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o Information theory [Shannon, 1948]:
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» Information learned at channel output: Mutual information
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Information Theory

e How do we quantify “information” in data?

o Information theory [Shannon, 1948]:

» Fundamental limits of data communication

Source Codeword Output Reconstruction
=1 Encoder » Channel »| Decoder f——mp

» Information of source: Entropy

» Information learned at channel output: Mutual information

Principles:
> First fundamental limits without complexity constraints, then practical methods
> First asymptotic analyses, then convergence rates, finite-length, etc.

P> Mathematically tractable probabilistic models
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Information Theory and Data
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e Conventional view:

Information theory is a theory of communication
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Information Theory and Data

e Conventional view:

Information theory is a theory of communication

. ~
1] A )
1 ]
] 1
Data( Storage & InferenFe & Optimization
Generation K Transmission [ Learning
] 1

1
1 Information
1

o Emerging view:

Information theory is a theory of data

P L L T

.

1

1

' Data‘ Stora;e & InlerenFe & Optimization
1 | Generation Transmission Learning

1

1

.

Information Theory

e Extracting information from channel output vs. Extracting information from data
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Examples

e Information theory in machine learning and statistics:

P Statistical estimation [Le Cam, 1973]
» Group testing [Malyutov, 1978]
» Multi-armed bandits [Lai and Robbins, 1985]
» Phylogeny [Mossel, 2004]
P Sparse recovery [Wainwright, 2009]
P Graphical model selection [Santhanam and Wainwright, 2012]
» Convex optimization [Agarwal et al., 2012]
» DNA sequencing [Motahari et al., 2012]
» Sparse PCA [Birnbaum et al., 2013]
» Community detection [Abbe, 2014]
P Matrix completion [Riegler et al., 2015]
» Ranking [Shah and Wainwright, 2015]
P Adaptive data analysis [Russo and Zou, 2015]
P Supervised learning [Nokleby, 2016]
» Crowdsourcing [Lahouti and Hassibi, 2016]
» Distributed computation [Lee et al., 2018]
> Bayesian optimization [Scarlett, 2018]
e Note: More than just using entropy / mutual information...
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Analogies

Same concepts, different terminology:

Communication Problems Data Problems

Channels with feedback Active learning / adaptivity

Rate distortion theory Approximate recovery

Joint source-channel coding Non-uniform prior

Error probability Error probability

Random coding Random sampling

Side information Side information

Channels with memory Statistically dependent measurements

Mismatched decoding Model mismatch

F’?NUS
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Cautionary Notes

Some cautionary notes on the information-theoretic viewpoint:

» The simple models we can analyze may be over-simplified
(more so than in communication)

> Compared to communication, we often can't get matching achievability/converse
(often settle with correct scaling laws)

> Information-theoretic limits not (yet) considered much in practice
(to my knowledge) ... but they do guide the algorithm design

» Often encounter gaps between information-theoretic limits and computation limits

> Often information theory simply isn't the right tool for the job
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Lecture Plan

Note: The preceding slides are mostly about theoretical results (fundamental
performance limits), but practical coding techniques can similarly have a significant
impact beyond communication and compression.

Lecture plan:
» Part I: Error-Correcting Codes in Statistical Problems
» Part Il: Information-Theoretic Measures in Machine Learning

» Part lll: Information-Theoretic Limits of Statistical Problems
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Part I: Error-Correcting Codes
in Statistical Problems



Warm-Up: A Card Trick

e A card trick:

» Alice and Bob let the audience shuffle a deck and give 5 arbitrary cards to Alice.

> Alice places 4 of these cards on the table

> Bob (correctly) guesses the unknown 5th card. How is this possible?

Hidden:

Shown:

o

NUS
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Warm-Up: A Card Trick

e A card trick:
» Alice and Bob let the audience shuffle a deck and give 5 arbitrary cards to Alice.
» Alice places 4 of these cards on the table

» Bob (correctly) guesses the unknown 5th card. How is this possible?

Shown: Hidden:
e @

o A

o Initial Approach:

» Number of cards from 1 to 52 in some fixed order (known to Alice and Bob)

o

NUS |1 formation Theory Beyond Communication — Jonathan Scarlett Slide 7/ 37



Warm-Up: A Card Trick

e A card trick:
» Alice and Bob let the audience shuffle a deck and give 5 arbitrary cards to Alice.
» Alice places 4 of these cards on the table

> Bob (correctly) guesses the unknown 5th card. How is this possible?

Shown: Hidden:
P2 EL N
* A A

o Initial Approach:
» Number of cards from 1 to 52 in some fixed order (known to Alice and Bob)

» When placing 4 cards, we can order them in 4! = 24 different ways. But there are
52 — 4 = 48 possible choices of the hidden card..?

£
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» Number of cards from 1 to 52 in some fixed order (known to Alice and Bob)

» When placing 4 cards, we can order them in 4! = 24 different ways. But there are
52 — 4 = 48 possible choices of the hidden card..?

» Need to somehow convey information via the 5 choices of hidden card itself
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e A card trick:
» Alice and Bob let the audience shuffle a deck and give 5 arbitrary cards to Alice.
» Alice places 4 of these cards on the table

» Bob (correctly) guesses the unknown 5th card. How is this possible?

Shown: Hidden:
e @

o A

o Initial Approach:
» Number of cards from 1 to 52 in some fixed order (known to Alice and Bob)

» When placing 4 cards, we can order them in 4! = 24 different ways. But there are
52 — 4 = 48 possible choices of the hidden card..?

» Need to somehow convey information via the 5 choices of hidden card itself

o Elegant Solution:

> Find two cards A and B with the same suit (always possible!)
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Warm-Up: A Card Trick

e A card trick:
» Alice and Bob let the audience shuffle a deck and give 5 arbitrary cards to Alice.
» Alice places 4 of these cards on the table

» Bob (correctly) guesses the unknown 5th card. How is this possible?

Shown: Hidden:
e @

o A

o Initial Approach:
» Number of cards from 1 to 52 in some fixed order (known to Alice and Bob)

» When placing 4 cards, we can order them in 4! = 24 different ways. But there are
52 — 4 = 48 possible choices of the hidden card..?

» Need to somehow convey information via the 5 choices of hidden card itself

o Elegant Solution:
> Find two cards A and B with the same suit (always possible!)

> Either A's number index +6 passes B, or vice versa (where 13 + 1 wraps to 1)
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Warm-Up: A Card Trick

e A card trick:
» Alice and Bob let the audience shuffle a deck and give 5 arbitrary cards to Alice.
» Alice places 4 of these cards on the table

» Bob (correctly) guesses the unknown 5th card. How is this possible?

Shown: Hidden:
e @

o A

Initial Approach:
» Number of cards from 1 to 52 in some fixed order (known to Alice and Bob)

» When placing 4 cards, we can order them in 4! = 24 different ways. But there are
52 — 4 = 48 possible choices of the hidden card..?

» Need to somehow convey information via the 5 choices of hidden card itself

Elegant Solution:
> Find two cards A and B with the same suit (always possible!)
> Either A's number index +6 passes B, or vice versa (where 13 + 1 wraps to 1)

> Place A (or B) down first, then order the remaining 3 cards to index 6 numbers

e
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Group Testing

Tests »

.

Outcomes

Items
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Group Testing

Tests »

.

Outcomes

Items

» Goal:
Given test matrix X and outcomes Y, recover item vector 3

...while minimizing the number of tests n

» Terminology: The word “defective” replaces “contaminated” or “infected”
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1-Sparse Group Testing
e Simplest case: Exactly one defective item

Tests

=

Noiseless Noisy
Outcomes Outcomes

Items

o Noiseless case: Easy — just let column i be the binary representation of i

e Noisy case: Exactly equivalent to channel coding!
> H#items <= #messages
> j-th codeword <=> i-th column of the test matrix
> Ftests <= block length

Of course, having just one defective item is of limited practical interest...
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General Group Testing

o Information theory inspired approach:
» Much like random coding in channel coding, we can do random testing here

> Gives strong (and often asymptotically optimal) theoretical guarantees
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General Group Testing

o Information theory inspired approach:
» Much like random coding in channel coding, we can do random testing here

> Gives strong (and often asymptotically optimal) theoretical guarantees

e Coding based approach #1:
P Test designs exists that first identify subsets containing exactly one defective

» Once this is done, we can get its index using the approach on the previous slide
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General Group Testing

o Information theory inspired approach:
» Much like random coding in channel coding, we can do random testing here

> Gives strong (and often asymptotically optimal) theoretical guarantees

e Coding based approach #1:
P Test designs exists that first identify subsets containing exactly one defective

» Once this is done, we can get its index using the approach on the previous slide

e Coding based approach #2: (Kautz-Singleton, 1964; see also arXiv:1808.01457)
» Step 1: Design a non-binary matrix with Reed-Solomon codewords as columns
» Step 2: Replace non-binary symbols A — 10...0, B — 010...0, etc.

T Ha....a T =T\

£
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Coded Computation

e Recently increasing attention has been paid to coding in distributed computation:

Data Data Data Data
Machine 1 Machine 2 Machine 3 Machine 4

NA /S

Central Server

}

Output

o Motivation: What if the machines are unreliable and some may not respond?

e Idea: Introduce resilience via error-correcting coding (i.e., perform redundant
computations to increase resilience to failures)
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Simple Strategies

e Computing summations: Data set D consists of N “data points” (zi,...,zy), and
we want to compute some summation of the form vazl f(z;).
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Simple Strategies

e Computing summations: Data set D consists of N “data points” (zi,...,zy), and

we want to compute some summation of the form vazl f(z;).

e Strategy 1: Send all data to all machines and have them return vazl f(z;)
» For huge data sets, this is likely infeasible
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Simple Strategies
e Computing summations: Data set D consists of N “data points” (zi,...,zy), and

we want to compute some summation of the form vazl f(z;).

e Strategy 1: Send all data to all machines and have them return vazl f(z;)
» For huge data sets, this is likely infeasible

e Strategy 2: Split the data, say D = (D1, D2); send D; (only) to a few machines,
and D3 (only) to a few machines

» Turns out to be very wasteful of machines as we scale things up
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Simple Strategies
e Computing summations: Data set D consists of N “data points” (zi,...,zy), and

we want to compute some summation of the form vazl f(z;).

e Strategy 1: Send all data to all machines and have them return vazl f(z;)
» For huge data sets, this is likely infeasible

e Strategy 2: Split the data, say D = (D1, D2); send D; (only) to a few machines,
and D3 (only) to a few machines

» Turns out to be very wasteful of machines as we scale things up

e Very simple coding example:

Dl D2 D11 DQ

fi+ fa

Central Server

fi+f2
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Coding Strategies

e Less simple coding example:

D1, Dy

Do, Ds

D1, D3

hi2+f

fa— 13

Central Server

[1/2+ f3

fit+tfat f3

BINUS  information Theory Beyond Communication — Jonathan Scarlett
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https://arxiv.org/abs/1612.03301

Coding Strategies

e Less simple coding example:

D1,Ds Do, Ds D1, D3

fa—1f3
f1/24 fo fi/2+ f3

Central Server

it fatfs
o Generalized version:
> Split data into parts, design allocation of parts to machines
> Use linear algebra techniques to design weighting coefficients

> Trade-off between (i) total #machines needed, (ii) #machines that can fail, and
(iii) amount of data per machine
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Coding Strategies

e Less simple coding example:

D1,Ds Do, Ds D1, D3

fa—1f3
f1/24 fo fi/2+ f3

Central Server

it fatfs
o Generalized version:
> Split data into parts, design allocation of parts to machines
> Use linear algebra techniques to design weighting coefficients
> Trade-off between (i) total #machines needed, (ii) #machines that can fail, and
(iii) amount of data per machine
Notes:
> Key difference to regular codes is using real arithmetic instead of modulo-2
» For details, see https://arxiv.org/abs/1612.03301

» Other computation tasks include matrix multiplication, Fourier transform, etc.
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Other Uses of Error-Correcting Codes

Other non-standard applications of error-correcting codes:
> Distributed storage

Statistical inverse problems (e.g., compressive sensing)

| 4
» Cryptography
» Hashing

>

Theoretical computer science proofs (and algorithms)

FINUS  j1formation Theory Beyond Communication — Jonathan Scarlett Slide 14/ 37



Part |l: Information-Theoretic Measures in
Machine Learning



Binary Classification

o lllustration of binary classification problem:

> Features x € RY (e.g., age, income, #£years working)

> Label y € {—1,1} (e.g., is this person going to repay their loan?)

o Learning is done via training data, i.e., a collection {(x;, y;)}"_; of pairs that we
believe to be representative of the population (e.g., historical data)
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Feature Selection

® Suppose that in the dataset {(x;, y;)}7_;, each input x has a large number of
mostly-irrelevant features. How to find which are relevant?

e A popular approach: Seek features such that (an empirical estimate of) the mutual
information is as high as possible:

maximizes . |s|<«/(Xs; Y),

where xg is the subset of x containing only the features indexed by S.

» Intuition: Find the features that are most informative about Y
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Compact Representations

e Building on the previous slide, researchers have used mutual information to measure
the compactness and informativeness of features {u;}7_; produced by an algorithm:
> Informativeness: /(U; Y) is large (motivated by channel coding)

» Compactness: /(U; X) is small (motivated by rate-distortion theory)
(e.g., see arXiv:1703.00810)

NUS
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Compact Representations

e Building on the previous slide, researchers have used mutual information to measure
the compactness and informativeness of features {u;}7_; produced by an algorithm:

> Informativeness: /(U; Y) is large (motivated by channel coding)

» Compactness: /(U; X) is small (motivated by rate-distortion theory)

(e.g., see arXiv:1703.00810)

o Problems/limitations: (e.g., see arXiv:1802.09766, arXiv:1810.05728)
» Mutual information is one of many choices, unclear whether it's the “best”

» Can be unclear whether these quantities actually translate to the ultimate goal
(e.g., classification prediction accuracy)

> May fail to capture important aspects (e.g., learnability, robustness)

» In continuous-valued settings, the mutual information can trivially be co, or
exhibit other trivial behavior

e General principle: Ideally (in my opinion), measures like entropy, mutual
information, and KL divergence are most powerful when they are not introduced
manually, but instead naturally arise as the answer to a fundamental problem
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Generalization Bounds

e One of the most fundamental concepts in learning theory is generalization:
» Training accuracy: Measure of accuracy on training data
> Test accuracy: Measure of accuracy on (unseen) test data

» Generalization error: The difference between the two
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Generalization Bounds

e One of the most fundamental concepts in learning theory is generalization:
» Training accuracy: Measure of accuracy on training data
> Test accuracy: Measure of accuracy on (unseen) test data

» Generalization error: The difference between the two

o Information-theoretic approach: Under certain conditions, it can be shown that the
generalization error is small when the learning algorithm output doesn’t depend overly
strongly on the training data. Mathematically,

Generalization error < +//(D; W)/n, (1)

where D is the training data (of size n), and W is the learning algorithm’s output
e Here mutual information appears in the result but not in the problem formulation

e Further details: arXiv:1511.05219, arXiv:1705.07809
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Part I1l: Information-Theoretic Limits of
Statistical Problems



Statistical Estimation

Statistical estimation problems:

> Seek to estimate an unknown quantity 6 (may be discrete, continuous, or some
abstract type)

» We have access to data samples Yi,..., Y, drawn independently from some Py

> (In some cases, each Y; has an associated “input” X;)
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Statistical Estimation

Statistical estimation problems:

> Seek to estimate an unknown quantity 6 (may be discrete, continuous, or some
abstract type)

» We have access to data samples Yi,..., Y, drawn independently from some Py

> (In some cases, each Y; has an associated “input” X;)
Example 1: Gaussian mean estimation

> Y; =0+ Z where § € RY and Z; is i.i.d. Gaussian noise
> Estimation error: ||6 — 6|2 = 7:1(9A,- —6;)?
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Statistical Estimation

Statistical estimation problems:

> Seek to estimate an unknown quantity 6 (may be discrete, continuous, or some
abstract type)

» We have access to data samples Yi,..., Y, drawn independently from some Py

> (In some cases, each Y; has an associated “input” X;)

Example 1: Gaussian mean estimation
> Y; =0+ Z where § € R? and Z; is i.i.d. Gaussian noise
> Estimation error: ||6 — 6|2 = 7:1(9A,- —6;)?

Example 2: Group testing

P 0 is the defective set, Y; is the i-th test outcome, X; is the i-th test design
> Probability of error: P[0 # 6]
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Terminology: Achievability and Converse

Achievability result (example): Given 7i(€) data samples, there exists an algorithm
achieving an “error” of at most €

> Discrete estimation error: P[0 # 0] < e
> Continuous estimation error: [|6 — Oyruel|? < €
> Optimization error: f(Xselected) < miny f(x) + €
(The latter two may be either on average or with high probability)

e

NUS
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Terminology: Achievability and Converse

Achievability result (example): Given 7i(€) data samples, there exists an algorithm
achieving an “error” of at most €

> Discrete estimation error: P[0 # 0] < e
> Continuous estimation error: [|6 — Oyruel|? < €
> Optimization error: f(Xselected) < miny f(x) + €
(The latter two may be either on average or with high probability)

Converse result (example): In order to achieve an “error” of at most ¢, any algorithm
requires at least n(¢) data samples

Converse results tend to be where information theory plays a larger role in
statistical problems
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High-Level Steps

Example steps in attaining a converse bound:
1. Reduce estimation problem to multiple hypothesis testing
2. Apply a form of Fano's inequality

3. Bound the resulting mutual information term

(Multiple hypothesis testing: Given samples Yi,..., Y, determine which distribution
among Pi(y),. .., Pm(y) generated them. M = 2 gives binary hypothesis testing.)
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Fano's Inequality

o

NUS

e Fano's inequality as stated in textbooks:
H(V|V) < Ha(Pe) 4 Pelogy(M — 1)

where M is the number of values that V can take, and P, =

Information Theory Beyond Communication — Jonathan Scarlett
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Fano's Inequality

e Fano's inequality as stated in textbooks:
H(V|V) < Ha(Pe) 4 Pelogy(M — 1)

where M is the number of values that V can take, and P, = ]P“[V # V]

e Useful form for M-ary hypothesis testing and uniform V:

I(V; V) + log 2

PIV#V]>1- og M

» Intuition: Need learned information /(V/; \7) to be close to prior uncertainty
log M, otherwise the error probability will be significant
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Fano's Inequality

e Fano's inequality as stated in textbooks:
H(V|V) < Ha(Pe) 4 Pelogy(M — 1)

where M is the number of values that V can take, and P, = ]P’[V # V]

e Useful form for M-ary hypothesis testing and uniform V:

I(V; V) + log 2

PIV#V]>1- og M

» Intuition: Need learned information /(V/; \7) to be close to prior uncertainty
log M, otherwise the error probability will be significant

e Variations:
» Non-uniform V
» Approximate recovery

» Conditional version
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Group Testing

Tests »

.

Outcomes

Items

» Goal:
Given test matrix X and outcomes Y, recover item vector 3

...while minimizing the number of tests n

» Terminology: The word “defective” replaces “contaminated” or “infected”
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Information Theory and Group Testing

Tests

Outcomes
e Information-theoretic viewpoint:
S : Defective set
Xs : Columns indexed by S
Message Codeword Output Estimate
S Xs Y ~ PPy, K
—| Encoder > Channel ' Decoder [—9
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Information Theory and Group Testing

e Example formulation of general result:

Entropy

Sample COIleGXlty (Model uncertainty)

H(S)

%

n ~-———,
I (P Y|Xs )
Mutual Information
(Information learned from measurements)
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Converse via Fano's Inequality

e

NUS

e Reduction to multiple hypothesis testing: Triviall Set V = S.

Information Theory Beyond Communication — Jonathan Scarlett

Slide 25/ 37



Converse via Fano's Inequality

e Reduction to multiple hypothesis testing: Triviall Set V = S.

e Application of Fano’s Inequality:

1(S; 5|X) + log 2

P[S+£S -
[S#S]>1 Iog(i)
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Converse via Fano's Inequality

e Reduction to multiple hypothesis testing: Triviall Set V = S.

e Application of Fano’s Inequality:

1(S; 5|X) + log 2

P[S+£S -
[S#S]>1 Iog(i)

o Mutual information bound: /(S; 5|X) < nC where C is the capacity of the
“channel” that introduces noise to the test outcomes
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Converse via Fano's Inequality

e Reduction to multiple hypothesis testing: Triviall Set V = S.

e Application of Fano’s Inequality:

1(S; §|X) + log 2

P[S+£S -
[S#S]>1 Iog(i)

o Mutual information bound: /(S; 5|X) < nC where C is the capacity of the
“channel” that introduces noise to the test outcomes

e Final result: With p items, k defectives, and n tests, we have

klo

g 7 A
k(1—¢) = P[S#S] A0

n<
- C

where the k Iog% numerator comes from an asymptotic simplification of log (Z)
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Further Results

Further uses of information theory in group testing:

> Information-theoretic achievability (much more technically challenging, but the
final result often matches the above converse)

» Practical algorithms inspired by information-theoretic analyses

» Coding-based test designs

Survey article: arXiv:1902.06002
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What About Continuous-Valued Estimation?



Running Example: Gaussian Mean Estimation

e To simplify the discussion, let's focus on the problem of Gaussian mean estimation

e Gaussian mean estimation:
» There exists an unknown vector # € RP we would like to estimate

» The data given to us is Y1,..., Ys, where
Yi=0+2

with Z; € RP being i.i.d. N(0,02) additive noise

> In other words, estimate 6 from independent N(0,021,) samples

e Algorithmic goal: Design an estimation algorithm to obtain an estimate § such that
|6 — 0| < € for some target accuracy ¢ (either in expectation or with high probability
— we will not worry so much about the details)
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High-Level Steps

Steps in attaining a converse bound:
1. Reduce estimation problem to multiple hypothesis testing
2. Apply a form of Fano's inequality

3. Bound the resulting mutual information term

(Multiple hypothesis testing: Given samples Yi,..., Y, determine which distribution
among Pi(y),. .., Pm(y) generated them. M = 2 gives binary hypothesis testing.)
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Reduction to Multiple Hypothesis Testing (1)

e Lower bound worst-case error by average over hard subset 601, ...,0\:

Algorithm =
Output § 1

Infer Estimate V

X —
Index

IndexV Select

Parameter Y

'
'
'

A4

| Parameter 6y
Samples

Idea:
> Show “successful” algorithm § = Correct estimation of V (When is this true?)

» Equivalent statement: If V can’t be estimated reliably, then 6 can't be successful.
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Reduction to Multiple Hypothesis Testing (II)

o Example: Suppose algorithm is claimed to return 6 such that || — 6] < €

N

e If 01,...,0p are separated by 2¢, then we can identify the correct V € {1,..., M}

e Note: Tension between number of hypotheses, difficulty in distinguishing them, and
sufficient separation. Choosing a suitable set {01, ...,0m} can be challenging.
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Mutual Information Bound

e For simplicity, first consider the 1D case, i.e., # e Rand Y =60+ Z

e In this case, a suitable choice is 1 = +C and 6> = —C for some constant C
> Mutual information essential reduces to D(N(+C,02)||N(—C,0?)), which is
2
easily computed to equal 20%

» C can be optimized at the end of the analysis to give the best bound
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Mutual Information Bound

e For simplicity, first consider the 1D case, i.e., § € Rand Y =6+ Z

e In this case, a suitable choice is 1 = +C and 6> = —C for some constant C
> Mutual information essential reduces to D(N(+C,02)||N(—C,0?)), which is
2
easily computed to equal 20%

» C can be optimized at the end of the analysis to give the best bound

e General d-dimensional case: Instead consider vectors of the form
0,=(C,-C,-C,C,C,...,—C,C)

and using tools from coding theory to ensure the signs keep them well-separated
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Beyond Fano’s Inequality



Limitations and Generalizations

e Limitations of Fano’s Inequality.
» Non-asymptotic weakness
> Often hard to tightly bound mutual information in adaptive settings

> Closely tied to KL divergence (relative entropy) which is not always the ideal
measure

e Generalizations of Fano's Inequality.

»> Non-uniform V [Han/Verdd, 1994]
» More general divergences measures [Guntuboyina, 2011]
» Continuous V [Duchi/Wainwright, 2013]

(This list is certainly incomplete!)
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Example: Difficulties in Adaptive Settings

e A simple search problem: Find the (only) biased coin using few flips

heads +
00O O OCO0O000O
Plheads] = 3 Plheads] = 3
»> Heavy coin V € {1,..., M} uniformly at random

> Selected coin at time i = 1,...,nis X;, observation is Y; € {0,1} (1 for heads)
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Example: Difficulties in Adaptive Settings

e A simple search problem: Find the (only) biased coin using few flips

heads +
00O O OCO0O000O
Plheads] = 3 Plheads] = 3
»> Heavy coin V € {1,..., M} uniformly at random

> Selected coin at time i = 1,...,nis X;, observation is Y; € {0,1} (1 for heads)

o Non-adaptive setting:
» Since X; and V are independent, can show /(V; Y| X;) < %

S . L . M log M
> Substituting into Fano's inequality gives the requirement n 2 §2g
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Example: Difficulties in Adaptive Settings

e A simple search problem: Find the (only) biased coin using few flips

heads +

OOOOOOOOOO

Plheads] = % Plheads] = %

»> Heavy coin V € {1,..., M} uniformly at random
> Selected coin at time i = 1,...,nis X;, observation is Y; € {0,1} (1 for heads)

o Non-adaptive setting:
» Since X; and V are independent, can show /(V; Y| X;) < %

S . L . M log M
> Substituting into Fano's inequality gives the requirement n 2 §2g

e Adaptive setting:
> Nuisance to characterize I(V; Y;|X;), as X; depends on V due to adaptivity!

> Worst-case bounding only gives n > "’f—ZM
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Additive Change of Measure

o

NUS

e Let P(y) and Q(y) be two distributions on the observations
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Additive Change of Measure

e Let P(y) and Q(y) be two distributions on the observations

e A very basic inequality (essentially by definition):
[Pp[A] — PolAll < [IP — QllTv

for any event A

» Total variation (TV) distance: A measure of the difference between two

distributions (KL divergence is another such measure)
» Intuition:

P Let Q be a distribution where nothing can reasonably be learned (e.g., pure noise)
» Then “learning” on Q is doomed to fail
P So if P is too close to @, then learning on P is also likely to fail
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Additive Change of Measure

e Let P(y) and Q(y) be two distributions on the observations

e A very basic inequality (essentially by definition):
[Pp[A] — PolAll < [IP — QllTv

for any event A

» Total variation (TV) distance: A measure of the difference between two

distributions (KL divergence is another such measure)
» Intuition:

P Let Q be a distribution where nothing can reasonably be learned (e.g., pure noise)
» Then “learning” on Q is doomed to fail
P So if P is too close to @, then learning on P is also likely to fail

e Applications:

> Statistical estimation [Le Cam, 1973]
> Multi-armed bandits [Auer et al., 1995]
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Multiplicative Change of Measure

e Multiplicative change of measure: Relate the probability of a success event A
under two different distributions P(y), Q(y) as follows

P(Y)
Q(Y)

Pp[A] < PP|: > 7} +7Pq[Al,

where 7 is an arbitrary threshold

» Intuition: Again, Q could be a distribution under which nothing can be learned
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Multiplicative Change of Measure

e Multiplicative change of measure: Relate the probability of a success event A
under two different distributions P(y), Q(y) as follows

P(Y)
Q(Y)

Pp[A] < PP|: > 7} +7Pq[Al,

where 7 is an arbitrary threshold

» Intuition: Again, Q could be a distribution under which nothing can be learned

e Applications:

» Channel coding [Wolfowitz, 1957]

[Verdti and Han, 1994]
> Multi-armed bandits [Lai and Robbins, 1985]
> Statistical estimation [Tsybakov, 2009]

[Venkataramanan and Johnson, 2018]
> Group testing and sparse recovery [Scarlett and Cevher, 2017]
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Conclusion

e Information theory as a theory of data:

S S —

.~

Data. S(orage & Inferenf:e & Optimization
Generation Transmission Learning

Information Theory

e

—mmmm-—

.
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Conclusion

e Information theory as a theory of data:

S S —

.
Data. S(orage & Inferenf:e & Optimization
Generation Transmission Learning

Information Theory

e

—mmmm-—

.

e Aspects covered in this talk:
» Non-standard applications of error correcting codes
» Information measures in machine learning

» Information-theoretic limits of statistical problems

Many useful applications of information theory / coding, and more to come!
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Tutorial Material

e Tutorial Chapter: “An Introductory Guide to Fano's Inequality
with Applications in Statistical Estimation” [Scarlett/Cevher, 2021]

https://arxiv.org/abs/1901.00555
(Chapter in book Information-Theoretic Methods in Data Science,
Cambridge University Press)
e Group Testing Survey: “Group Testing: An Information

Theory Perspective” [Aldridge/Johnson/Scarlett, 2019]

https://arxiv.org/abs/1902.06002
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