Information-Theoretic Limits for Inference, Learning, and Optimization

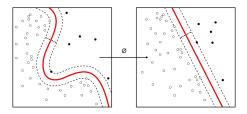
Part 3: Adaptive Data Analysis and Generalization Error

Jonathan Scarlett

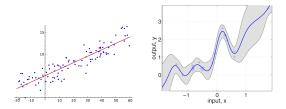
Croucher Summer Course in Information Theory (CSCIT) [July 2019]

Typical Statistical Learning Goals

• Classification:



- Spam detection, image classification, medical diagnosis, etc.
- Regression:

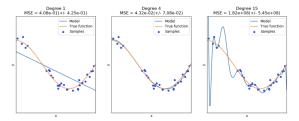


Stock price prediction, environmental monitoring, parameter optimization, etc.

Information-Theoretic Limits for Stats/ML | Jonathan Scarlett

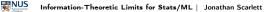
Underfitting and Overfitting

• Example from [scikit-learn.com]:



• Typical behavior of training/test error (at least classically) [ds100.org]:

• Generalization error: Difference between (average) test error and training error



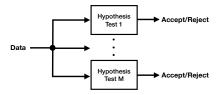
Hypothesis Testing and Adaptive Data Analysis

• Scientific hypothesis testing:

Hypothesis Testing and Adaptive Data Analysis

• Scientific hypothesis testing:

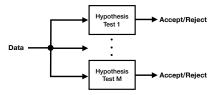
• Scientific hypothesis testing of several hypotheses:



Hypothesis Testing and Adaptive Data Analysis

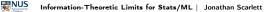
• Scientific hypothesis testing:

• Scientific hypothesis testing of several hypotheses:



• Scientific adaptive data analysis:

• This talk: Information-theoretic study of generalization error and spurious findings



(Very) Brief Overview of Some Classical Learning Theory

Statistical Learning

- Basic notions:
 - ▶ Input (feature) space X
 - ▶ Output (label) space \mathcal{Y}
 - Function class \mathcal{F} (e.g., set of all linear functions from \mathcal{X} to \mathcal{Y})
 - ▶ Loss function $\ell_f(x, y)$ (e.g., squared loss $(y f(x))^2$)
 - ▶ Data set $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ (i.i.d. from unknown P_{XY})

Statistical Learning

- Basic notions:
 - ▶ Input (feature) space X
 - ▶ Output (label) space \mathcal{Y}
 - Function class \mathcal{F} (e.g., set of all linear functions from \mathcal{X} to \mathcal{Y})
 - ▶ Loss function $\ell_f(x, y)$ (e.g., squared loss $(y f(x))^2$)
 - ▶ Data set $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ (i.i.d. from unknown P_{XY})
- Measures of error:
 - True average loss (true risk):

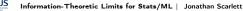
$$L(f) = \mathbb{E}[\ell_f(\mathsf{X}, Y)]$$

Empirical average loss (empirical risk):

$$L_{\mathcal{D}}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell_f(\mathsf{x}_i, y_i)$$

A useful decomposition:

$$\underbrace{L(f)}_{\text{test error}} = \underbrace{L_{\mathcal{D}}(f)}_{\text{training error}} + \underbrace{\left(L(f) - L_{\mathcal{D}}(f)\right)}_{\text{generalization error}}.$$



Classical Generalization Bounds

• PAC guarantee for bounded ℓ and finite \mathcal{F} : If $n \geq \frac{2}{\epsilon^2} \log \frac{2|\mathcal{F}|}{\delta}$ then

$$L(F_{\operatorname{erm}}(\mathcal{D})) \leq \min_{f \in \mathcal{F}} L(f) + \epsilon$$

with probability at least $1 - \delta$.

- Empirical risk minimization: $F_{erm}(\mathcal{D}) = \arg \min_{f \in \mathcal{F}} L_{\mathcal{D}}(f)$
- Analysis: Show that the true risk and empirical risk are close for every function in the class (uniform convergence)

Classical Generalization Bounds

• PAC guarantee for bounded ℓ and finite \mathcal{F} : If $n \geq \frac{2}{\epsilon^2} \log \frac{2|\mathcal{F}|}{\delta}$ then

$$L(F_{\operatorname{erm}}(\mathcal{D})) \leq \min_{f \in \mathcal{F}} L(f) + \epsilon$$

with probability at least $1 - \delta$.

- Empirical risk minimization: $F_{erm}(\mathcal{D}) = \arg \min_{f \in \mathcal{F}} L_{\mathcal{D}}(f)$
- Analysis: Show that the true risk and empirical risk are close for every function in the class (uniform convergence)

• PAC guarantee for 0-1 loss and infinite \mathcal{F} : Similar to the case of finite classes, but with $n \geq C \cdot \frac{d_{\rm VC} + \log \frac{1}{\delta}}{\epsilon^2}$ ($d_{\rm VC} = \text{VC dimension}$)

• Other useful notions. Rademacher complexity, algorithmic stability, PAC-Bayes, etc.

• Concentration bound. For any fixed $f \in \mathcal{F}$, we have

$$\mathbb{P}[|L_{\mathcal{D}}(f) - L(f)| \ge \epsilon_0] \le 2e^{-2n\epsilon_0^2}$$

by Hoeffding's inequality

• Concentration bound. For any fixed $f \in \mathcal{F}$, we have

$$\mathbb{P}[|L_{\mathcal{D}}(f) - L(f)| \ge \epsilon_0] \le 2e^{-2n\epsilon_0^2}$$

by Hoeffding's inequality

• Union bound. Applying the union bound gives

$$\mathbb{P}\bigg[\bigcup_{f\in\mathcal{F}}\big\{|L_{\mathcal{D}}(f)-L(f)|\geq\epsilon_0\big\}\bigg]\leq 2|\mathcal{F}|e^{-2n\epsilon_0^2}$$

• Concentration bound. For any fixed $f \in \mathcal{F}$, we have

$$\mathbb{P}[|L_{\mathcal{D}}(f) - L(f)| \ge \epsilon_0] \le 2e^{-2n\epsilon_0^2}$$

by Hoeffding's inequality

• Union bound. Applying the union bound gives

$$\mathbb{P}\bigg[\bigcup_{f\in\mathcal{F}}\big\{|L_{\mathcal{D}}(f)-L(f)|\geq\epsilon_0\big\}\bigg]\leq 2|\mathcal{F}|e^{-2n\epsilon_0^2}$$

• Re-arranging. The above bound is at most δ provided that

$$n \geq \frac{1}{2\epsilon_0^2} \log \frac{2|\mathcal{F}|}{\delta}$$

• Concentration bound. For any fixed $f \in \mathcal{F}$, we have

$$\mathbb{P}[|L_{\mathcal{D}}(f) - L(f)| \ge \epsilon_0] \le 2e^{-2n\epsilon_0^2}$$

by Hoeffding's inequality

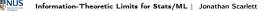
• Union bound. Applying the union bound gives

$$\mathbb{P}\bigg[\bigcup_{f\in\mathcal{F}}\big\{|L_{\mathcal{D}}(f)-L(f)|\geq\epsilon_0\big\}\bigg]\leq 2|\mathcal{F}|e^{-2n\epsilon_0^2}$$

• Re-arranging. The above bound is at most δ provided that

$$n \geq rac{1}{2\epsilon_0^2}\log rac{2|\mathcal{F}|}{\delta}$$

• Wrapping up. Conditioned on the corresponding high probability event, we can easily show that $L(F_{erm}) \leq L_{min} + 2\epsilon_0$. Then set $\epsilon = 2\epsilon_0$.



Structural Risk Minimization

• Multiple function classes. If we have multiple function classes $\mathcal{F}_1, \ldots, \mathcal{F}_M$, then the empirical risk minimizer for a "richer" \mathcal{F}_m will tend to have lower training error, but higher generalization error

Structural Risk Minimization

• Multiple function classes. If we have multiple function classes $\mathcal{F}_1, \ldots, \mathcal{F}_M$, then the empirical risk minimizer for a "richer" \mathcal{F}_m will tend to have lower training error, but higher generalization error

• Bayes optimal decision rule.

$$F^* = \underset{m=1,...,M}{\operatorname{arg min}} \underset{f \in \mathcal{F}_m}{\operatorname{arg min}} L(f)$$

(can't be implemented if we don't know the true data distribution)

Structural Risk Minimization

• Multiple function classes. If we have multiple function classes $\mathcal{F}_1, \ldots, \mathcal{F}_M$, then the empirical risk minimizer for a "richer" \mathcal{F}_m will tend to have lower training error, but higher generalization error

• Bayes optimal decision rule.

$$F^* = \underset{m=1,...,M}{\operatorname{arg min}} \underset{f \in \mathcal{F}_m}{\operatorname{arg min}} L(f)$$

(can't be implemented if we don't know the true data distribution)

• Structural risk minimization rule.

$$F_{\text{srm}} = \underset{m=1,...,M}{\operatorname{arg\,min}} \underset{f \in \mathcal{F}_m}{\operatorname{arg\,min}} L_n(f) + \overline{\operatorname{gen}}(\mathcal{F}_m)$$

where $\overline{\text{gen}}(\mathcal{F}_m)$ is an upper bound on the generalization error for class \mathcal{F}_m

- First term: Seek small training error
- Second term: Regularization; penalize complex classes that may overfit

The Need for New Theoretical Tools

- Key limitation of classical theory: Overly pessimistic due to worst-case PXY
 - Also often difficult to gain insight on specific learning algorithms and/or unbounded loss functions
 - (<u>Note</u>: More recent developments such as Rademacher complexity, PAC-Bayes, etc. are partially addressing some of these issues)

The Need for New Theoretical Tools

- Key limitation of classical theory: Overly pessimistic due to worst-case PXY
 - Also often difficult to gain insight on specific learning algorithms and/or unbounded loss functions
 - (<u>Note</u>: More recent developments such as Rademacher complexity, PAC-Bayes, etc. are partially addressing some of these issues)

• Modern challenges:

- Generalization performance can depend strongly on the data distribution
- Would like theory to capture all ingredients of learning: Data distribution, function class, learning algorithm, and loss function
- Many unsolved open problems (e.g., highly over-parametrized deep neural networks still generalize very well)
 - (<u>Note</u>: No claim of solving these using today's methods!)

Information Theory Approach

An Information-Theoretic Bound

- Recap of notation:
 - ▶ Data set $\mathcal{D} = \{(X_i, Y_i)\}_{i=1}^n$, loss function $\ell_F(x, y)$
 - True average loss L(F), empirical average loss $L_{\mathcal{D}}(F)$
 - Data distribution P_{XY} , learning algorithm $P_{F|D}$
- Average generalization error:

$$\begin{split} & \operatorname{gen}(P_{XY}, P_{F|\mathcal{D}}) = \mathbb{E}[L(F) - L_{\mathcal{D}}(F)] \\ & = \mathbb{E}\bigg[\ell_F(X, Y) - \frac{1}{n}\sum_{i=1}^n \ell_F(X_i, Y_i)\bigg] \end{split}$$

An Information-Theoretic Bound

• Recap of notation:

- ▶ Data set $\mathcal{D} = \{(X_i, Y_i)\}_{i=1}^n$, loss function $\ell_F(x, y)$
- True average loss L(F), empirical average loss $L_{\mathcal{D}}(F)$
- Data distribution P_{XY} , learning algorithm $P_{F|D}$
- Average generalization error:

$$\begin{split} & \operatorname{gen}(P_{XY}, P_{F|\mathcal{D}}) = \mathbb{E}[L(F) - L_{\mathcal{D}}(F)] \\ & = \mathbb{E}\bigg[\ell_F(X, Y) - \frac{1}{n}\sum_{i=1}^n \ell_F(X_i, Y_i)\bigg] \end{split}$$

Claim. If $\ell_f(X, Y)$ is σ^2 -subgaussian for all f, then [Russo and Zou, 2015] $gen(P_{XY}, P_{F|D}) \leq \sigma \sqrt{\frac{2}{n}} I(D; F)$ $\bullet \sigma^2$ -subgaussian: $\mathbb{E}[e^{\lambda(Z - \mathbb{E}[Z])}] \leq e^{\lambda^2 \sigma^2/2}$ for all λ

• Let $P_0(z)$ and $P_1(z)$ be two distributions on z = (x, y)

- Let $P_0(z)$ and $P_1(z)$ be two distributions on z = (x, y)
- A very basic inequality (essentially by definition):

$$|\mathbb{P}_0[A] - \mathbb{P}_1[A]| \le \|P_0 - P_1\|_{\mathrm{TV}}$$

for any event A

Le Cam's Method: Use this inequality to lower bound hypothesis testing error probability in terms of TV norm; also extend to testing sets of distributions

- Let $P_0(z)$ and $P_1(z)$ be two distributions on z = (x, y)
- A very basic inequality (essentially by definition):

$$|\mathbb{P}_0[A] - \mathbb{P}_1[A]| \leq \|P_0 - P_1\|_{\mathrm{TV}}$$

for any event A

- Le Cam's Method: Use this inequality to lower bound hypothesis testing error probability in terms of TV norm; also extend to testing sets of distributions
- Weakened version (via Pinsker's inequality):

$$|\mathbb{P}_0[A] - \mathbb{P}_1[A]| \leq \sqrt{\frac{1}{2}D(P_1||P_0)}$$

(could also swap P_0 and P_1 on the right-hand side)

- Let $P_0(z)$ and $P_1(z)$ be two distributions on z = (x, y)
- A very basic inequality (essentially by definition):

$$|\mathbb{P}_0[A] - \mathbb{P}_1[A]| \leq \|P_0 - P_1\|_{\mathrm{TV}}$$

for any event A

- Le Cam's Method: Use this inequality to lower bound hypothesis testing error probability in terms of TV norm; also extend to testing sets of distributions
- Weakened version (via Pinsker's inequality):

$$|\mathbb{P}_0[A] - \mathbb{P}_1[A]| \leq \sqrt{\frac{1}{2}D(P_1||P_0)}$$

(could also swap P_0 and P_1 on the right-hand side)

• Useful generalization:

[Auer et al., 1995]

$$|\mathbb{E}_{0}[\mathbf{a}(\mathsf{z})] - \mathbb{E}_{1}[\mathbf{a}(\mathsf{z})]| \leq a_{\max}\sqrt{rac{1}{2}D(P_{1}\|P_{0})}$$

for any function $a(\cdot)$ taking values in the range $[0, a_{\max}]$

Starts to look like what we want by setting (i) $P_1 \sim P_{DF}$; (ii) $P_0 \sim P_D \times P_F$; (iii) $a(\mathcal{D}, F) = L_D(F)$. But not quite there (missing the crucial $\frac{1}{\sqrt{n}}$ dependence).

Information-Theoretic Limits for Stats/ML | Jonathan Scarlett

• Variational representation of relative entropy:

$$D(P\|Q) = \sup_{ ilde{g}} \left(\mathbb{E}_P[ilde{g}(Z)] - \log \mathbb{E}_Q[e^{ ilde{g}(Z)}]
ight)$$

• Variational representation of relative entropy:

$$D(P \| Q) = \sup_{\widetilde{g}} \left(\mathbb{E}_{P}[\widetilde{g}(Z)] - \log \mathbb{E}_{Q}[e^{\widetilde{g}(Z)}] \right)$$

- Let $g_0(f, \mathcal{D}) = \frac{1}{n} \sum_{i=1}^n \ell_f(X_i, Y_i)$, and $g(f, \mathcal{D}) = g_0(f, \mathcal{D}) \mathbb{E}[g_0(f, \overline{\mathcal{D}})]$.
 - ► For fixed f and an independent data set \overline{D} , $g(f, \overline{D})$ is zero-mean and $\frac{\sigma^2}{n}$ -subgaussian (by the i.i.d. data assumption), i.e., $\mathbb{E}[e^{\lambda g(f, \overline{D})}] \leq e^{\frac{\lambda^2 \sigma^2}{2n}}$
 - Hence, for \overline{F} and \overline{D} independent, $\mathbb{E}[e^{\lambda g(\overline{F},\overline{D})}] \leq e^{\frac{\lambda^2 \sigma^2}{2n}}$
 - Also note that $\mathbb{E}[g(F, D)]$ is the generalization error

• Variational representation of relative entropy:

$$D(P \| Q) = \sup_{\widetilde{g}} \left(\mathbb{E}_{P}[\widetilde{g}(Z)] - \log \mathbb{E}_{Q}[e^{\widetilde{g}(Z)}] \right)$$

- Let $g_0(f, \mathcal{D}) = \frac{1}{n} \sum_{i=1}^n \ell_f(X_i, Y_i)$, and $g(f, \mathcal{D}) = g_0(f, \mathcal{D}) \mathbb{E}[g_0(f, \overline{\mathcal{D}})]$.
 - ► For fixed f and an independent data set \overline{D} , $g(f, \overline{D})$ is zero-mean and $\frac{\sigma^2}{n}$ -subgaussian (by the i.i.d. data assumption), i.e., $\mathbb{E}[e^{\lambda g(f, \overline{D})}] \leq e^{\frac{\lambda^2 \sigma^2}{2n}}$
 - Hence, for \overline{F} and \overline{D} independent, $\mathbb{E}[e^{\lambda g(\overline{F},\overline{D})}] \leq e^{\frac{\lambda^2 \sigma^2}{2n}}$
 - Also note that $\mathbb{E}[g(F, D)]$ is the generalization error
- Applying the above to $I(\mathcal{D}; F) = D(P_{\mathcal{D}F} || P_{\mathcal{D}} \times P_F)$ and using $\tilde{g} = \lambda g$ gives

$$egin{aligned} & \mathcal{I}(\mathcal{D};F) \geq \lambda \mathbb{E}[g(F,\mathcal{D})] - \log \mathbb{E}[e^{\lambda g(\overline{F},\overline{\mathcal{D}})}] \ & \geq \lambda \mathbb{E}[g(F,\mathcal{D})]] - rac{\lambda^2 \sigma^2}{2n}. \end{aligned}$$

PNUS

• Variational representation of relative entropy:

$$D(P \| Q) = \sup_{\widetilde{g}} \left(\mathbb{E}_{P}[\widetilde{g}(Z)] - \log \mathbb{E}_{Q}[e^{\widetilde{g}(Z)}] \right)$$

- Let $g_0(f, \mathcal{D}) = \frac{1}{n} \sum_{i=1}^n \ell_f(X_i, Y_i)$, and $g(f, \mathcal{D}) = g_0(f, \mathcal{D}) \mathbb{E}[g_0(f, \overline{\mathcal{D}})]$.
 - ► For fixed f and an independent data set \overline{D} , $g(f, \overline{D})$ is zero-mean and $\frac{\sigma^2}{n}$ -subgaussian (by the i.i.d. data assumption), i.e., $\mathbb{E}[e^{\lambda g(f, \overline{D})}] \leq e^{\frac{\lambda^2 \sigma^2}{2n}}$
 - Hence, for \overline{F} and \overline{D} independent, $\mathbb{E}[e^{\lambda g(\overline{F},\overline{D})}] \leq e^{\frac{\lambda^2 \sigma^2}{2n}}$
 - Also note that $\mathbb{E}[g(F, D)]$ is the generalization error
- Applying the above to $I(\mathcal{D}; F) = D(P_{\mathcal{D}F} || P_{\mathcal{D}} \times P_F)$ and using $\tilde{g} = \lambda g$ gives

$$\begin{split} I(\mathcal{D};F) &\geq \lambda \mathbb{E}[g(F,\mathcal{D})] - \log \mathbb{E}[e^{\lambda g(\overline{F},\overline{\mathcal{D}})}] \\ &\geq \lambda \mathbb{E}[g(F,\mathcal{D})]] - \frac{\lambda^2 \sigma^2}{2n}. \end{split}$$

• Setting $\lambda = \frac{n\mathbb{E}[g(F, D)]]}{\sigma^2}$ gives

$$I(\mathcal{D}; F) \geq \frac{n\mathbb{E}[g(F, \mathcal{D})^2]}{2\sigma^2}$$

Re-arranging and noting $\mathbb{E}[g(F, D)] = \operatorname{gen}(P_{XY}, P_{F|D})$ gives the desired result.

Examples

Example 1: Finite Function Class

• Generalization bound:

gen
$$(P_{XY}, P_{F|\mathcal{D}}) \leq \sigma \sqrt{\frac{2}{n}I(\mathcal{D}; F)}$$

Example 1: Finite Function Class

• Generalization bound:

gen(
$$P_{XY}, P_{F|\mathcal{D}}$$
) $\leq \sigma \sqrt{\frac{2}{n}I(\mathcal{D}; F)}$

• Simple weakened version for finite \mathcal{F} :

[Xu and Raginsky, 2017]

$$\operatorname{gen}(P_{XY}, P_{F|\mathcal{D}}) \leq \sigma \sqrt{\frac{2H(F)}{n}}$$

- ▶ Further bounding $H(F) \leq \log |\mathcal{F}|$ gives classical bound for finite \mathcal{F}
- But some learning algorithms may have much lower entropy! For instance, if some function in the class is "clearly best" then it has a much higher chance of being selected, so H(F) is small.
- Can also show that the general bound recovers the VC dimension based bound

Example 2: Quantization of Continuous Function Class

• Generalization bound:

gen
$$(P_{XY}, P_{F|\mathcal{D}}) \leq \sigma \sqrt{\frac{2}{n}I(\mathcal{D}; F)}$$

• Quantization of output function for infinite \mathcal{F} : Take initial output and "round" it to F restricted in some finite set, then use $I(\mathcal{D}; F) \leq H(F)$

Example 2: Quantization of Continuous Function Class

• Generalization bound:

gen
$$(P_{XY}, P_{F|\mathcal{D}}) \leq \sigma \sqrt{\frac{2}{n}I(\mathcal{D}; F)}$$

• Quantization of output function for infinite \mathcal{F} : Take initial output and "round" it to F restricted in some finite set, then use $I(\mathcal{D}; F) \leq H(F)$

• Example.

[Xu and Raginsky, 2017]

▶ If *F* is parametrized by some $\theta \in \mathbb{R}^d$ with $\|\theta\| \leq B$, then quantizing to some $\hat{\theta}$ with $\|\hat{\theta} - \theta\| \leq \frac{1}{\sqrt{n}}$ gives

$$\operatorname{gen}(P_{XY}, P_{F|\mathcal{D}}) \leq \sigma \sqrt{\frac{2d}{n} \log(2B\sqrt{dn})}$$

since it takes at most $(2B\sqrt{dn})^d$ points to always guarantee $\|\hat{ heta}- heta\|\leq rac{1}{\sqrt{n}}$

Example 3: Randomized Selection

• Generalization bound:

gen(
$$P_{XY}, P_{F|\mathcal{D}}$$
) $\leq \sigma \sqrt{\frac{2}{n}I(\mathcal{D}; F)}$

• Randomized selection example: List the top *m* "best" functions in *F* and then select one of those uniformly at random [Russo and Zou, 2015]

Example 3: Randomized Selection

• Generalization bound:

gen(
$$P_{XY}, P_{F|\mathcal{D}}$$
) $\leq \sigma \sqrt{\frac{2}{n}I(\mathcal{D}; F)}$

• Randomized selection example: List the top *m* "best" functions in *F* and then select one of those uniformly at random [Russo and Zou, 2015]

• Analysis. Write

$$I(\mathcal{D}; F) = H(F) - H(F|\mathcal{D})$$
$$\leq \log |\mathcal{F}| - \log m$$
$$= \log \frac{|\mathcal{F}|}{m}$$

and hence

$$\operatorname{gen}(P_{XY}, P_{F|\mathcal{D}}) \leq \sigma \sqrt{\frac{2}{n} \cdot \frac{\log |\mathcal{F}|}{m}}.$$

• Multiplication of $\frac{1}{\sqrt{m}}$ compared to the standard finite- \mathcal{F} bound

Example 3: Randomized Selection

• Generalization bound:

gen(
$$P_{XY}, P_{F|\mathcal{D}}$$
) $\leq \sigma \sqrt{\frac{2}{n}I(\mathcal{D}; F)}$

• Randomized selection example: List the top *m* "best" functions in *F* and then select one of those uniformly at random [Russo and Zou, 2015]

• Analysis. Write

$$I(\mathcal{D}; F) = H(F) - H(F|\mathcal{D})$$
$$\leq \log |\mathcal{F}| - \log m$$
$$= \log \frac{|\mathcal{F}|}{m}$$

and hence

$$\operatorname{gen}(P_{XY}, P_{F|\mathcal{D}}) \leq \sigma \sqrt{\frac{2}{n} \cdot \frac{\log |\mathcal{F}|}{m}}.$$

- ▶ Multiplication of $\frac{1}{\sqrt{m}}$ compared to the standard finite- \mathcal{F} bound
- Increasing *m* tends to increase empirical risk but improve generalization

Example 4: Noisy ERM

• Empirical risk minimization:

$$\hat{f}_{\operatorname{erm}} = \operatorname*{arg\,min}_{f \in \mathcal{F}} L_{\mathcal{D}}(f),$$

i.e., choose the f with smallest training error

Example 4: Noisy ERM

• Empirical risk minimization:

$$\hat{f}_{\operatorname{erm}} = \operatorname*{arg\,min}_{f \in \mathcal{F}} L_{\mathcal{D}}(f),$$

i.e., choose the f with smallest training error

• Noisy empirical risk minimization:

$$\hat{f}_{\text{erm}} = \operatorname*{arg\,min}_{f \in \mathcal{F}} L_{\mathcal{D}}(f) + N_f,$$

where N_f is an independent noise variable (e.g., exponential distribution)

Can choose higher noise mean for more "a priori preferred" functions

Example 4: Noisy ERM

• Empirical risk minimization:

$$\hat{f}_{\operatorname{erm}} = \operatorname*{arg\,min}_{f \in \mathcal{F}} L_{\mathcal{D}}(f),$$

i.e., choose the f with smallest training error

• Noisy empirical risk minimization:

$$\hat{f}_{\operatorname{erm}} = \operatorname*{arg\,min}_{f \in \mathcal{F}} L_{\mathcal{D}}(f) + N_f,$$

where N_f is an independent noise variable (e.g., exponential distribution)

Can choose higher noise mean for more "a priori preferred" functions

• Example risk guarantee: For a countable function class f_1, f_2, f_3, \ldots , under noisy ERM with $N_{f_i} \sim \text{Exponential}(b_i)$, if $b_i = i^{1.1}/n^{1/3}$ then [Xu and Raginsky, 2017]

$$L(F) \leq \min_i L(f_i) + \frac{\mathcal{I}^{1.1} + 3}{n^{1/3}}$$

where $\mathcal{I} = \arg\min_i L(f_i)$

Example 5: Iterative Algorithms

• Generalization bound:

gen
$$(P_{XY}, P_{F|\mathcal{D}}) \leq \sigma \sqrt{\frac{2}{n}I(\mathcal{D}; F)}$$

Example 5: Iterative Algorithms

• Generalization bound:

gen
$$(P_{XY}, P_{F|\mathcal{D}}) \leq \sigma \sqrt{\frac{2}{n}I(\mathcal{D}; F)}$$

• Iterative algorithms: Suppose that we iteratively choose some F_j based on D and the outputs of previous stages (F_1, \ldots, F_{j-1})

 e.g., iterative optimization, going back to our data set because we didn't like what we obtained previously, etc.

Example 5: Iterative Algorithms

• Generalization bound:

gen
$$(P_{XY}, P_{F|\mathcal{D}}) \leq \sigma \sqrt{\frac{2}{n}I(\mathcal{D}; F)}$$

• Iterative algorithms: Suppose that we iteratively choose some F_j based on D and the outputs of previous stages (F_1, \ldots, F_{j-1})

- e.g., iterative optimization, going back to our data set because we didn't like what we obtained previously, etc.
- Stage-wise upper bound on mutual information:

$$egin{aligned} &I(\mathcal{D}; F_k) \leq I(\mathcal{D}; F_1, \dots, F_k) \ &\leq \sum_{j=1}^k I(\mathcal{D}; F_j | F_1, \dots, F_{j-1}) \end{aligned}$$

which resembles the upper bounding technique for channel coding with feedback

• See [Pensia et al., 2018] for examples in stochastic gradient Langevin dynamics

Example 6: Gibbs Distribution

• Mutual information regularization: Since smaller I(D; F) reduces the generalization bound, one can consider using it as a regularizer:

Example 6: Gibbs Distribution

• Mutual information regularization: Since smaller I(D; F) reduces the generalization bound, one can consider using it as a regularizer:

minimize<sub>*P*_{*F*|D}
$$\mathbb{E}[L_{\mathcal{D}}(F)] + \frac{1}{\beta}I(\mathcal{D}; F)$$</sub>

• A computable variant: For fixed Q_F , upper bound $I(\mathcal{D}; F) \leq D(P_{F|\mathcal{D}} || Q_F | P_{\mathcal{D}})$; the resulting minimization

has a solution given by the Gibbs algorithm:

$$P_{F|\mathcal{D}}(f|D) = \frac{e^{-\beta L_D(f)}}{\mathbb{E}_Q[e^{-\beta L_D(F)}]}$$

Example 6: Gibbs Distribution

• Mutual information regularization: Since smaller I(D; F) reduces the generalization bound, one can consider using it as a regularizer:

minimize<sub>*P*_{*F*|D}
$$\mathbb{E}[L_{\mathcal{D}}(F)] + \frac{1}{\beta}I(\mathcal{D}; F)$$</sub>

• A computable variant: For fixed Q_F , upper bound $I(\mathcal{D}; F) \leq D(P_{F|\mathcal{D}} || Q_F | P_{\mathcal{D}})$; the resulting minimization

has a solution given by the Gibbs algorithm:

$$P_{F|\mathcal{D}}(f|D) = \frac{e^{-\beta L_D(f)}}{\mathbb{E}_Q[e^{-\beta L_D(F)}]}$$

• Generalization error:

[Xu and Raginsky, 2017]

$$\operatorname{gen}(P_{\mathsf{X}}, P_{\mathsf{F}|\mathcal{D}}) \leq \frac{\beta}{2n}$$

Useful References

• Original paper:

[Russo and Zou, 2015]

https://arxiv.org/abs/1511.05219

• Follow-up work:

[Xu and Raginsky, 2017]

https://arxiv.org/abs/1705.07809

• (and several more - see "Cited By" on Google Scholar)

