Summary

- **Goal:** to detect and update dense subtensors in streaming tensors
- **Previous Work**
 - showed that dense subtensors signal anomalies or fraud
 - batch algorithms for fast and accurate dense subtensor detection
- **Algorithm:** incremental algorithm for detecting the densest subtensor
- **Result:**
 - **fast:** up to 320x faster than best streaming methods,
 - **robust:** splicing theory to do incremental splices for dense block,
 - **accurate:** successfully detect anomalies in real-world tensors, including App rank boosting fraud, and rating manipulations.

Motivation

- Synchronized behavior in App data: rank boosting fraud results in dense subtensors

Basic Concepts

- **3-mode tensor**
 - density: \(g() = \frac{M()}{S()} \) the sum of entries / number of attributes

Proposed Algorithm: AugSplicing

- **Goal:** to incrementally update dense subtensors while the input tensor changes
- **Overall algorithm:** iteratively choose two blocks from candidate blocks and splice these two blocks until reaches the splicing threshold, and output top \(k \) dense blocks.

Procedure of splicing two blocks:

1. **splice** \(B \) into \(B' \) if \(g(B') \geq g(B) \) to make \(g(B') \) increase
2. randomly choose a mode to splice until no large-mass blocks

Splicing Theorem

Experimental Results

- **Q1 Effectiveness:** what does AugSplicing detect in real-world tensors?
 1. App installation and uninstallation data
 2. Wi-Fi router connection and disconnection data

- **Q2 Speed:** How fast is AugSplicing compared to baselines?

- **Q3 Accuracy:** How accurately does AugSplicing update a dense subtensor?