
CS5275 Lecture 10: Expander Graphs

Jonathan Scarlett

April 10, 2025

Acknowledgment. The first version of these notes was prepared by Niu Xinyuan and Chen Zhi Liang for
a CS6235 assignment.

References:

• Video lecture: Expander Graphs by Ryan O’Donnell 1

• Lecture notes: 7, 8, 12 by Ryan O’Donnell 2

• Lecture notes: 3 by Ola Svensson 3

• Textbook: Expander graphs and their applications, by Hoory, Linial, and Wigderson

Categorization of material:

• Core material: Material before Section 4.1, except when marked ‘Optional’

• Extra material: Section 5 (Applications)

(Exam will strongly focus on “Core”. Take-home assessments may occasionally require consulting “Extra”.)

1 Introduction

Informally, expander graphs are graphs that are simultaneously sparse and highly connected. This seems like
a contradiction at first glance, but we will show formally that there are graphs that fulfill both properties.
The following figure gives a simple example – there are relatively few edges, but there are still several short
paths from any given node to any other.

1https://www.youtube.com/watch?v=bONlIjZRJhA
2https://www.cs.cmu.edu/~odonnell/toolkit13/
3https://theory.epfl.ch/courses/topicstcs/Lecture3.pdf

1

https://www.youtube.com/watch?v=bONlIjZRJhA
https://www.cs.cmu.edu/~odonnell/toolkit13/
https://theory.epfl.ch/courses/topicstcs/Lecture3.pdf

A direct practical motivation for this would be if we were designing a network (e.g., of inter-connected
computing devices) where forming connections (edges) is expensive but we still want a high degree of con-
nectivity. As less obvious applications, we will later see that expander graphs are also useful for reducing the
number of random bits needed in derandomization tasks, and for designing error-correcting codes. There
are also other more abstract uses in areas like complexity theory (e.g., circuit lower bounds).

One approach to proving the existence of expander graphs is to use the probabilistic method, i.e., showing
that a certain random graph gives the desired properties with high probability. On the other hand, it is
often preferable to be able to construct such graphs explicitly without randomization. We will study both
kinds of constructions.

The outline for the lecture is as follows:

1. Properties and definitions of expanders.

2. Extension to bipartite expanders.

3. Existence of expanders via the probabilistic method.

4. Explicit constructions of expanders.

5. Applications: Error correcting codes and derandomization

2 Definitions of Expander Graphs

We consider a undirected, d-regular graph G = (V, E) with |V | = n vertices and |E| = nd
2 edges. A d-

regular graph refers to graph where each degree of a vertex is d. In general, expander graphs are constructed
by algorithm/network designers, and hence we have the flexibility to only look at d-regular graphs (and
d-regularity typically suffices for applications). Further reading regarding irregular graphs of degree at most
d can be found under Definition 9.2 in Hart et al. [2013].

2.1 Sparsity

The notion of a graph being “sparse” is relatively straightforward – its number of edges is small. Formally,
we consider d-regular graphs such that d is a constant that does not dependent n. Thus, the number of edges
is Thus, as n → ∞, the number of edges in the graph increases as O(n), which is much smaller than the
maximum possible of O(n2) edges.

While slowly-growing scaling of d may also be of interest, e.g., d = O(log n), the constant-d regime is
the most widespread and broadly applicable, corresponding to being as sparse as reasonably possible. (If
we were to have o(n) edges then some vertices would have to have no connections, so the graph certainly
wouldn’t be “well-connected”.)

2.2 Highly connected

The connectivity of a graph can be quantified in several ways. We will look at 3 types of expansions, namely
edge, vertex and spectral expansion, which help to formally define the notion of connectivity. We will also
briefly discuss (without much detail) how these notions are connected to each other.

2

2.2.1 Edge expansion

Our first notion of connectivity can concerns edge properties, roughly stating that any given subset of vertices
will have “not too few” edges from inside that subset to outside it. This prevents scenarios such as having
a subset that is isolated from the rest of the graph, which would certainly not be “well-connected”.

Definition 1. For a graph G = (V, E) with n vertices, let

ϕ[S] = no. of edges (u,v) with u ∈ S, v < S

|S|
. (1)

Then, Cheeger’s constant is defined as
ϕG = min

0<|S|≤ n
2

ϕ[S]. (2)

The quantity ϕ[S] measures how well connected S is to its complement Sc = V \ S. For a single choice
of S this might not tell us much about the connectivity of the entire graph, but we get that by performing
a minimization over S to obtain ϕG. Notice that we have limited the size of |S| ≤ n

2 , but for sets bigger
than that we can still draw conclusions about the connectivity by considering the complement set (which
will have size below n

2).
To understand how ϕG related to connectivity, suppose that ϕG is lower bounded by a constant as n→∞,

say ϕG > 0.05. This means that for any subset S of size at most n
2 , there are at least 0.05|S| edges from S

to Sc. This is a constant fraction of the highest feasible number, which is d|S| due to d-regularity. Thus, this
condition prevents any scenario where some subset is “isolated” or has very low connectivity from the rest
of the graph. (The constant 0.05 here is somewhat arbitrary and may seem low; sometimes any constant
factor suffices for theoretical purposes, but sometimes we do care about getting a higher constant.)

We briefly note that a probabilistic interpretation is also possible – if we pick a random vertex in S

and then traverse a random edge from that vertex, then probability of ending up outside S is at least some
(small) constant. With this interpretation, ϕG can also be interpreted as measuring to what extent there
are “bottlenecks” that prevent random traversals from exiting certain parts of the graph (higher ϕG means
there are fewer and/or milder bottlenecks).

It is straightforward to show that ϕG > 0 if and only if the graph is connected, i.e., there exists a path
between any two vertices. (Consider trying this as an exercise.)

2.2.2 Vertex expansion

Along similar lines as edge expansion, one can consider counting the number of nodes in V \S that S connects
to, instead of the number of edges between them. Thus, we are interested in the following ratio for a given
set S ⊂ V :

ϕ′[S] = |∂(S)|
|S|

, (3)

where δ(S) is the set of vertices in Sc = V \ S that are connected to one or more vertices in S (sometimes
called the outer boundary).

Definition 2. The vertex expansion number of G = (V, E) is defined as

ϕ′
G = min

0<|S|≤ n
2

ϕ′[S].

3

Observe that by this definition, we have for |S| ≤ n/2 that

|∂(S)| ≥ ϕ′
G|S|. (4)

Often the definition of vertex expansion is given in this form directly with some parameter α (or ϵ), e.g.:

|∂(S)| ≥ α|S|, or equivalently |N(S)| ≥ (1 + α)|S|, (5)

where N(S) = S ∪ ∂(S) is the boundary along with S itself.
We will focus on d-regular graphs with constant d (not growing with n), and for such graphs it is fairly

simple to show that ϕG and ϕ′
G differ by at most a factor of d (see also the tutorial), so the two at least

coincide to within a constant factor. On the other hand, constant factors can be important, and for vertex
expansion there tend to be a wider variety of expansion notions that may be of interest depending on the
application. To get some idea of why this might be the case, note the following for d-regular graphs:

• If S is a small set, then ∂(S) could be anything from 0 to d|S|, leading to a ratio in [0, d].

• However, if |S| = n/2, then ∂(S) is also at most n/2, leading to a ratio in [0, 1].

If we care about having more precise constants, then the definition of ϕ′
G above is limited in that it needs

to capture both of the above regimes in a single number.
With the above in mind, we proceed to outline some variations (some of which are used in the tuto-

rial/homework, and also in this lecture below for bipartite graphs):

• Instead of considering all |S| ≤ n/2, we might only require |∂(S)| ≥ α|S| for smaller sets S, say |S| ≤ γn

for some γ > 0. In particular, having γ = O(1/d) may better capture the first dot point above.

• Instead of using ∂(S), the expansion may be with respect to N(S), defined as the set of all neighbors
including those in S, or with respect to N(S) = ∂(S) ∪ S = N(S) ∪ S as noted above.

• In the case d-regular graphs, instead of |∂(S)| ≥ α|S| or |N(S)| ≥ (1 + α)|S|, we may re-parametrize
α = ϵD to get the condition |∂(S)| ≥ ϵd|S| or |N(S)| ≥ (1 + ϵd)|S|. This can be convenient because it
naturally means that ϵ ∈ (0, 1), as opposed to α ∈ (0, d).

To elaborate on the last dot point, observe that in a d-regular graph, any set S is trivially connected to at
most d|S| other nodes, but the actual number may be fewer due to “collisions” (i.e., multiple nodes in S

connecting to some other node j). The expansion property says that we always connect to at least ϵd|S| for
some constant ϵ ∈ (0, 1), meaning we are “never too far” from that maximum and thus there are “not too
many collisions”.

At least for theoretical purposes, having ϕ′
G (or α, ϵ, etc.) be any constant that doesn’t decrease with n

(e.g., 0.01) is often considered “large enough”.

2.2.3 (**Optional**) Spectral expansion

Lastly, it is also possible to define well connectedness via the spectrum of the graph. This is sometimes of
interest in its own right, and sometimes used a a stepping stone towards getting results regarding edge and
vertex expansion.

Consider a d-regular graph with adjacency matrix A ∈ {0, 1}n×n, i.e., Aij = 1 whenever i and j are
connected. Instead of working directly with A, spectral properties of graphs are usually characterized by a

4

<latexit sha1_base64="OOWil8lsSBJBR2og1DTzyDCIDHA=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsSP0qijYUFRhESuJC9ZQ827O1ddudMCOEn2FhojK2/yM5/4wJXKPiSSV7em8nMvCCRwqDrfju5ldW19Y38ZmFre2d3r7h/8GjiVDPeYLGMdSughkuheAMFSt5KNKdRIHkzGF5P/eYT10bE6gFHCfcj2lciFIyile7Lt+VuseRW3BnIMvEyUoIM9W7xq9OLWRpxhUxSY9qem6A/phoFk3xS6KSGJ5QNaZ+3LVU04sYfz06dkBOr9EgYa1sKyUz9PTGmkTGjKLCdEcWBWfSm4n9eO8Xw0h8LlaTIFZsvClNJMCbTv0lPaM5QjiyhTAt7K2EDqilDm07BhuAtvrxMHqsV77xydlct1a6yOPJwBMdwCh5cQA1uoA4NYNCHZ3iFN0c6L8678zFvzTnZzCH8gfP5A122jTQ=</latexit>

L
<latexit sha1_base64="Frj8nceoVM+zFk7Z6/iiCvTOPo8=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIph4IrskPo5ELx7xgZDAhswOvTBhdnYzM2tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnIrq2vrG/nNwtb2zu5ecf/gUcepYthgsYhVK6AaBZfYMNwIbCUKaRQIbAbD66nffEKleSwfzChBP6J9yUPOqLHSffmu3C2W3Io7A1kmXkZKkKHeLX51ejFLI5SGCap123MT44+pMpwJnBQ6qcaEsiHtY9tSSSPU/nh26oScWKVHwljZkobM1N8TYxppPYoC2xlRM9CL3lT8z2unJrz0x1wmqUHJ5ovCVBATk+nfpMcVMiNGllCmuL2VsAFVlBmbTsGG4C2+vEweqxXvvHJ2Wy3VrrI48nAEx3AKHlxADW6gDg1g0IdneIU3RzgvzrvzMW/NOdnMIfyB8/kDZtSNOg==</latexit>

R

<latexit sha1_base64="MFhEamWcXxEPuLttkCStzQqtxUM=">AAAB7nicbVDLSsNAFL2pr1pfVZduBluhbkrS4mMjFN24rGAf0IYymUzaoZNJmJkIJfQj3LhQxK3f486/cdpmoa0HLhzOuZd77/FizpS27W8rt7a+sbmV3y7s7O7tHxQPj9oqSiShLRLxSHY9rChngrY005x2Y0lx6HHa8cZ3M7/zRKVikXjUk5i6IR4KFjCCtZE65Yp/Uz8vD4olu2rPgVaJk5ESZGgOil99PyJJSIUmHCvVc+xYuymWmhFOp4V+omiMyRgPac9QgUOq3HR+7hSdGcVHQSRNCY3m6u+JFIdKTULPdIZYj9SyNxP/83qJDq7dlIk40VSQxaIg4UhHaPY78pmkRPOJIZhIZm5FZIQlJtokVDAhOMsvr5J2repcVi8eaqXGbRZHHk7gFCrgwBU04B6a0AICY3iGV3izYuvFerc+Fq05K5s5hj+wPn8APkaONQ==</latexit>

(d = 3)

Figure 1: Bipartite graph illustration (left d-regular with d = 3).

related matrix called the (normalized) Laplacian, L = I − 1
d A (for reasons we won’t go into). The matrix L

has n eigenvalues, namely 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2.
In turns out that Cheeger’s constant ϕG (introduced above for edge expansion) can be bounded in terms of

λ1 via a famous result called Cheeger’s inequality. One reason this is useful is that computation of Cheeger’s
constant ϕG is NP-hard in general, as it involves solving for the sparsest-cut of the graph. However, the
computation of the eigenvalues λi of L can be done efficiently.

Formally, ϕG is related to the second smallest eigenvalue of L, λ1, as follows:

1
2λ1 ≤ ϕG ≤ 2

√
λ1. (6)

In particular, we have a direct relation to edge expansion: If λ1 is “large”, then so is ϕG.

Definition 3. A (n, d, ϵ)-spectral expander graph is a d-regular graph with n vertices and λ1 ≥ ϵ.

We now have three definitions of expanders, which have clear differences but are all closely related, not
only conceptually but also via formal connections such as Cheeger’s inequality.

• (**Optional**) For further reading on how the expansion measures relate to each other, see, e.g.,
https://people.seas.harvard.edu/~salil/pseudorandomness/expanders.pdf

2.3 Bipartite expanders

For many of the examples in this lecture, we will talk about expanders in the context of bipartite graphs,
which are graphs G = (V, E) where V is partitioned into two disjoint sets L and R such that all edges are
between L and R (i.e., there are no edges within L nor within R). This property is useful in applications
where we are interested in mapping a set of objects to another explicitly, and hence the idea of two distinct
subsets of vertices becomes relevant.

In this context, we consider left d-regularity, which is the property that each vertex in L is has exactly d

edges to vertices in R. See Figure 1 for an illustration.
It is then appropriate to define bipartite expanders. In particular, we consider expansion from vertices

on the left of the bipartite graph (instead of on every vertex, as was the case for general expanders above).

Definition 4. A bipartite graph with two disjoint vertex sets L and R, where |L| = n and |R| = m and
deg(u) = d for all u ∈ L, is called a (n, m, d, γ, ϵ) expander if for all S ⊆ L with 0 < |S| ≤ γn, we have:

|N(S)| ≥ ϵd|S|, (7)

5

https://people.seas.harvard.edu/~salil/pseudorandomness/expanders.pdf

where N(S) is the set of nodes in R that are connected to at least one node in S (i.e., the neighbors of S).

Note that here, for convenience, the definition is given directly in terms of the expansion condition
(similar to (5)) instead of the ratio |∂(S)|

|S| , and we use N(S) which is equivalent to ∂(S) for bipartite graphs.
In addition, we use ϵd instead of α, since this will turn out to be more convenient in the applications of
bipartiate graphs (Section 5).

The parameter γ ∈ [0, 1] gives some possible relaxation where we don’t necessarily need the expansion
property to hold for all subsets of size ≤ n or even ≤ n/2, but rather only ≤ γn. This turns out to be
sufficient in many applications even when γ is fairly small.

3 Existence via the Probabilistic Method

At this stage, it may not be clear whether the above expansion notions are even attainable. It turns out that
they indeed are, and we can show it using the probabilistic method – generate a random graph according to
a suitably-defined distribution, and show that it has a positive probability of being an expander graph.

There are many results showing the existence of expanders of various types (edge/vertex/spectral, bi-
partite vs. non-bipartite) and with various parameters (e.g., ϵ and/or γ). Rather than giving a general
statement, for concreteness we focus here on one particular set of parameters for bipartite vertex expanders.

Theorem 3.1. Consider G = (L, R, E) with two disjoint vertex subsets L and R, where |L| = n and |R| = m

and deg(u) = d for all u ∈ L. Suppose that G is randomly constructed as follows:

• For each vertex u ∈ L, perform the following independently: Select d vertices in R uniformly at random
without replacement, and create an edge from u to each of these vertices.

Then, for d ≥ 32, m ≥ 3n/4, and large enough n, it holds with probability at least 18
19 that the graph has the

following vertex expansion property:

|N(S)| ≥ 5d

8 |S|, ∀S ⊆ L : |S| ≤ n

10d
. (8)

That is, the graph is an
(
n, m, d, 5

8 , 1
10d

)
bipartite expander.

Proof. Consider the random graph described in the theorem, and let S ⊂ L have cardinality s = |S| ≤ n
10d .

Given such an S, the desired expansion probability can only be violated if N(S) ⊆ T for some T ⊆ R of size
t = 5d

8 s. We call this a “bad event” and denote it by XS,T . We wish to show that with positive probability,
none of the bad events occur. (Try to convince yourself the case t = 5d

8 s suffices, rather than t ≤ 5d
8 s.)

In total, there are sd edges leaving S. We study the probability of one bad event XS,T as follows:

• Interpret the procedure of sampling d vertices without replacement as follows: First pick a vertex
uniformly at random from m options (in R), then another uniformly at random from the remaining
m− 1 options, and so on, down to m− d + 1 options on the d-th selection.

• First consider a single vertex u ∈ s. By the preceding interpretation, the probability that all of its
neighbors are in T is given by

t

m
· t− 1

m− 1 · . . . · t− d + 1
m− d + 1 ≤

(t

m

)d

,

6

where the inequality follows from A−1
B−1 ≤

A
B when A ≤ B (e.g., 2

3 ≤
3
4), and we have t ≤ m because

T ⊆ R. (Note also that t = 5d
8 s ≤ 5d

8
n

10d = n
16 , whereas we assume m ≥ 3n/4.)

• Since the random neighbors selected for each u ∈ S are independent of each other, it follows that the
overall probability of XS,T is at most (t/m)sd.

For the desired expansion property to hold, we require that XS,T is false for all possible choices of S and T .
Thus, the probability is failing to get the desired expansion condition is

Pr

⋃
S,T

{XS,T }

 (a)
≤

∑
S,T

Pr [XS,T]

(b)
≤

∑
S,T

(t/m)sd

(c)
≤

n/10d∑
s=1

(
n

s

)(
m

5ds/8

) (
5ds

8m

)sd

(d)
≤

n/10d∑
s=1

(ne

s

)s
(

8me

5ds

)5ds/8 (
5ds

8m

)sd

(e)
≤

n/10d∑
s=1

(1
20

)s

≤
∞∑

s=1

(
1
20

)s

= 1
19 ,

(9)

where (a) uses the union bound, (b) was shown in the dot points above, (c) follows by counting the number
of S and T with |S| = s ≤ n

10d and |T | = t = 5d
8 s, (d) uses

(
n
k

)
≤ (ne/k)k, and (e) is a nuisance to work out

line-by-line but essentially amounts to showing that each summand in the previous line is small (at most(1
20

)s) under the assumed conditions d ≥ 32, m ≥ 3n/4, and s ≤ n
10d . The details:

• Define a = ne
s ·

(8me
5ds

)5d/8 ·
(5ds

8m

)d, so that the summands in (d) are as.

• The dependence on s is 1
s · s

d(1−5/8), so since d ≥ 32, it is increasing in s. Thus, we may upper bound
a by replacing s by its upper bound n

10d to get a ≤ 10de
(16me

n

)5d/8 (
n

16m

)d.

• Now the dependence on m is md(5/8−1), which is decreasing, so we can get an upper bound by replacing
m by its smallest value 3n

4 : a ≤ 10de · (12e)5d/8 ·
(1

12
)d.

• A direct calculation gives (12e)5/8× 1
12 < 0.736, giving a ≤ 10de · (0.736)d, which we can directly verify

(numerically or analytically) to be below 1
20 when d ≥ 32.

For a more general analysis using generic constants instead of 5
8 , 1

20 , etc., refer to Ola Svensson’s notes4.
Since there is at most a 1

19 chance of at least one bad event occurring, there is at least an 18
19 chance of

none of them occurring, as desired. □

4https://theory.epfl.ch/courses/topicstcs/Lecture3.pdf

7

https://theory.epfl.ch/courses/topicstcs/Lecture3.pdf

3.1 Bipartite expander graphs from general expander graphs

While we have just proved the existence of bipartite expanders using the probabilistic method, it is also useful
to note another general approach to getting bipartite expanders. Specifically, we describe an alternative
approach in which a regular graph can be “converted” into a bipartite graph while maintaining its expansion
properties, which will generally be easier than performing an entirely separate analysis/construction.

Figure 2: Double cover for a graph

The idea is a notion called the double cover of a (non-bipartite) graph G, which is a bipartite graph H

with twice the number of vertices and edges as G. To construct H, duplicate vertices in graph G such that
for each vertex vi of G, graph H has two corresponding vertices ui and wi. Next, for each edge in G, connect
the corresponding vertices across the 2 halves of H, i.e. for an edge (vi, vj) in G, replace the edge in H with
the edges (ui, wj) and (wi, uj). Mathematically, for a graph with adjacency matrix A, the adjacency matrix
of the double cover is [

0 A

AT 0

]
.

The resulting bipartite graph H remains d-regular. See Figure 2 for a simple example.
Observe that when the original graph satisfies |N(S)| ≥ α|S|, so does the converted bipartite graph.

This is because for each vertex and its neighbors in the original graph, the vertex is connected to the same
corresponding vertices in the other mirrored half of the graph after the double cover operation. Hence, good
expansion of G implies good expansion of H.

4 Explicit Constructions

There are two ways to define the explicit construction of expander graphs.

Definition of explicitness:. A deterministic algorithm outputs the expander graph’s entire adjacency
matrix in poly(n) time.
Definition of strong explicitness. Given any u ∈ [n] (a vertex index), i ∈ [d] (a neighbor index of that
vertex), a deterministic algorithm outputs the i-th neighbor of u in poly(log(n)) time.

Observe that in the latter definition, we are not asking for the full adjacency matrix to be formed, but rather,
for specific entries of it to be computable very efficiently (poly-log instead of poly). As we will see below,
this allows working with graphs with en extremely large number of vertices (e.g., 2b for b that may be in the
hundreds or more), in which case we would certainly like to avoid constructing the full adjacency matrix.

Of course, strong explicitness implies explictness, because one can just loop over all n× n entries of the
adjacency matrix and compute them one-by-one, incurring a total time of O(n2poly(log n)). On the other
hand, explicitness does not imply strong explicitness.

The following subsections give a few well-known (strongly) explicit constructions of expander graphs; their
expansion properties will be stated without proof. The theorems all state a spectral expansion property,

8

but these can be related to edge expansion via (6), and to vertex expansion via other tools that we didn’t
cover (other than a very crude one with a factor of d). These examples follow the ones in the CMU lecture
https://www.youtube.com/watch?v=j6JzqPkvRHM.

4.1 (**Optional**) Margulis-Gabber-Galil Expanders

Let Zm = {0, 1, . . . , m − 1}, and consider mod-m arithmetic over this set. Let V = Z2
m, where vertices

are indexed by x, y ∈ Zm on a two dimensional grid with m ∈ Z+ points in each dimension (so m2 total).
Construct the edge set E by connecting each vertex with coordinate (x, y) to the following 8 neighbors:

1. (x± y, y)

2. (x± (y + 1), y)

3. (x, y ± x)

4. (x, y ± (x + 1))

where the + and − operators are performed modulo m [Goldreich, 2011]. Note that this could mean
connecting a vertex to itself, or connecting one vertex to another multiple times, meaning it is technically a
multi-graph, but we won’t worry so much about this distinction.

Theorem 4.1. [Gabber and Galil, 1981] The method described above constructs a (m2, 8, ϵ)-spectral expander
graph for some ϵ > 0 (ϵ ≈ 0.1)

This method is strongly explicit, since finding the i-th neighbor of any vertex can trivially be done in
O(1) time. Beyond the fact that it is strongly explicit, we see that it is remarkably simple, being completely
described by just 4 extremely basic equations.

The proof of Theorem 4.1 is linear algebra based and is less straightforward.

4.2 (**Optional**) Ramanujan graph expanders

The constant ϵ ≈ 0.1 in Theorem 4.1 is reasonable, but an analysis of random graphs suggests we can do
much better – a random d-regular graph will in fact give a Laplacian matrix L with eigenvalues (except the
one that is zero) very close to one, namely 1−O

(1√
d

)
, suggesting that we could get spectral expansion with

ϵ ≈ 1.
In this section, we introduce another strongly explicit construction called Ramanujan graph expanders

that can attain an analogous improvement for certain d values. Since we are interested in eigenvalues of L

that are close to one, it is more convenient to work with one minus the eigenvalues of L as follows.

Definition 5. A Ramanujan graph is a d-regular graph that satisfies

κ := max{|κi| : i ∈ [n− 1]} ≤ 2√
d

√
1− 1

d
(10)

where κi are the eigenvalues for the normalised adjacency matrix K = 1
d A. (Since the normalized Laplacian

matrix is L = I −K and has eigenvalues λi, we have the relationship κi = 1− λi.)

Observe that when d is large, such a graph is an expander (from the definition of spectral expansion in
Definition 3), and moreover, the expansion constant ϵ is very close to one. Remarkably, the closeness to one
not only matches what random graphs give, but does so in a cleaner non-asymptotic manner.

9

https://www.youtube.com/watch?v=j6JzqPkvRHM

Theorem 4.2. There exists a strongly explicit construction of a d-regular Ramanujan graph for any d ≥ 3
of the form d = pk + 1, where k ∈ Z+ and p is a prime number.5

The constructions themselves (which we haven’t described) are not especially complicated, but the anal-
ysis of the resulting eigenvalues are very advanced based on tools from number theory. While the expansion
properties are strongest for large d as mentioned above, the special case of d = 3 comes out to be particularly
simple as follows.

Corollary 4.3. Let V = Zn with n being a prime number, and let E be the set of edges in which we connect
a ∈ V to a + 1, a − 1 and a−1 in the finite field based on mod-n arithmetic (take 0−1 to produce 0). Then
this is a (n, 3, ϵ)-spectral expander with ϵ ≈ 0.01.

Intuitively, the edges (a, a + 1) and (a, a − 1) produce a cycle of all the vertices a ∈ V , while the edges
(a, a−1) produce “pseudo-random edges” that improve connectivity. As a result, the resultant graph from
this construction achieves spectral expansion with similar behavior as a random 3-regular graph.

Figure 3: Ramanujan expander graph with 80 vertices [Sarnak, 2004]

4.3 (**Optional**) Zig-Zag product expanders

The final explicit construction that we cover is roughly based on iteratively constructing larger and larger
expander graphs. This general approach is especially suited to getting very good bipartite expander graphs,
e.g., with the constant ϵ in |N(S)| ≥ ϵd|S| being a “good” constant like 0.8 rather than an “OK” one like 0.05.
The specific method that we cover is simpler and perhaps not quite good enough to attain such constants,
but it is easier to understand.

We start with the following definition, which we will typically use with G being a “large” graph and H

being a “small” one.

Definition 6. Given two graphs G = (VG, EG) and H = (VH , EH) where G is an n-vertex, D-regular graph
and H is a D-vertex, d-regular graph. We define the replacement product, G r⃝H, as a 2d-regular graph
with a vertex set VG × VH in which each vertex in G is replaced by a copy of H and (g, h) has an edge to
(g′, h′) if and only if either (i) g = g′ and (h, h′) ∈ EH , or (ii) g , g′, g′ is the h-th neighbor of g in G, and
g is the h′-th neighbor of g′ in G.

This definition is a bit complicated, but should become clearer with an example shown below:
5Early works in this direction further assumed that p ≡ 1 (mod 4), but that assumption was subsequently dropped.

10

• G = G1 has n = 7 nodes and degree D = 6;

• H = G2 has D = 6 nodes and degree d = 2;

• The replacement product G1 r⃝G2 contains n “copies” of G2, and there are further edges connecting
different copies in a manner that matches the neighbor numberings in the original G1.

Figure 4: Replacement product example from the paper “Zig-zag and replacement product graphs and LDPC
codes” (Kelley/Sridhara/Rosenthal, 2006).

As it turns out, if G and H are both spectral expanders, then so is their replacement product.

Theorem 4.4. Consider the case that G is a (n, D, ϵG)-spectral expander and H is a (D, d, ϵH)-spectral
expander. Then, the replacement product G r⃝H is a (Dn, 2d, ϵH ϵG

16)-spectral expander.

Notice that the number of vertices has increased (the sizes of G and H get multiplied), the degree has
changed from D to 2d which is typically a decrease (due to G being larger than H), and the spectral expansion
constant has decreased. The last of these is not desirable, but there is a way to increase the expansion factor.
We only provide a brief overview of the idea as follows.

Given the graph G, consider Gt, which is a new graph with edges added based on the t-step connectivity
(if there exists a t-step path from edges u to v in G, add an edge to them). Then Gt has a degree of dt

(including multi-edges). It can be shown that after performing this idea on the replacement product, the
resulting graph is “approximately” a (Dn, (2d)t, t ϵH ϵG

16)-expander (this statement is a bit imprecise, as the
expansion factor is only an approximate expression).

By carefully interleaving the two steps (replacement product and (·)t), we can get a good expander graph
– the replacement product helps keep the degree from getting too large, and the (·)t step prevents the spectral
expansion parameter from getting too small. See the CMU video lecture for somewhat more detail (though
it is still on the brief side).

11

5 Applications

5.1 Error correcting codes

Consider the case where a sender must send a message to a receiver over a noisy channel that can flip an
arbitrary fraction of the k bits of the original message. Knowing that the channel is noisy, the sender adds
redundancy by encoding the message into n > k bits. Any such resulting length-n string is called a codeword.
The hope is that this can be done in a manner that attains multiple goals:

• Send information at a high rate (i.e., keep k
n as high as possible);

• Achieve resilience to errors (i.e., correct decoding is guaranteed even when there are δn bit flips; the
higher δ the better);

• Maintain low computational complexity at the encoder and decoder.

We will show how to use expander graphs to build such a code.
The notions of high rate and resilience to errors are formalized as follows.

Definition 7. (Code rate). The rate of a code C ⊂ {0, 1}n (with |C| = 2k) is R = k
n .

Definition 8. (Minimum distance). The normalized minimum distance (or “distance” for short) of a
code C ⊂ {0, 1}n is D = min

c1,c2

1
n

dH(c1, c2), where dH is the Hamming distance.

The higher the D, the more tolerant is our coding method to errors during transmission. In particular,
it can be shown that an optimal decoder is always able to uniquely recover the message when there are D−1

2
or fewer bit flips.

In general, when the rate is high, the distance tends to be small (and vice versa). A sequence of codes
(indexed by k) is said to be asymptotically good the rate and distance are both lower bounded by positive
constants as k →∞ (e.g., R ≥ 0.01 and D ≥ 0.01).

• Note: Even better would be to get the rate and distance both as high as possible (instead of just
“any constant value”), and expanders can be good for that too, as well as being extremely efficient
computationally (in particular, O(n) decoding time is attainable). However, we’ll only focus on this
more modest goal here, and we won’t place much emphasis on computation.

We can obtain a asymptotically good code using bipartite expanders. We give a specific example using
specific constants, but this can be generalized to get a more general trade-off between rate and distance.

To represent the error correcting code as a bipartite expander, we consider codewords of length n, with
m = 3

4 n parity check constraints. The dimension of the code is k = n−m = 1
4 n, representing a constant rate

of 1
4 . We represent the error correcting code as a bipartite graph with |L| = n and |R| = m. Such a bipartite

graph is called the Tanner graph of C. The vertices in the left subgraph L represent codeword bits, while
the vertices in the right subgraph R represent parity check equations that all codewords must satisfy (and
such that if all of them are satisfied, we must have a codeword). For each parity check, the bits connected to
it are required to consist of an even number of 1s. It turns out to work well to let this graph be a bipartite
expander graph, and we will specifically adopt the choice from Theorem 3.1, whose main property we repeat
here for convenience:

|N(S)| ≥ 5d

8 |S|, ∀S ⊆ L : |S| ≤ n

10d
. (11)

12

Consider the adjacency matrix of the bipartite expander graph H ∈ {0, 1}n×m, where Hi,j (with i ∈ L and
j ∈ R) is the indicator for when there is an edge from vertex i in the left subgraph to vertex j in the right
subgraph. Then, a string x ∈ {0, 1}n is a valid codeword if and only if all the parity checks are satisfied:

x ∈ C ⇐⇒
n⊕

i=1
Hi,jxi = 0, ∀j ∈ {1 · · ·m} (12)

where ⊕ is mod-2 addition. We make use of the properties of the bipartite expander graph (from Theorem
3.1, repeated in (11)) to analyse the Hamming distance of the code C.

Lemma 5.1. Consider the bipartite expander graph from Theorem 3.1. For any subset S ⊆ L with |S| ≤ n
10d ,

there exists a vertex v ∈ N(S) with exactly one neighbor in S.

Proof. Assume, for the sake of contradiction that for all v ∈ N(S), it holds that |N(v) ∩ S| ≥ 2. Then,

(#edges from S to N(S)) ≥ 2|N(S)| ≥ 2 · 5d

8 |S| > d|S|,

where the 5d
8 term comes from the expansion property in Theorem 3.1. This contradicts with the fact that

the graph is d left regular, meaning there are only d|S| edges containing vertices from S. □

Corollary 5.2. The minimum Hamming distance of the code C is greater than n
10d , which is linear in n.

Proof. Let x be any valid codeword, and let x′ be any other sequence whose Hamming distance to x is at
most n

10d . Let S be the set of indices at which x and x′ differ. From Lemma 5.1, there exists some vi ∈ N(S)
with exactly one neighbor in S. This single-neighbor property translates to the following: For the i-th parity
check, one of its bits is different in x and x′, and all of its other bits are identical in x and x′.

Since xH = 0 (due to x being a codeword), the property just stated implies that the i-th entry of x′H

is 1, meaning x′ is not a codeword.
Thus, for any codeword x, there are no other codewords within Hamming distance n

10d . □

Next, we proceed to consider the decoding step, which seeks to recover x from its corrupted version
y = x⊕ z (with z ∈ {0, 1}n containing a 1 wherever a bit is flipped).6 We will focus only on a very simple
decoder, described as follows.

Input: y such that yH , 0 (mod 2)
Output: An estimated codeword x̂ (desired to be as close to y as possible)

1: x̂← y
2: while x̂H , 0 (mod 2) do
3: Flip any x̂i that decreases the number of constraint violations in x̂H

We omit a full analysis of this algorithm and only outline some of the main ideas:

• Suppose that we are given some y withing distance n
10d of the correct codeword (i.e., at most n

10d bit
flips occurred).

• Using similar reasoning as the proof for Corollary 5.2, at each iteration of the loop, there exists at least
one constraint violation associated with exactly one bit in x̂i (i ∈ S), where S is the index set of parity
checks that are violated. Flipping that bit would reduce the number of constraint violations by one.

6Actually the goal is to recover the original message bits, but that’s straightforward once x is recovered.

13

• There may be better choices that reduce by more than one, but even so, we can conclude that the num-
ber of constraint violations will strictly decrease on each iteration. Thus, this number will eventually
decrease to zero, meaning we end up with a valid codeword.

The preceding argument does not establish that we will end up with the closest codeword, but this turns
out to also be true. For the proof of that, see Lecture 8 by Venkatesan Guruswami7, which also describes an
improved decoding algorithms with a linear runtime of O(n). (The above algorithm has polynomial runtime,
but not linear.)

5.2 Error reduction in randomized algorithms

Expanders are also useful in area of error reduction (and derandomization more broadly). The goal in this
problem is to reduce the error probability of a randomized algorithm without using too many extra random
bits. The motivation is that random bits are often viewed as a scarce resource, so the fewer that are needed,
the better. Morever, if we bring it down to a small enough number k, we can even get a deterministic
algorithm by just searching over all 2k random seeds.

Let A be a randomized algorithm for solving a decision problem (i.e., something with a YES/NO answer).
Suppose that we require a one-sided error guarantee:

• If the correct answer is YES, the output must be YES with probabiltiy one;

• If the correct answer is NO, the output must be NO with some specified probability (e.g., 2/3 or 0.95).

For example, the algorithm might be for checking whether an input number is prime: If the number is prime,
A returns 1 with probability 1, and if the number is non-prime, A returns 1 with probability ≤ 0.05 - for
example, the Miller-Rabin primality test has such properties.

Assume that this algorithm makes use of a random n-bit string from {0, 1}n and makes a mistake over
at most a fraction 0.05 (say) of all n-bit random strings.

5.2.1 Naive approach

One naive approach for reducing the error of our random algorithm is to repeat it d times with a different
random n-bit string each time. This incurs:

1. dn random bits.

2. at most 0.05d chance of being wrong. (Hence, we need d = O
(

log 1
δ

)
to get down to some target

δ < 0.05.)

3. algorithm runtime of dT + O(n) (including O(n) time for generating the random bits), where T is the
time for a single invocation.

This approach requires us to regenerate a new random n-bit string on each invocation of the algorithm, and
it turns out that this can be avoided/alleviated using expanders.

7https://www.cs.cmu.edu/ venkatg/teaching/codingtheory/notes/notes8.pdf

14

5.2.2 Improved approach using expanders

Suppose that we have a strongly explicit algorithm to generate a bipartite expander that has the properties
in Theorem 3.1 with |L| = |R| = 2n. For both L and R, we represent any given vertex via a unique n-bit
string, for a total of 2n vertices on each side. We will interpret these strings as choices of the “random seed”
for the randomized algorithm.

Now, consider the algorithm described as follows. First pick a random vertex ℓ from L; this is equivalent
to picking a n-bit random string (just like in the naive approach). Next, use the strongly explicit algorithm
to generate the d neighboring vertices of ℓ : r1, r2, . . . , rd that form N(ℓ) ⊆ R in the bipartite expander.
Due to the strongly explicit property, this takes poly(log(2n)) = poly(n) time. We now have d n-bit strings
which we run A with, and we return 1 if the answer is positive for all d trials, and 0 otherwise .

Claim: The preceding algorithm incurs:

1. n random bits.

2. at most 0.1
d chance of being wrong (proved below).

3. a runtime of dT + poly(n), where T is the time for a single invocation.

Notice that compared to just running A once, the algorithm uses the same number of random bits but
has a smaller error rate (0.1

d ≤ 0.05 for d ≥ 2), albeit at the cost of a higher runtime (at least a factor d larger).

Proof of error rate. Since the algorithm makes use of n-bit strings on R (right partition) of our
bipartite expander, let Bx ⊆ R denote “bad” n-bit strings which cause A to give the wrong answer. By the
assumption of having error probability at most 0.05, we have that Bx consists of at most a 0.05 fraction
of the number of n-bit strings i.e., |Bx| ≤ 0.05(2n). Correspondingly, define S ⊆ L to contain the “bad”
choices in L such that if we choose any ℓ ⊆ S in the algorithm, we will have all of its neighbors in Bx (i.e.,
N(ℓ) ⊆ Bx – this is the only case where the algorithm makes an error; if any vertex in N(ℓ) lies outside
of Bx, then the algorithm will output the correct answer). The key observation is stated in the following
lemma.

Lemma 5.3. For d ≥ 32, the number of bad choices |S| in L is such that |S| < 0.1
d 2n

Proof. For the sake of contradiction, assume that |S| ≥ 0.1
d 2n. Then, consider S′ ⊆ S such that |S′| = 0.1

d 2n.
The bipartite expansion property from Theorem 3.1 (which assumes d ≥ 32) gives the following:

|N(S′)| ≥ 5
8d|S′| ≥ 5

8d
0.1
d

2n = 1
16(2n) > |Bx|, (13)

where the last step follows by recalling that |Bx| ≤ 0.05(2n). This implies that there exist some choices in
S′ such that the algorithm does not produce the wrong answer (since the algorithm will only give a wrong
answer if all vertices chosen in R are in Bx). This leads to a contradiction, because S′ can only contain
“bad” choices. Thus, our original assumption |S| ≥ 0.1

d 2n must have been incorrect, meaning we indeed have
|S| < 0.1

d 2n. □

Therefore, the probability of us picking one of these “bad” choices in L is at most |S|
2n < 0.1

d , which
completes the claim.

Overall, the expansion property is a useful sufficient condition for ensuring that this error reduction

15

technique works well. In principle we could use any bipartite graph, but graphs with poor expansion
properties may be significantly less useful. This is because vertices in L might map to many identical
vertices in R, which limits what can be gained by running all the resulting random seeds. The properties of
expanders prevent such undesirable scenarios.

5.3 (**Optional**) Other applications

We briefly note that expanders also arise in many other topics in theoretical computer science and applied
domains. Some examples and corresponding paper titles are as follows:

• Cryptography (e.g., “Cryptographic hash functions from expander graphs”)

• Sparse estimation (e.g., “Efficient and robust compressed sensing using high-quality expander graphs”)

• Group testing (e.g., “Derandomization and group testing”)

• Circuit complexity lower bounds (e..g, “Poly-logarithmic Frege depth lower bounds via an expander
switching lemma”)

• Network design (e.g., “Optimal network topologies: Expanders, cages, Ramanujan graphs, entangled
networks and all that”)

• Deep neural networks (e.g., “Deep expander networks: Efficient deep networks from graph theory”)

References

Ofer Gabber and Zvi Galil. Explicit constructions of linear-sized superconcentrators. Journal of Computer
and System Sciences, 22(3):407–420, 1981.

Oded Goldreich. Basic Facts About Expander Graphs, pages 451–464. Springer Berlin Heidelberg, 2011.

K.P. Hart, J. van Mill, and P. Simon. Recent Progress in General Topology III. SpringerLink : Bücher.
Atlantis Press, 2013.

Peter Clive Sarnak. What is . . . an expander? Notices of the American Mathematical Society, 51(7):762–763,
August 2004.

16

	Introduction
	Definitions of Expander Graphs
	Sparsity
	Highly connected
	Edge expansion
	Vertex expansion
	(**Optional**) Spectral expansion

	Bipartite expanders

	Existence via the Probabilistic Method
	Bipartite expander graphs from general expander graphs

	Explicit Constructions
	(**Optional**) Margulis-Gabber-Galil Expanders
	(**Optional**) Ramanujan graph expanders
	(**Optional**) Zig-Zag product expanders

	Applications
	Error correcting codes
	Error reduction in randomized algorithms
	Naive approach
	Improved approach using expanders

	(**Optional**) Other applications

