
CS5275 Lecture 4: Convexity

Jonathan Scarlett

February 18, 2025

Useful references:

• Blog posts on Lagrange multipliers,1 duality for linear programming,2 and general Lagrange duality3

• Boyd and Vandenberghe’s “Convex Optimization” book4

• Boyd’s lectures on convex optimization, available on YouTube

• Nesterov’s lecture notes on convex optimization

Categorization of material:

• Core material: Sections 1–4 except parts involving the Hessian, maxflow-mincut duality, and support
vector machine.

• Extra material: Section 5 (KKT conditions) and the above-mentioned parts from Sections 1–4.

(Exam will strongly focus on “Core”. Take-home assessments may occasionally require consulting “Extra”.)

1 Convex Sets and Functions

Basic definitions.

• A set D (e.g., a subset of Rd) is said to be a convex set if, for all x ∈ D and x′ ∈ D, it holds that

λx+ (1− λ)x′ ∈ D

for all λ ∈ [0, 1]

– In words (roughly): Draw a straight line between any two points in D. This whole line segment
must also lie within D.

– Examples:
1http://jeremykun.com/2013/11/30/lagrangians-for-the-amnesiac/
2http://jeremykun.com/2014/06/02/linear-programming-and-the-most-affordable-healthy-diet-part-1/
3http://blogs.princeton.edu/imabandit/2013/02/21/orf523-lagrangian-duality/
4http://web.stanford.edu/~boyd/cvxbook/
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• A function f : D → R is said to be a convex function if, for all x ∈ D and x′ ∈ D, it holds that

f(λx+ (1− λ)x′) ≤ λf(x) + (1− λ)f(x′)

for all λ ∈ [0, 1]. Implicitly, this requires that the domain D is a convex set.

– In words (roughly): Draw a straight line between (x, f(x′)) and (x′, f(x′)). For inputs in between
x and x′, the function lies below this straight line.

– Illustration:

– We say that f(x) is a concave function if −f(x) is a convex function.

– Convex = “bowl-shaped” (∪), concave = “arch-shaped” (∩)

– A function is simultaneously convex and concave ⇐⇒ it is affine (i.e., a “straight line” (or plane)).

– Key property. For a convex function, any local minimum is also a global minimum.

Other examples.

• Convex functions: ∥x∥2, ex, e−x, log
∑d

i=1 e
xi , and many more.

• Concave functions: −∥x∥2, log x, log detX,
∑d

i=1 xi log
1
xi

, and many more.
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Equivalent definitions of convexity.

• Recall the notions of gradient and Hessian for x = [x1, . . . , xd]
T :

∇f =


∂f
∂x1
∂f
∂x2

...
∂f
∂xd

 , ∇2f =


∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xd

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . ∂2f

∂x2∂xd

...
...

. . .
...

∂2f
∂xd∂x1

∂2f
∂xdx2

. . . ∂2f
∂x2

d

 .

• (First order) If f is differentiable, then it is convex if and only if

f(x′) ≥ f(x) +∇f(x)T (x′ − x)

for all x,x′. (The function lies above its tangent plane)

• (Second order) If f is twice differentiable, then it is convex if and only if

∇2f(x) ⪰ 0

for all x ∈ D. (The Hessian is positive semi-definite)

Operations that preserve convexity.

• If f1(x) and f2(x) are convex, and α1 and α2 are positive, then f(x) = α1f1(x) + α1f2(x) is convex.
By induction, a similar statement holds for

∑L
ℓ=1 αℓfℓ(x) also for L > 2.

• If f1(x), . . . , fL(x) are convex, then so is f(x) = maxℓ=1,...,L fℓ(x).

• Certain compositions of the form f(x) = g(h(x)) are convex under certain conditions on g and h (see
Section 3.2 of Boyd and Vandenberghe’s book)

– Simplest case: If h is a linear (or affine) function and g is convex, then f is convex.

Jensen’s inequality.

• Jensen’s inequality states that, for any random vector X and convex function f , it holds that

f(E[X]) ≤ E[f(X)].

This is used in countless proofs in machine learning, statistics, information theory, etc.

• Note that the inequality is true directly from the definition of convexity when X equals one value x

with probability λ, and another value x′ with probability 1 − λ. Jensen’s inequality states the more
general form for an arbitrary distribution on X.

2 Convex Optimization

• In numerous fields, we are frequently interested in minimizing some cost function (or maximizing some
utility function), possibly subject to certain constraints (see below for a variety of examples).
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• Consider the following general form of optimization problem:

minimizex f0(x) (1)

subject to fi(x) ≤ 0, i = 1, . . . ,mineq

hi(x) = 0, i = 1, . . . ,meq.

There are mineq inequality constraints and meq equality constraints.

• Definition. We say that (1) is a convex optimization problem if (i) f0(x) is convex; (ii) fi(x) is convex
for all i = 1, . . . ,mineq; (iii) hi(x) is affine for all i = 1, . . . ,meq.

• This definition is very useful because, although solving (constrained or unconstrained) optimization
problems is extremely hard in general, convexity is usually enough to permit finding a solution (some-
times analytically, but more often numerically).

• We can get some intuition by looking at the 1D case – which of these functions is easier to optimize
using gradient descent techniques?

3 Examples of Convex Optimization Problems

Convexity may initially seem like a property that is rarely encountered in practice, but in fact it is surprisingly
widespread and far-reaching. Just a few examples are given below.

Maximum flow via linear programming:

• Consider a directed graph with a number of nodes, two of which are the source and target (the latter
is also known as the sink or destination):

• Let V denote the set of nodes and E denote the set of edges in the graph (i.e., (u, v) ∈ E indicates an
edge pointing from u to v), and let s and t denote the source and target nodes.
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• Suppose that each edge (u, v) ∈ E has a capacity cuv, and consider the problem of creating as much
“flow” (e.g., of information) from the source to target without exceeding any edge’s capacity constraint.

• This naturally gives rise to a linear program: Letting fuv represent the flow from u to v,

maximize{fuv}(u,v)∈E

∑
v : (s,v)∈E

fsv (2)

subject to 0 ≤ fuv ≤ cuv ∀(u, v) ∈ E∑
u : (u,v)∈E

fuv =
∑

w : (v,w)∈E

fvw ∀v ∈ (V \ {s, t}),

where the first constraint simply constrains the total flow through each edge to be non-negative and
not exceed capacity, and the second one constrains the total flow into any node to equal the total flow
out (except for the source and target). The objective is to maximize the flow coming out of the source
(which, by the constraints imposed, matches the amount coming into the target).

• Lagrange duality (covered below) for this problem is closely related to the famous max-flow min-cut
theorem – we briefly explore this in an example later.

Estimation/regression via loss minimization:

• In the problem of linear regression, one is given n examples (xi, yi) (for i = 1, . . . , n) with xi ∈ Rn and
yi ∈ R, and seeks to find linear weights θ such that θTxi approximates yi well for all i (and similarly
for unseen (x, y) pairs).

• A famous approach is least squares:

minimizeθ

n∑
i=1

(yi − θTxi)
2,

which is an unconstrained convex optimization problem (and a rare example of one that has an explicit
closed-form solution). Other convex functions can also be used, e.g., using |yi − θTxi| instead of
(yi − θTxi)

2 provides better robustness to outliers.

• Constraints can also naturally enter, e.g., we may have prior information that the weights sum to one
(so constrain

∑d
i=1 θi = 1) or lie within a ball of a certain radius r (so constrain

∑d
i=1 θ

2
i ≤ r).

Maximum margin classification:

• The goal of binary classification seeks to construct a classifier that can reliably separate one class from
another (e.g., distinguish spam vs. non-spam emails).

• Similarly to regression, we can represent inputs by vectors xi ∈ Rd, and let yi ∈ {−1, 1} denotes its
binary label (unlike regression where y was a general real value). Suppose that we are given a dataset
with n such pairs, i.e., {(xi, yi)}ni=1.

• The class of linear classifiers takes the form ŷ = sign(θTx+ θ0) for some weights θ ∈ Rd and θ0 ∈ R.
(Here θ0 is an extra offset that was omitted in the regression example.)

• When the data set being learned from is perfectly separable, a natural approach is to find the classifier
with the largest margin (i.e., maximize the distance between the margin and the closest data point):
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• Using some geometric analysis and manipulation, this turns out to be a convex optimization problem:

minimizeθ,θ0
1

2
∥θ∥2 subject to yi(θ

Txi + θ0) ≥ 1, ∀i = 1, . . . , n. (3)

(See Lectures 2 and 6a of https://www.comp.nus.edu.sg/~scarlett/CS5339_notes/ for further de-
tails.) Lagrange duality for this problem will be discussed briefly below.

Power allocation in communication:

• A famous formula in information theory gives the maximum possible rate of communication over a
communication channel that adds Gaussian noise to its input: R = 1

2 log
(
1+ P

σ2

)
, where P is the input

power and σ2 is the noise variance.

– Note: Due to the (very slow) sub-linear growth of the log(·) function, this means that we have
diminishing returns as we increase the power level P

• Now imagine that we have K communication channels with different noise levels σ2
1 , . . . , σ

2
K , and the

constraint is on the total power : P1 + . . . + PK ≤ Ptotal. How should we allocate power to maximize
the total rate R1 + . . .+RK?

• This is a concave maximization problem:

maximizeP1,...,PK

K∑
i=1

1

2
log

(
1 +

Pi

σ2
i

)
(4)

subject to
K∑
i=1

Pi ≤ Ptotal,

Pi ≥ 0, i = 1, . . . ,K.

• Lagrange dual analysis (covered below) gives rise to a well-known solution termed waterfilling.

Portfolio optimization:

• Here we give one simple example from finance applications, known as Markowitz portfolio design.

• Suppose that we have a model for price changes in the form of a distribution on a random vector
p ∈ Rd, where d is the number of assets (e.g., stocks) we can invest in, and pi is the random price
change for asset i. Specifically, let µp ∈ Rd denote the mean vector of p, and Σp ∈ Rd×d denote
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the covariance matrix (i.e., the diagonal entries give the variances, and the off-diagonals capture the
correlations between price changes of different assets).

• Suppose that we would be satisfied with any average return of rmin or higher, but we are risk-averse
so want to keep the variance low. Based on this idea, the Markowitz portfolio design is as follows:

minimizex∈Rd xTΣpx

subject to µT
px ≥ rmin

n∑
i=1

xi = 1,

where x = [x1, . . . , xd]
T with xi being the proportion invested into asset i. The last constraint arises

from the total proportion being 1; constraining µT
px ≥ rmin captures the goal of attaining the desired

average return (or higher); and minimizing xTΣpx captures the goal of lowering variance.

• Once again, this is a convex optimization problem.

4 Lagrange Multipliers and Duality

• Warm-up: We can get some rough intuition behind Lagrange multipliers by consider the two-function
case: Minimize f(x) subject to g(x) ≤ 0. Suppose both are differentiable. Let x∗ be a point that we
believe to be a minimizer.

If we could find a direction v such that vT∇g(x∗) = 0 but vT∇f(x∗) ̸= 0, then (a bit informally /
hand-wavey) we could move a tiny amount in some direction to decrease f while still satisfying the
constraint on g. If x∗ is a minimizer then this should be impossible, and thus either (i) ∇f(x∗) = 0, or
(ii) ∇f and ∇g are parallel,5 i.e., ∇f(x∗) + λ∇g(x∗) = 0. Case (i) may occur when the constraint is
“inactive” (i.e., removing it makes no difference), whereas Case (ii) gives a different type of optimality
condition stating that x∗ minimizes L(x, λ) = f(x)+λg(x) for suitably-chosen λ (Lagrange multiplier).

• We proceed with a formal treatment of the general case. For an optimization problem of the form (1),
the Lagrangian is defined as

L(x,λ,ν) = f0(x) +

mineq∑
i=1

λifi(x) +

meq∑
i=1

νihi(x), (5)

where we have introduced extra parameters λ = (λ1, . . . , λmineq
) and ν = (ν1, . . . , νmeq

). These are
known as Lagrange multipliers.

– We assume that λi ≥ 0 for all i, whereas νi ∈ R may be positive or negative.

– Intuition: We no longer insist that fi(x) ≤ 0, but we pay a penalty (scaled by λi) if it fails to
hold. Conversely, we are “rewarded” if fi(x) < 0, i.e., strict inequality.

• Important observation. For any x feasible in (1), and any λ and µ with λi ≥ 0, we have

L(x,λ,ν) ≤ f0(x). (6)
5Two non-zero vectors v1 and v2 are parallel (i.e., one is a multiple of the other) if and only if, for all u, the inner products

uTv1 and uTv2 are either both zero or both non-zero.
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– Proof: Follows immediately from λi ≥ 0, fi(x) ≤ 0, and hi(x) = 0.

• Minimizing both sides of (6) over x gives

min
x

L(x,λ,ν) ≤ f0(x
∗), (7)

where x∗ is an optimal solution to (1).

– The function
g(λ,ν) = min

x
L(x,λ,ν)

is called the Lagrange dual function.

• Since g(λ,ν) lower bounds f0(x
∗) according to (7), it is natural to look for the best (highest) lower

bound. This leads to the Lagrange dual problem:

maximizeλ,ν g(λ,ν) (8)

subject to λi ≥ 0, i = 1, . . . ,mineq.

Henceforth, let (λ∗,ν∗) denote the maximizer.

• Duality.

– Since (7) holds for all (λ,ν), it holds in particular for (λ∗,ν∗), yielding

g(λ∗,ν∗) ≤ f0(x
∗).

This is known as weak duality.

– One of the most important results in convex optimization is that, if the original optimization
problem is convex (i.e., f0 and fi are convex functions, and hi is are linear functions), and a mild
regularity condition holds, then

g(λ∗,ν∗) = f0(x
∗). (9)

This is known as strong duality.

∗ There are many possible “mild regularity conditions”; the most well-known is known as Slater’s
condition: There exists at least one feasible point x satisfying the constraints of (1) with strict
inequality (i.e., fi(x) < 0 and hi(x) = 0).

∗ Another (more restrictive) sufficient condition is that the constraint functions fi (i =

1, . . . ,mineq) are not only convex, but linear (and a feasible point exists).

– Minimax theorem viewpoint: One way to understand duality is to interpret the original con-
strained optimization problem as solving

min
x

max
λ≥0,ν

L(x,λ,ν).

This is because the inner maximization (more precisely a supremum) equals ∞ whenever fi(x) > 0

or hi(x) ̸= 0, because any arbitrarily large value can be achieved by taking the corresponding λi
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or νi to be huge. In addition, when x satisfies the constraints (i.e., each fi(x) ≤ 0 and hi(x) = 0),
it is not hard to show that that maxλ≥0,ν L(x,λ,ν) = f0(x) (achieved by λ = 0 and ν = 0).

In contrast, the Lagrange dual problem solves

max
λ≥0,ν

min
x

L(x,λ,ν).

So almost everything is the same – just the max and min are swapped!

It a well-known fact of optimization and game theory that minA maxB f(A,B) ≥
maxB minA f(A,B). Strong duality is related to the minimax theorem (see https://en.

wikipedia.org/wiki/Minimax_theorem), which states that in fact

min
A

max
B

f(A,B) = max
B

min
A

f(A,B)

in the case that f(A, ·) is concave in B, f(·, B) is convex in A, and some other “mild” conditions
hold (e.g., minA and maxB are optimizations over compact sets).

– Optimality certificate viewpoint: Notice that any primal feasible x provides an upper bound to the
optimal solution. Correspondingly, any dual feasible (λ,µ) provides a lower bound to the optimal
solution. When strong duality holds, we can get matching upper and lower bounds, which provide
us a proof of optimality, so we call this a certificate.

– Other viewpoints (**Optional**): See Section 5 Boyd/Vandenberghe for other interpretations,
including geometric (Section 5.3; see also https://www.argmin.net/p/ends-in-a-draw for a
summary) and sensitivity analysis based (Section 5.6). In the latter, some statements are given
on how the value of the Lagrange multiplier relates to how much the optimal value changes upon
tightening/loosening the constraints.

• Example 1 (Linear programming).

– Consider a linear program of the form

maximizex cTx (10)

subject to Ax = b, x ≥ 0 (11)

for some matrix A ∈ Rm×d and vectors b ∈ Rm and c ∈ Rd. The inequality x ≥ 0 should be
interpreted as holding element-wise.

– Interpreting this as being in the form (1) with mineq = m and meq = d, we have the Lagrangian

L(x,λ,ν) = −cTx−
d∑

i=1

λixi +

m∑
i=1

νi(a
T
i x− bi)

= −cTx− λTx+ νT (Ax− b)

= −bTν + (ATν − λ− c)Tx,

where ai is the i-th row of A, bi is the i-th entry of b, etc.

∗ Note: Switching from “maximize” to “minimize” requires taking f0(x) = −cTx. Similarly, we
rewrite x ≥ 0 as −x ≤ 0.
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– Minimizing over x, we find that g(λ,ν) (which we recall is minx L(x,λ,ν)) takes the form

g(λ,ν) =

−bTν ATν − λ− c = 0

−∞ otherwise.

This is because whenever ATν + λ + c ̸= 0, one can just make a suitable entry of xi arbitrarily
large in either the positive or negative direction.

– Substituting this expression for g(λ,ν) into (8) yields the dual problem:

maximizeλ,ν − bTν

subject to λ ≥ 0,

ATν − λ− c = 0,

where the second constraint can be introduced since all other values yield a (certainly suboptimal)
value of −∞. Since λ does not appear in the objective function, we can further simplify the above
maximization to

minimizeν bTν

subject to ATν ≥ c.

– If we replace Ax = b by Ax ≤ b in the original formulation, then we arrive at a similar dual
expression but with the added constraint ν ≥ 0.

– An intuitive interpretation:

∗ The original problem constrains Ax = b; multiplying both sides on the left by νT gives
νTAx = νTb, or equivalently (ATν)Tx = bTν (by standard properties of the transpose)

∗ Now, since x ≥ 0 and we are maximizing cTx, we find that if ATν ≥ c, it holds that (ATν)Tx

is at least as high as cTx. Then, by the previous dot point, bTν is at least as high as cTx.

∗ Hence, for any ν that satisfies ATν ≥ c, we have that bTν is at least as high as the original
problem’s optimal value, i.e., it is an upper bound to the optimal value.

∗ By minimizing over all such ν (as is done in the dual expression), we are finding the lowest
(best) possible upper bound, and this turns out to make the upper bound hold with equality.

• Example 2 (Maxflow-mincut duality).

– A famous theorem for the maxflow problem is maxflow-mincut duality : The value of the maximum
flow is the same as the value of the minimum cut (i.e., the minimum total weight of edges whose
removal makes the target unreachable from the source).

– A Lagrange dual analysis of (2) similar to Example 1 gives rise to the following:

maximize{λuv}(u,v)∈E ,{µv}v∈V

∑
(u,v)∈E

cuvλuv

subject to µs = 1, µt = 0,

λuv ≥ µu − µv, λuv ≥ 0 (∀(u, v) ∈ E).
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∗ Each λuv arises as a Lagrange multiplier for the edge’s capacity constraint, and each µv arises
as a Lagrange multiplier for the node’s inflow=outflow constraint (except s and t, which is
why their µv values are instead fixed to 1 and 0).

– Note that once the µv’s are all specified, the λuv’s are trivially given by λuv = max{0, µu − µv}.
So the problem “minimize over all µv and λuv” is essentially just one of “minimize over all µv”.

– If we additionally constrain µv ∈ {0, 1} and λuv ∈ {0, 1} for all u and v, then the mincut
interpretation is immediate: The nodes with µu = 1 are on the “source side”, those with µv = 0

are on the “target side”, and the goal is to minimize the sum of cuv over all edges from the former
to the latter (for which λuv = 1).

An illustration (with bold edges being the ‘cut’ ones, whose cuv values are summed):

– In other words, the Lagrange dual analysis has given a linear programming relaxation of the min-
cut problem. But it turns out to be a case where the relaxation is tight – it gives the same answer
as the integer-constrained problem. (See the next lecture for more on this.)

• (**Optional**) Example 3 (Support vector machine).

– As given in the above examples, the maximum-margin hyperplane problem in classification can
be cast as

minimizeθ,θ0
1

2
∥θ∥2 subject to yi(θ

Txi + θ0) ≥ 1, ∀i = 1, . . . , n. (12)

This is a convex optimization problem with affine constraints, so strong duality holds.

– By a similar analysis Example 1, the following dual optimization problem can be derived:

maximizeα
n∑

i=1

αt −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj

subject to αi ≥ 0 ∀i ∈ {1, . . . , n},
n∑

i=1

αiyi = 0.

∗ Each αi ≥ 0 arises as a Lagrange multiplier corresponding to the i-th data point’s constraint,
and the condition

∑n
i=1 αiyi = 0 is related to an optimization over θ0 (if θ0 is removed from

the problem altogether, then so is this constraint in the dual).

– In addition, the Lagrange duality analysis reveals that θ =
∑n

i=1 αiyixi, and complementary
slackness (covered below) can used to derive θ0 = 1

yt
− θTxt for any t such that αt > 0.
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– A significant advantage of the dual formulation is that it depends on the x’s only via inner prod-
ucts (e.g., xT

i xj), which allows for an application of the kernel trick where each inner product is
replaced by a more general function k(xi,xj). The idea is that we could “change the representa-
tion” of the input by replacing each x by some function ϕ(x), but the kernel trick allows us to
do so implicitly instead of explicitly – there are many spaces where ϕ(x) is “complicated” (e.g.,
infinite-dimensional) and yet ϕ(x)Tϕ(x′) is “simple” (e.g., can be evaluated in linear time).

– See Lecture 6a of https://www.comp.nus.edu.sg/~scarlett/CS5339_notes/ for the complete
details of this example.

5 The Karush-Kuhn-Tucker (KKT) Conditions

• In the case that strong duality holds as per (9), we have the following chain of inequalities:

f0(x
∗) = g(λ∗,ν∗)

= min
x

{
f0(x) +

mineq∑
i=1

λ∗
i fi(x) +

meq∑
i=1

ν∗i hi(x)

}

≤ f0(x
∗) +

mineq∑
i=1

λ∗
i fi(x

∗) +

meq∑
i=1

ν∗i hi(x
∗)

≤ f0(x
∗),

where we first applied the definition of g, then upper bounded the minimum by the specific value x∗,
then used the fact that fi(x

∗) ≤ 0 and hi(x
∗) = 0.

• Since we ended up with f0(x
∗) ≤ f0(x

∗), both of the inequalities must hold with equality. Let’s look
at these in more detail:

– The first inequality holding with equality gives

x∗ = argmin
x

f0(x) +

mineq∑
i=1

λ∗
i fi(x) +

meq∑
i=1

ν∗i hi(x).

Assuming the functions are differentiable, the fact that x∗ is a minimizer means that the derivative
must vanish:

∇f0(x
∗) +

mineq∑
i=1

λ∗
i∇fi(x

∗) +

meq∑
i=1

ν∗i ∇hi(x
∗) = 0.

– The second inequality holding with equality gives

λ∗
i fi(x

∗) = 0, i = 1, . . . ,mineq.

This means that either fi(x
∗) = 0 (i.e., the constraint holds with equality) or λ∗

i = 0. This
property is known as complementary slackness.

• Summarizing the above leads to a set of conditions on (x∗,λ∗,ν∗) known as the KKT conditions:

1. (Primal feasibility) fi(x
∗) ≤ 0 for i = 1, . . . ,mineq, and hi(x

∗) = 0 for i = 1, . . . ,meq.
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2. (Dual feasibility) λ∗
i ≥ 0 for i = 1, . . . ,mineq.

3. (Complementary slackness) λ∗
i fi(x

∗) = 0 for i = 1, . . . ,mineq.

4. (Vanishing gradient) ∇f0(x
∗) +

∑mineq

i=1 λ∗
i∇fi(x

∗) +
∑meq

i=1 ν∗i ∇hi(x
∗) = 0.

These generalize the requirement that the unconstrained maximizer of f0(x) should satisfy ∇f0(x
∗) = 0.

– General case: If strong duality holds, it is necessary that (x∗,λ∗,ν∗) satisfy the KKT conditions.

– Convex case: If strong duality holds and the primal problem is convex, then (x∗,λ∗,ν∗) satisfying
the KKT conditions are also sufficient for optimality (the proof of this is omitted).

• (**Optional**) As a final note (without proof), geometric optimality conditions can also be formed:
For constraint sets with smooth boundaries,the negative gradient vector −∇f(x∗) points perpendicular
to the constraint set boundary (left figure below). A similar statement can be made for “pointy”
constraint sets like polyhedra, except that we get an entire cone of possible directions (right figure
below).
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