Sn, if Sn 6= ∅ and T ′(n) = #, if Sn = ∅,

where Sn = L ∩ WM(T [n],T ′[n])

M(T, T ′) converges to a grammar i such that Wi =a L.

(b) NCExa = {L | (∃M)[L ⊆ NCExa(M)]}.

We also consider two variants of above definition as follows:

— the learner gets least negative counterexample instead of any coun-

terexample. This criteria is denoted LNCExa.

— the negative counterexample is provided only if there exists one

such counterexample ≤ the maximum positive element seen in the in-

put so far (otherwise the learner gets #). This criteria is denoted by

BNCExa. (Essentially Sn in the definition of T ′(n) in part (a) is replaced

by Sn = L ∩ WM(T [n],T ′[n]) ∩ {x | x < max(content(T [n]))}). The BNC

model essentially addresses some complexity constraints.

Similarly, we can define NCBca, LNCBca and BNCBca criteria of infer-

ence.

It is easy to see that TxtExa ⊆ BNCExa ⊆ NCExa ⊆ LNCExa. All

of these containments, except the last one, are proper.

Part (a) of the following theorem shows that every indexed family can be

learned using positive data and negative counterexamples. This improves

a classical result that every indexed family is learnable from informants.

Since there exist indexed families not in TxtEx, this illustrates a difference

between NCEx learning and learning without negative counterexamples.

Part (b) of the following theorem illustrates another difference between

NCEx learning and TxtEx learning. Such a result does not hold for

TxtEx (for example, {F | F is finite } ∪ {L} 6∈ TxtEx, for any infinite

language L).

Theorem 6.1. (Jain and Kinber13)

(a) Suppose L is an indexed family. Then L ∈ NCEx.
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(b) Suppose L ∈ NCEx and L is a recursive language. Then L∪{L} ∈

NCEx.

Part (b) of the above theorem does not generalize to taking r.e. language

(instead of recursive language) L, as witnessed by L = {{A ∪ {x}} | x 6∈

A}, and L = A, where A is any non-recursive r.e. set. Here note that

L ∈ TxtEx, but L ∪ {L} is not in NCEx.

The following theorem shows that using least negative counterexamples,

rather than arbitrary negative counterexamples, does not enhance power of

a learner.

Theorem 6.2. (Jain and Kinber13) Let a ∈ N ∪ {∗}. Then, NCExa =

LNCExa ⊆ InfExa.

For Bc-style learning, a limited version of above holds. Though, the

equality NCBc = LNCBc can be generalized to learning with anomalies

(see Corollary 6.2 below), LNCBc ⊆ InfBc, cannot be generalized to

learning with anomalies.

Proposition 6.1. (Jain and Kinber13) NCBc = LNCBc ⊆ InfBc.

Part (a) of the following theorem shows that all classes of languages

learnable in the basic Ex-style model with arbitrary finite number of errors

in almost all conjectures can be learned without errors in the basic Bc-

style model. This contrasts with learning from texts where TxtEx2j+1 −

TxtBcj 6= ∅ (Theorem 2.1(g)).

Part (b) of the following theorem is somewhat surprising. It shows that

sometimes negative counterexamples are not enough: to learn a language,

the learner must have access to all negative examples.

Theorem 6.3. (Jain and Kinber13)

(a) NCEx∗ ⊆ NCBc.

(b) InfEx − NCBc 6= ∅.

We now show advantages of having negative counterexamples. Part (a)

of the following theorem shows that the model BNCEx is quite powerful:

there are classes of languages learnable in this model that cannot be learned

in the classical Bc-style model even when an arbitrary finite number of

errors is allowed in almost all conjectures. Part (b) of the following theorem

shows that there are classes of languages learnable in the basic model that

cannot be learned in any of the models that use negative counterexamples

of limited size.
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Theorem 6.4. (Jain and Kinber13)

(a) BNCEx − TxtBc∗ 6= ∅.

(b) NCEx − BNCBc∗ 6= ∅.

Note that the diagonalizations in Theorem 6.4 can be shown using in-

dexed families of languages. Thus, in contrast to Theorem 6.1, there exists

an indexed family not in BNCBc∗.

In contrast to Theorem 6.4 (b), the following shows that if attention

is restricted to only infinite languages, then NCEx and BNCEx behave

similarly.

Theorem 6.5. (Jain and Kinber13) Suppose a ∈ N ∪ {∗}. Suppose L

consists of only infinite languages. Then

(a) L ∈ NCExa iff L ∈ BNCExa.

(b) L ∈ NCBca iff L ∈ BNCBca.

We now consider the error hierarchy for learning with negative coun-

terexamples. That is, learning with at most n + 1 errors in almost all

conjectures in the basic model is stronger than learning with at most n

errors. The hierarchy easily follows from the following theorem.

Theorem 6.6. (Jain and Kinber13) Suppose n ∈ N .

(a) TxtExn+1 − NCExn 6= ∅.

(b) TxtEx∗ −
⋃

n∈N NCExn 6= ∅.

(c) TxtBc− NCEx∗ 6= ∅.

(d) TxtBc1 − NCBc 6= ∅.

As, TxtExn+1 ⊆ BNCExn+1 ⊆ NCExn+1 ⊆ LNCExn+1, the fol-

lowing corollary follows from Theorem 6.6.

Corollary 6.1. (Jain and Kinber13) Suppose n ∈ N . Then, for I ∈

{NCEx,LNCEx,BNCEx}, we have In ⊂ In+1.

Now we consider another surprising result. There exists a Bc1-style

learner with negative counterexamples, with the “ultimate power” - it can

learn the class of all recursively enumerable languages!

Theorem 6.7. (Jain and Kinber13) E ∈ NCBc1.

Since E ∈ InfBc∗, we have

Corollary 6.2. (Jain and Kinber13) (a) NCBc1 = InfBc
∗.

(b) For all a ∈ N ∪ {∗}, NCBca = LNCBca.
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The following corollary shows a contrast with respect to the case when

there are no errors in conjectures (Proposition 6.1 and Theorem 6.3(c)).

What a difference just one error can make!

Corollary 6.3. (Jain and Kinber13) For all n ∈ N , n > 0, InfBcn ⊂

NCBcn = NCBc1.

Based on the ideas similar to the ones used for proving Theorem 6.7,

one can show

Theorem 6.8. (Jain and Kinber13) (a) Let L = {L ∈ E | L is infinite }.

Then L ∈ BNCBc1.

(b) For all n ∈ N , TxtBcn ⊆ BNCBc1.

(c) TxtEx∗ ⊆ BNCBc1.

As there exists a class of infinite languages which does not belong to

InfBcn (see Case and Smith7), we have

Corollary 6.4. (Jain and Kinber13) For all n ∈ N , BNCBc1−InfBcn 6=

∅.

Thus, BNCBcm and InfBcn are incomparable for m > 0, m, n ∈ N .

The above result does not generalize to InfBc∗, as InfBc∗ contains the

class E .

We now mention some of the open questions regarding behaviourally

correct learning when the size of the negative counterexamples is bounded.

(a) Is BNCBcn hierarchy strict?

(b) Is TxtBc∗ ⊆ BNCBc1?

6.1. Complexity Issues

We now consider the complexity advantages of having negative counterex-

amples. This section is based on the paper13.

The class L1 = {L | card(N − L) = 1} is in TxtEx, but requires

unbounded number of mind changes to learn. On the other hand, L1 can

be easily learned using one mind change if negative counterexamples are

available. Thus, not only does NCEx model give learnability advantages

over TxtEx, it also gives complexity advantages over TxtEx for some

classes in TxtEx. Note that if one does not allow mind changes, then

NCEx and TxtEx are both the same — thus the above result is the best

mind change complexity advantage possible.
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The class L2 = {L | (∃i)[L = {x | x ≤ i}]}∪{N}, is learnable in NCEx

model, but the number of mind changes is unbounded. However, L2 can

be learned by using at most one mind change in the model LNCEx. Thus,

even though LNCEx does not give learnability advantages over NCEx, it

does give complexity advantages.

Let a .− b = a − b, if a ≥ b; a .− b = 0 otherwise; Consider the class:

L3 = {L | (∃!e)[〈0, e〉 ∈ L ∧ L − {〈0, e〉} ⊆ {〈x, y〉 | x > 1} ∧ card(L −

{〈0, e〉}) = e .− min(We)]}

L3 is in LNCEx with at most one mind change. However L3 cannot

be learned in InfEx using bounded number of mind changes. Note that

LNCEx ⊂ InfEx. So getting negative counterexamples gives complexity

advantages over informants, despite informant being more advantageous for

learning as a whole.

The situation is more complex in considering the complexity advantages

of NCEx-model compared to InfEx model. There exist classes which

can be NCEx-identifies using n − 1 mind changes, but cannot be InfEx-

identified using (2n−1)−2 mind changes. This is optimal as it can be shown

that any class which can be NCEx-identified using n−1 mind changes can

also be identified using (2n−1)−1 mind changes in InfEx-model. We omit

the details.

7. Learning With Subset Queries

We now consider learning with subset queries, which turn out to be another

mechanism for providing negative examples. In this model learner is allowed

to ask queries of the form “is Q ⊆ L?”, where L is the language being

learned.

If the answer to query is “no”, we additionally can have the following

possibilities:

(a) Learner is given an arbitrary counterexample (a member of Q−L);

(b) Learner is given the least counterexample;

(c) Learner is just given the answer ‘no’, without any counterexample.

We would often also consider bounds on the number of queries. We first

formalize the definition of a learner which uses queries.

Definition 7.1. (Jain and Kinber12) A learner using queries can ask a

query of form “Wj ⊆ L?” on any input σ. Answer to the query is “yes” or

“no” (along with a possible counterexample). Then, based on input σ and

answers received for queries made on prefixes of σ, M outputs a conjecture

(from N).
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Note that the queries are for recursively enumerable languages, which are

posed to the teacher using a grammar (index) for the language. Many of

the diagonalization results stand even if one uses arbitrary type of query

language. However simulation results often crucially depend on the queries

being made only via grammars for the queried languages.

Here, if one allows infinite number of subset queries, then one can learn

the whole class E of recursively enumerable languages in Ex-model of learn-

ing. Furthermore, as we will see below (Proposition 7.2) if one allows finite,

but unbounded, number of queries, then for Ex-model of learning the no-

tion coincides with learning from negative counterexamples.

We now formalize learning via subset queries.

Definition 7.2. (Jain and Kinber12) Suppose a ∈ N ∪ {∗}.

(a) M SubQaEx-identifies a language L (written: L ∈ SubQaEx(M))

iff for any text T for L, it behaves as follows:

(i) The number of queries M asks on prefixes of T is

bounded by a (if a = ∗, then the number of such queries

is finite). Furthermore, all the queries are of the form

“Wj ⊆ L?”

(ii) Suppose the answers to the queries are made as follows.

For a query “Wj ⊆ L?”, the answer is “yes” if Wj ⊆ L,

and the answer is “no” if Wj − L 6= ∅. For “no” answers,

M is also provided with a counterexample, x ∈ Wj − L.

Then, for some k such that Wk = L, for all but finitely

many n, M(T [n]) outputs the grammar k.

(b) SubQ
a
Ex = {L | (∃M)[L ⊆ SubQ

a
Ex(M)]}.

LSubQ
a
Ex-identification and ResSubQ

a
Ex-identification can be de-

fined similarly, where for LSubQaEx-identification the learner gets

the least counterexample for “no” answers, and for ResSubQaEx-

identification, the learner does not get any counterexample along with the

“no” answers.

For a, b ∈ N ∪ {∗}, for I ∈ {Exb,Bcb}, one can similarly define

SubQ
a
I, LSubQ

a
I, and ResSubQ

a
I.

Next two propositions show a close correspondence between learning via

negative counterexamples and learning via subset queries. In particular,

learning via finite number of subset queries coincides with learning via

negative counterexamples for Ex-model of learning.



March 11, 2007 10:22 Proceedings Trim Size: 9in x 6in negsur

21

Proposition 7.1. (Jain and Kinber12) For any a ∈ N ∪ {∗}, I ∈

{Exa,Bca},

(a) SubQ∗I ⊆ NCI.

(b) LSubQ∗I ⊆ LNCI.

(c) ResSubQ∗I ⊆ ResNCI.

Proposition 7.2. (Jain and Kinber12) Suppose a ∈ N ∪ {∗}.

NCExa = SubQ∗Exa = LNCExa = LSubQ∗Exa = ResNCExa =

ResSubQ∗Exa.

Next theorem establishes a hierarchy of learning capabilities with re-

spect to the number of subset queries.

Theorem 7.1. (Jain and Kinber12) Suppose n ∈ N . Then,

ResSubQn+1Ex − LSubQnBc∗ 6= ∅.

We now consider relationship between various types of subset queries.

When only a single query or an unbounded but finite number of queries are

used, different types of counterexamples do not make a difference.

Theorem 7.2. (Jain and Kinber12) Suppose a ∈ N ∪ {∗}, b ∈ {0, 1, ∗},

and I ∈ {Exa,Bca}. Then, ResSubQ
b
I = SubQ

b
I = LSubQ

b
I.

Thus, one needs to consider at least two queries when showing dif-

ferences between various types of subset queries. The following theorem

establishes the relationship between different types of subset queries.

Theorem 7.3. (Jain and Kinber12) For all n ∈ N ,

(a) LSubQ
2
Ex − SubQ

n
Bc∗ 6= ∅.

(b) SubQ
2
Ex − ResSubQ

n
Bc∗ 6= ∅.

We next consider the anomaly hierarchy for the subset query learning

criteria.

Theorem 7.4. (Jain and Kinber12) (a) For all n ∈ N , TxtExn+1 −

LSubQ∗Exn 6= ∅.

(b) For all n ∈ N , TxtBcn+1 − LSubQ∗Bcn 6= ∅.

(c) LSubQ
∗
Ex∗ ⊆ ResSubQ

∗
Bc.

As a corollary we get:

Corollary 7.1. (Jain and Kinber12) Let a ∈ N ∪ {∗}, and n ∈ N .

(a) SubQaExn ⊂ SubQaExn+1.
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(b) LSubQaExn ⊂ LSubQaExn+1.

(c) ResSubQaExn ⊂ ResSubQaExn+1.

Similar corollary exists for Bc-criteria of learning with Ex being re-

placed by Bc in the above.

8. Random Negative Examples

In this section we briefly consider the impact of having random negative

examples. It would be interesting to explore in general how random negative

examples effect learning compared to other kind of negative examples as

discussed in this paper.

When considering giving random negative examples, one may consider

any measure theoretic method of selecting a random negative example.

The only property used in the following is that if A is infinite and B is a

finite subset of A, then measure of A − B (with respect to A) is 1. Let

Rand
1
pTxtEx denote the class of languages that can be identified using

positive data and one random negative example with probability p.

Theorem 8.1. Consider the following class of languages: L = {L |

(∃i)[Wi = L & card(L − {〈i, x〉 | x ∈ N}) < ∞ & card(L ∩ {〈i, x〉 |

x ∈ N}) = ∞]}. Then, L ∈ Rand
1
1TxtEx − TxtEx.

Note here that by Theorem 4.1, if one considers having arbitrary coun-

terexamples, then for any class of languages which consists only of coinfi-

nite languages, k arbitrary negative examples do not help in learning. So

above theorem also shows that random negative examples are more useful

for learning compared to arbitrary negative examples.
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