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Outline of Lectures

• Lecture 0: Bayesian Modeling and Regression

• Lecture 1: Gaussian Processes, Kernels, and Regression

• Lecture 2: Optimization with Gaussian Processes

• Lecture 3: Advanced Bayesian Optimization Methods

• Lecture 4: GP Methods in Non-Bayesian Settings
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Outline: This Lecture

I This lecture
1. Linear regression
2. Non-linear regression
3. Feature spaces and kernels
4. Parametric vs. non-parametric regression
5. Optimization
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Background Material

• It is important that you are comfortable with the basics of probability and linear
algebra. See the pre-requisite material document for a very brief summary, or contact
me if you would like any pointers to more detailed material.

• First we will recap the concepts of linear regression, ridge regression, features, and
kernels fairly quickly (since I am assuming you have seen it before). If you need a
more detailed summary of these, see the CS5339 lecture notes (Lectures 4 and 5):

https://www.comp.nus.edu.sg/~scarlett/CS5339_notes/

Video recordings are also available (see LumiNUS for the link)
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Regression Analysis

• Goal:
I Determine relationship between input vector x ∈ Rd and output variable y ∈ R
I Given samples (xt, yt) for t = 1, . . . , n (this is the data set)

• Motivation:
I Often permits interpretability (e.g., factors impacting a medical diagnosis)
I Useful for prediction (e.g., predict financial value of an asset)
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Examples

• Given a data set D = {(xt, yt)}n
t=1, we want to learn the relationship between x

and y, and be able to predict the label y′ corresponding to a new input x′

I e.g., y is the next stock price, x contains a number of previous prices
I e.g., y is the temperature at location x
I e.g., y measures the effectiveness of a medicine represented by x
I e.g., y is the number of sales of a product represented by x
I e.g., y is the age of the person in the image represented by x
I . . .
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Challenge

• Choosing a “richer” model is not always a good idea!

• Example from [scikit-learn.com]:
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Notes:

• A learning algorithm is only as “good” as
the model it is based on

• All models are “wrong”, but some models
are useful

• Preventing underfitting and overfitting is a
significant challenge
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Linear Regression
• Linear regression:
I Assume (approximately) linear relation between x and y:

y = θT x + z

=
d∑

j=1

xjθj + z

for some unknown parameter θ ∈ Rd, where z is possible noise
I Problem: Most relations in practical problems are highly non-linear
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✓
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Linear Regression Approaches

• If we are given a data set D = {(xt, yt)}n
t=1, how do we learn the “best” parameter

θ achieving yt ≈ θT xt?

• Several related approaches:
1. Model each (xt, yt) as being independently drawn from a distribution Pθ(x, y)

parametrized by θ, and estimate these parameters using maximum likelihood
(ML) estimation:

θ̂ = arg max
θ

n∏
t=1

Pθ(yt|xt)

2. Model both θ and each (xt, yt) as being random, and use Bayesian inference to
find P (θ|D) (more soon!)

3. Avoid any explicit model on D = {(xt, yt)}n
t=1, and simply try to look for a good

linear predictor.
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Maximum Likelihood Estimation

• Suppose the data set D = {(xt, yt)}n
t=1 is known to consist of independent samples

generated via
yt = θT xt + zt

with zt ∼ N(0, σ2), for some unknown θ.

•The associated likelihood function is

L(θ;D) =
n∏

t=1

1
√

2πσ2
exp
(
−

(yt − θT xt)2

2σ2

)
.

• Maximizing L is equivalent to maximizing its log, but the latter is more convenient
to work with:

logL(θ;D) = const.−
1

2σ2

n∑
t=1

(yt − θT xt)2, (1)

where const. represents a term that does not depend on θ.
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Least Squares

• By the previous slide, maximizing likelihood is equivalent to least squares:

max
θ

L(θ;D) ⇐⇒ min
θ

n∑
t=1

(yt − θT xt)2.

• By some basic matrix algebra, this has a closed form solution:

θ̂ = (XT X)−1XT y

where y =

 y1
...
yn

 ∈ Rn and X =

 xT
1
...

xT
n

 ∈ Rn×d

I Proof: Lecture 4 of https://www.comp.nus.edu.sg/~scarlett/CS5339_notes/

• Problem: Can be highly sensitive to noise if XT X is not “well-conditioned” (this
can be formalized by the bias-variance trade-off)
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Regularized Least Squares

• A more stable solution can be obtained by regularization: (Ridge Regression)

min
θ

n∑
t=1

(yt − θT xt)2 + λ

d∑
i=1

θ2
i

The higher the parameter λ, the more small entries of θ are favored.

• Similar closed-form expression to the non-regularized case:

θ̂ = (XT X + λI)−1XT y

I Even if XT X poorly-conditioned, adding λI makes it well-conditioned

• More regularization (higher λ) tends to:
I increase bias (E[θ̂] is further from the true θ)
I decrease variance (θ̂ varies less with respect to the noise zt)

By a suitable balance of these, a good choice of λ can reduce E[(θtrue − θ̂)2]
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Note:

• Regularization term λ‖θ‖2 reduces
sensitivity to noise, and can help prevent
overfitting (example to come shortly)

• Higher bias, lower variance
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Non-Linear Regression

• In some cases, the application under consideration might naturally lend itself to a
specific non-linear model

• Examples of non-linear regression:
I Logistic regression (e.g., classification)
I Poisson regression (e.g., low-light imaging, queuing)
I Generalized linear models
I . . .

• Problem: Choosing a “good” non-linear model can be extremely difficult
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(Non)-Linear Regression with Features
• Introducing features:
I Choose an appropriate feature space φ(x) = (φ1(x), . . . , φd′ (x))
I Assume (approximately) linear relation between φ(x) and y:

y = θT φ(x) + z (2)

where z is possible noise

I Example: Polynomial regression for x ∈ R: φ(x) = (1, x, x2, . . . , xp)
I Problem: Designing “good” features can be very difficult
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Toy Example (I)

• Fitting polynomials of increasing degree [scikit-learn.com]:

I Note: To avoid the right-hand scenario, we can limit how large the polynomial
degree p is, or large p may be OK if we choose the right amount of regularization
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Toy Example (II)

• Example from [http://www.youtube.com/watch?v=3liCbRZPrZA]:

I Bottom: Labeled inputs in 2D space (not linearly separable)
I Top: Inputs mapped to 3D space (linearly separable)
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Exercise: Why does regularization help?
• 4-th degree polynomial regression: φ(x) = [1, x, x2, x3, x4]T where x is scalar.

• Then 〈θ,φ(x)〉 = θ0 + θ1x+ θ2x2 + θ3x3 + θ4x4, so the target y is being modeled
(possibly incorrectly) as a 4-th degree polynomial

• Un-regularized least squares from 5 data samples:

Questions:
1. Why does the least-squares θ yield

exactly yt = 〈θ,φ(xt)〉 for each data
point t = 1, . . . , 5?

2. What happens to the blue curve if
the second-right most yt is shifted
up or down?

3. How will this behavior change with
regularization? (λ

∑
i
θ2

i term)
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Introducing Kernels

• Many machine learning algorithms depend on the data x1, . . . ,xn only through the
pairwise inner products 〈xi,xj〉 = xT

i xj

I Ridge regression (to be shown shortly)
I Support vector machine (in “dual” form)
I Nearest-neighbor methods
I Any algorithm only depending on distances and angles between points

• We know that moving to feature spaces can help, so we could map each
xi → φ(xi) and apply the algorithm using 〈φ(xi),φ(xj)〉

• A kernel function k(xi,xj) can be thought of as an inner product in a possibly
implicit feature space
I Key idea. There are clever choices of φ(·) ensuring that we can efficiently

compute 〈φ(xi),φ(xj)〉 without ever explicitly mapping to the feature space
I The implicit feature space may be infinite-dimensional, so we could not explicitly

map to it even if we wanted to.

• Intuition. The kernel function is a measure of similarity
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Examples of Kernels

• We will see more examples of kernels later, and only state some simple ones here

• Linear kernel: k(x,x′) = 〈x,x′〉

• Polynomial kernel: k(x,x′) = (1 + 〈x,x′〉)p

• Radial basis function (RBF) kernel: k(x,x′) = e−‖x−x′‖2/(2`)

• Kernels on abstract data types:
I Simple example on sets: k(S, S′) = |S ∩ S′|
I Other data types: Strings, documents, graphs, molecules, etc.
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Notes:

• Learning algorithms depending only on
〈x,x′〉 can be kernelized

• Kernels allow us to implicitly work in
“large” feature spaces
• Intuitively, k(x,x′) is a measure of
similarity between x and x′
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Exercise

• Question 1. Is the trivial choice k(x,x′) = 〈x,x′〉 consistent with the idea that the
kernel measures similarity?

• Question 2. Why can any algorithm depending on x1, . . . ,xn only through pairwise
distances ‖xi − xj‖ and angles angle(xi,xj) be kernelized?

• Question 3. How do we measure similarity between text data? e.g.,
I x1 = “This sentence is the first string in my data set”
I x2 = “The second string in my data set is this sentence”
I x3 = “Tihs sentance is the third stirng in my dataset”
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Kernel Ridge Regression (I)

• We saw the ridge regression estimator:

θ̂ = (XT X + λI)−1XT y.

• Equivalent form:
θ̂ = XT (XXT + λI)−1y.

I This is easy to prove but non-trivial to see immediately
I See Lecture 5 of CS5339 notes for the details

• Substituting into ŷ(x′) = θ̂
T x′ = (x′)T θ̂ gives

ŷ(x′) = (x′)T XT (XXT + λI)−1y.
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Kernel Ridge Regression (II)

• Crucial observation. The prediction depends on the data only through inner
products, since

(x′)T XT =

 〈x′,x1〉
...

〈x′,xn〉

 , XXT =

 〈x1,x1〉 . . . 〈x1,xn〉
...

. . .
...

〈xn,x1〉 . . . 〈xn,xn〉

 .

• Kernel trick. Replacing inner products by kernel evaluations gives

ŷ(x′) = k(x′)(K + λI)−1y,

where

k(x′) =

 k(x′,x1)
...

k(x′,xn)

 , K =

 k(x1,x1) . . . k(x1,xn)
...

. . .
...

k(xn,x1) . . . k(xn,xn)

 .
This is known as kernel ridge regression.
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Kernel Ridge Regression

• Interpretation. The prediction rule

ŷ(x′) = k(x′)(K + λI)−1y,

can roughly be interpreted as follows:

For a new point x′, the estimate ŷ is a weighted
sum of the {yt}n

t=1 in the data set, with higher
weights given when xt is more similar to x′.

I “Similarity” here is measured by the kernel k(xt,x′)
I e.g., if k(x,x′) = e−‖x−x′‖2 then nearby points are weighted more
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Non-Parametric Regression

• Kernel methods corresponding to infinite-dimensional φ(x) can usually be
considered as non-parametric

• Idea of non-parametric methods:
I Avoid introducing an explicit input-output relationship and its associated

parameters (e.g., θ)
I Instead, construct a model via some (explicit or implicit) form of interpolation of

the available samples

• Simple examples:
I For the 1D case x ∈ R, can interpolate by “joining the dots”
I A non-parametric approach that applies more generally (nearest-neighbors):

I Given a new x, find the sample x1, . . . , xn closest to it
I Predict y to be the same as the corresponding yi
I This can work surprisingly well in some cases

I Generalizations: e.g., k-nearest neighbors
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Bayesian Modeling and Terminology

• Consider a class of models parametrized by θ ∈ Rd (e.g., y = θT x + z)

• Distinct viewpoints:
I Frequentist view. The parameter θ is just some fixed vector that we don’t know
I Bayesian view. We can encode our belief of the possible/likely values of θ

through a distribution p(θ) (e.g., θ ∼ N(µ,Σ))

• Bayes’ rule:

p(θ|D) = p(D|θ)p(θ)
p(D)

which reads in Bayesian terminology as

Posterior =
Likelihood× Prior

Evidence
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Advantages and Disadvantages of Bayesian Approach

Advantages.
I Natural way to incorporate prior knowledge
I Gives not only a prediction, but a full posterior distribution (e.g., to provide

estimates of the level of (un)certainty)
I State-of-the-art performance in many applications

Disadvantages.
I Choosing a prior can be difficult
I With an incorrect prior, can have very undesirable behavior (e.g., claiming high

confidence but actually being completely wrong)
I Exact posterior calculation usually impossible, need to approximate (e.g., with

Monte Carlo or variational methods)
I Even with approximations, considerable computation time is often required
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Notes:

• Bayesian models can provide much more
than just a “point estimate” of θ

• (but must be interpreted with care)
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Bayesian Perspective on Linear Regression & Ridge Regression

• Useful observation. Gaussian prior & Gaussian noise =⇒ Gaussian posterior

• A simple setup:
I Linear model y = θT x + z with random θ

I Gaussian prior θ ∼ N(0, I)
I Gaussian noise z ∼ N(0, σ2) with independence between samples

• Since the posterior of θ is Gaussian, it is fully specified by its mean and covariance
matrix. The mean is given as follows: (proof outline on next slide)

µn = (XT X + σ2I)−1XT y

where y =

 y1
...
yn

 ∈ Rn and X =

 xT
1
.
..

xT
n

 ∈ Rn×d

I Matches regularized least squares (ridge regression) with λ↔ σ2

I The posterior covariance matrix also admits a closed-form expression
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Bayesian Posterior Derivation
• Both v(x) = 〈θ,x〉 and v(x′) = 〈θ,x′〉 have mean zero, so their covariance is

Cov[v(x), v(x′)] = E[(xT θ)((x′)T θ)] = E[(xT θ)(θT x′)]

= xT E[θθT ]x′ = xT x′ = 〈x,x′〉,

since E[θθT ] = I for θ ∼ N(0, I).

• Using this property and the fact that yt ∼ N(v(xt), σ2), we can deduce that[
v′

y

]
∼ N

(
0,
[
‖x′‖2 (x′)T XT

Xx′ XXT + σ2I

])
,

where v′ is short for v(x′).

• Applying the conditional Gaussian formula gives that (v′|y) has mean

(x′)T XT (XXT + σ2I)−1y,

and variance ‖x′‖2 − (x′)T XT (XXT + σ2I)−1Xx′ (not needed here).

• But with µn denoting the posterior mean of θ, we also have E[v(x′)] = (x′)T µn.
Equating with the above equation gives µn = XT (XXT + σ2I)−1y, which we have
already seen is equivalent to the formula on the previous slide.
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