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Typical Statistical Learning Goals

o Classification:

» Spam detection, image classification, medical diagnosis, etc.

e Regression:

-1

0
input, x
» Stock price prediction, environmental monitoring, parameter optimization, etc.

@N‘QS Information-Theoretic Limits for Stats/ML | Jonathan Scarlett slide 2/ 19



Underfitting and Overfitting

Degree 1
MSE = 4.08e-01(+/- 4.25e-01)

e Example from [scikit-learn.com]:

Degree 4
MSE = 4.32e-02(+/- 7.08e-02)

Degree 15
MSE = 1.82e+08(+/- 5.45¢+08)

— Model
True function
o samples

— wodel
True function
o samples

— Model
True function
o samples

e Typical behavior of training/test error (at least classically) [ds100.org]:
€ Underfitting Overfitting >

<
e S

Best Fit

Error

Model “complexity”

(e.g., number of features)
e Generalization error: Difference between (average) test error and training error
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Hypothesis Testing and Adaptive Data Analysis

e Scientific hypothesis testing:

Data ——p> Hyp_l?;:fSis — Accept/Reject
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Hypothesis Testing and Adaptive Data Analysis

e Scientific hypothesis testing:

Data =

Hypothesis — Accept/Reject

Test

e Scientific hypothesis testing of several hypotheses:

Hypothesis

\4

Test 1

> Accept/Reject

Data = .

.

Hypothesis

v

TestM

> Accept/Reject
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Hypothesis Testing and Adaptive Data Analysis

e Scientific hypothesis testing:

Data ——p> Hyp.lz_);:tesis —> Accept/Reject

e Scientific hypothesis testing of several hypotheses:

Hy A i
Test 1 > pt/Reject

Data = .

Hypothesis
TestM

> Accept/Reject

v

e Scientific adaptive data analysis:

pr

e This talk: Information-theoretic study of generalization error and spurious findings

oy
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(Very) Brief Overview of Some
Classical Learning Theory



Statistical Learning

e Basic notions:

v

Input (feature) space X

»> Output (label) space Y

> Function class F (e.g., set of all linear functions from X to )
> Loss function £¢(x,y) (e.g., squared loss (y — f(x))?)

> Data set D = {(x;,¥;)}!_; (i.i.d. from unknown Pxy)
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Statistical Learning

e Basic notions:
> Input (feature) space X
»> Output (label) space Y
> Function class F (e.g., set of all linear functions from X to )
> Loss function £¢(x,y) (e.g., squared loss (y — f(x))?)
> Data set D = {(x;,¥;)}!_; (i.i.d. from unknown Pxy)

e Measures of error:

> True average loss (true risk):
L(f) = E[¢r(X, Y)]

» Empirical average loss (empirical risk):

1 n
Lo(f) =~ fo(xi,yi)
i=1
» A useful decomposition:

L) = Lp(f) + (L)~ Lo(F).
~~ —— _—

test error  training error  generalization error
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Classical Generalization Bounds

e PAC guarantee for bounded ¢ and finite 7: If n > E% log @ then

L(Ferm(D)) < }2'?_— L(f)+e

with probability at least 1 — 6.
» Empirical risk minimization: Ferm (D) = arg mingc » Lp(f)

> Analysis: Show that the true risk and empirical risk are close for every function in
the class (uniform convergence)

FINUS  |nformation-Theoretic Limits for Stats/ML | Jonathan Scarlett slide 6/ 19



Classical Generalization Bounds

e PAC guarantee for bounded ¢ and finite 7: If n > E% log @ then

L(Ferm(D)) < )r;r%l?__ L(f)+e

with probability at least 1 — 6.
» Empirical risk minimization: Ferm (D) = arg mingc » Lp(f)
> Analysis: Show that the true risk and empirical risk are close for every function in

the class (uniform convergence)

e PAC guarantee for 0-1 loss and infinite 7: Similar to the case of finite classes,

1
but with n > C - % (dyvc = VC dimension)

e Other useful notions. Rademacher complexity, algorithmic stability, PAC-Bayes, etc.
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Proof Outline (Finite Function Class)
e Concentration bound. For any fixed f € F, we have

Pl|Lp(f) — L(F)] > eo] < 2e72

by Hoeffding's inequality
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Proof Outline (Finite Function Class)

e Concentration bound. For any fixed f € F, we have
P[ILp(f) — L(F)| 2 co] < 2727
by Hoeffding's inequality

e Union bound. Applying the union bound gives

]P|: U {IL'D(f) - L(f)| > EO} < 2|]_‘|e—2neg
fer
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Proof Outline (Finite Function Class)

e Concentration bound. For any fixed f € F, we have
P[ILp(f) — L(F)| 2 co] < 2727
by Hoeffding's inequality

e Union bound. Applying the union bound gives

IP|: U {IL'D(f) - L(f)| > EO} < 2|]_‘|e—2neg
fer

e Re-arranging. The above bound is at most § provided that

1 2
nz_— Iogﬂ
2¢g é
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Proof Outline (Finite Function Class)

e Concentration bound. For any fixed f € F, we have
P[ILp(f) — L(F)| 2 co] < 2727
by Hoeffding's inequality

e Union bound. Applying the union bound gives

IP|: U {IL'D(f) - L(f)| > EO} < 2|]_‘|e—2neg
fer

e Re-arranging. The above bound is at most § provided that

1 2
nz_— Iogﬂ
2¢g é

e Wrapping up. Conditioned on the corresponding high probability event, we can
easily show that L(Ferm) < Lmin + 2€0. Then set € = 2¢q.
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Structural Risk Minimization

e Multiple function classes. If we have multiple function classes Fi, ..., Fuy, then
the empirical risk minimizer for a “richer” F,, will tend to have lower training error,
but higher generalization error
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Structural Risk Minimization

e Multiple function classes. If we have multiple function classes Fi, ..., Fuy, then
the empirical risk minimizer for a “richer” Fp, will tend to have lower training error,
but higher generalization error

e Bayes optimal decision rule.

F* = argmin argmin L(f)
m=1,....M feFn,

(can't be implemented if we don't know the true data distribution)
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Structural Risk Minimization

e Multiple function classes. If we have multiple function classes Fi, ..., Fuy, then
the empirical risk minimizer for a “richer” Fp, will tend to have lower training error,
but higher generalization error

e Bayes optimal decision rule.

F* = argmin argmin L(f)
m=1,....M feFn,

(can't be implemented if we don't know the true data distribution)

e Structural risk minimization rule.

Fsrm = argmin argmin Ly(f) + gen(Fm)
m=1,....M feFn,

where gen(Fm) is an upper bound on the generalization error for class Fr,
» First term: Seek small training error

> Second term: Regularization; penalize complex classes that may overfit
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The Need for New Theoretical Tools

e Key limitation of classical theory: Overly pessimistic due to worst-case Pxy

> Also often difficult to gain insight on specific learning algorithms and/or
unbounded loss functions

> (Note: More recent developments such as Rademacher complexity, PAC-Bayes,
etc. are partially addressing some of these issues)
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The Need for New Theoretical Tools

e Key limitation of classical theory: Overly pessimistic due to worst-case Pxy

> Also often difficult to gain insight on specific learning algorithms and/or
unbounded loss functions

> (Note: More recent developments such as Rademacher complexity, PAC-Bayes,
etc. are partially addressing some of these issues)

e Modern challenges:
> Generalization performance can depend strongly on the data distribution

» Would like theory to capture all ingredients of learning: Data distribution,
function class, learning algorithm, and loss function

» Many unsolved open problems (e.g., highly over-parametrized deep neural
networks still generalize very well)

P (Note: No claim of solving these using today's methods!)
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Information Theory Approach



An Information-Theoretic Bound

e Recap of notation:
> Data set D = {(X;, Y;)}}_;, loss function £¢(x, y)
» True average loss L(F), empirical average loss Lp(F)

» Data distribution Pxy, learning algorithm Peip

e Average generalization error:
gen(Pxy, Peip) = E[L(F) — Lp(F)]

- IE)|:Z,_—(X, v) - éjzp(xh v,-)]
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An Information-Theoretic Bound

e Recap of notation:
> Data set D = {(X;, Y;)}}_;, loss function £¢(x, y)
» True average loss L(F), empirical average loss Lp(F)

» Data distribution Pxy, learning algorithm Peip

e Average generalization error:
gen(Pxy, Peip) = E[L(F) — Lp(F)]

- E[eF(x, v) - ézp(xh v,-)]

Claim. If £¢(X, Y) is o2-subgaussian for all f, then [Russo and Zou, 2015]
2
gen(Pxy, Peip) < o ;/(D; F)

> o2-subgaussian: E[e*Z—EIZD] < eX*0%/2 for all A
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Connection to Le Cam'’s Method
e Let Py(z) and P1(z) be two distributions on z = (x, y)
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Connection to Le Cam’s Method
e Let Py(z) and P1(z) be two distributions on z = (x, y)
e A very basic inequality (essentially by definition):
[Po[A] — P1[A]| < [|Po — P1ITv

for any event A

» Le Cam’s Method: Use this inequality to lower bound hypothesis testing error probability
in terms of TV norm; also extend to testing sets of distributions
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Connection to Le Cam’s Method
e Let Py(z) and P1(z) be two distributions on z = (x, y)
e A very basic inequality (essentially by definition):
[Po[A] — P1[A]| < [|Po — P1ITv

for any event A
» Le Cam’s Method: Use this inequality to lower bound hypothesis testing error probability
in terms of TV norm; also extend to testing sets of distributions

e Weakened version (via Pinsker's inequality):

[PolA] ~ B1[A]| < 1/ D(P1]| Po)

(could also swap Pg and Py on the right-hand side)
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Connection to Le Cam’s Method
e Let Py(z) and P1(z) be two distributions on z = (x, y)
e A very basic inequality (essentially by definition):
[Po[A] — P1[A]| < [|Po — P1ITv

for any event A

» Le Cam’s Method: Use this inequality to lower bound hypothesis testing error probability
in terms of TV norm; also extend to testing sets of distributions

e Weakened version (via Pinsker's inequality):

[PolA] ~ B1[A]| < 1/ D(P1]| Po)

(could also swap Pg and Py on the right-hand side)

o Useful generalization: [Auer et al., 1995]

[Eola()] ~ Eafa()] < amaxy 3 D(P11Po)

for any function a(-) taking values in the range [0, amax]

Starts to look like what we want by setting (i) P1 ~ Ppf; (ii) Po ~ Pp X Pg; (iii)
a(D, F) = Lp(F). But not quite there (missing the crucial % dependence).
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Proof Details

e Variational representation of relative entropy:

D(P|IQ) = sup (Ep[g(Z)] — log EQ[EE(Z)D
g
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Proof Details

e Variational representation of relative entropy:

D(P|IQ) = sup (Ep[g(Z)] — log EQ[SE(Z)])
g

o Let go(f, D) = L 377, £¢(X;, Vi), and g(f, D) = go(f, D) — Elgo(f, D)].

» For fixed f and an independent data set D, g(f, D) is zero-mean and "Tz—subgaussian (by
_ 2242
the i.i.d. data assumption), i.e., E[e*¢("P)] < e 2n
_ _ _ 22,2
» Hence, for F and D independent, ]E[eAg(F‘D)] <e 2n

» Also note that E[g(F, D)] is the generalization error
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Proof Details

e Variational representation of relative entropy:

D(P|IQ) = sup (Ep[g(Z)] — log EQ[SE(Z)])
g

o Let go(f, D) = L 377, £¢(X;, Vi), and g(f, D) = go(f, D) — Elgo(f, D)].

» For fixed f and an independent data set D, g(f, D) is zero-mean and "Tz—subgaussian (by
2 2

£l Ao
the i.i.d. data assumption), i.e., E[e*¢("P)] < e 2n
_ _ I 22,2
» Hence, for F and D independent, ]E[eAg(F‘D)] <e 2n

» Also note that E[g(F, D)] is the generalization error
o Applying the above to I(D; F) = D(Ppfr||Pp x Pg) and using § = A\g gives

I(D; F) > AE[g(F,D)] — log E[e*8(FD)]
252

2n

> AE[g(F, D)]] -
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Proof Details

e Variational representation of relative entropy:

D(P|IQ) = sup (Ep[g(Z)] — log EQ[SE(Z)])
g

o Let go(f, D) = L 377, £¢(X;, Vi), and g(f, D) = go(f, D) — Elgo(f, D)].

» For fixed f and an independent data set D, g(f, D) is zero-mean and "Tz—subgaussian (by
2 2

5 A
the i.i.d. data assumption), i.e., E[e*¢("P)] < e 2
2 2

_ _ = 220
» Hence, for F and D independent, E[e*¢(F'P)] < ¢ 2n
» Also note that E[g(F, D)] is the generalization error
o Applying the above to I(D; F) = D(Ppfr||Pp x Pg) and using § = A\g gives

I(D; F) > AE[g(F, D)] — log E[e*&("P)]

A2g2
> XE[g(F, D)]] - =
n
e Setting A = w gives
Elg(F,D)?
(0 Py > "EL&(F D)

202
Re-arranging and noting E[g(F,D)] = gen(Pxy, Pr|p) gives the desired result.
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Examples



Example 1: Finite Function Class

o Generalization bound:

2(D: F)

gen(Pxy, Prip) < o4/~
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Example 1: Finite Function Class

o Generalization bound:

2
gen(Pxy, Prip) <o ;I(D; F)
e Simple weakened version for finite 7: [Xu and Raginsky, 2017]
2H(F
gen(Pxy, Prip) <o %

» Further bounding H(F) < log |F| gives classical bound for finite 7

» But some learning algorithms may have much lower entropy! For instance, if
some function in the class is “clearly best” then it has a much higher chance of
being selected, so H(F) is small.

» Can also show that the general bound recovers the VC dimension based bound
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Example 2: Quantization of Continuous Function Class

e Generalization bound:

21(D; F)

gen(Pxy, Prip) <o -

e Quantization of output function for infinite F: Take initial output and “round” it
to F restricted in some finite set, then use I(D; F) < H(F)
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Example 2: Quantization of Continuous Function Class

e Generalization bound:

21(D; F)

gen(Pxy, Prip) <o -

e Quantization of output function for infinite F: Take initial output and “round” it
to F restricted in some finite set, then use I(D; F) < H(F)

e Example. [Xu and Raginsky, 2017]
> If F is parametrized by some 6 € R? with ||0|| < B, then quantizing to some

with |6 — 0] < \% gives
2d
gen(Pxy, Prip) < o4/ — log(2BV dn)
n
since it takes at most (2B+/dn)? points to always guarantee || — 0| <

1
v
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Example 3: Randomized Selection

o Generalization bound:

2I(D; F)

gen(Pxy, Prip) <o -

e Randomized selection example: List the top m “best” functions in F and then
select one of those uniformly at random [Russo and Zou, 2015]
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Example 3: Randomized Selection

o Generalization bound:

2I(D; F)

gen(Pxy, Prip) <o -

e Randomized selection example: List the top m “best” functions in F and then
select one of those uniformly at random [Russo and Zou, 2015]

e Analysis. Write
I(D; F) = H(F) — H(F|D)
<log|F| —logm
171

m

2 log|F
gen(Pxy, Prip) <o/ — - log |71,
n m

» Multiplication of ﬁ compared to the standard finite-F bound

= log

and hence
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Example 3: Randomized Selection

o Generalization bound:

2I(D; F)

gen(Pxy, Prip) <o -

e Randomized selection example: List the top m “best” functions in F and then
select one of those uniformly at random [Russo and Zou, 2015]

e Analysis. Write
I(D; F) = H(F) — H(F|D)
<log|F| —logm
171

m

2 log|F
gen(Pxy, Prip) <o/ — - log |71,
n m

» Multiplication of ﬁ compared to the standard finite-F bound

= log

and hence

e Increasing m tends to increase empirical risk but improve generalization
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Example 4: Noisy ERM

e Empirical risk minimization:

ferm = arg min LD(f)’
feF

i.e., choose the f with smallest training error
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Example 4: Noisy ERM

e Empirical risk minimization:

ferm = arg min LD(f)’
feF
i.e., choose the f with smallest training error

e Noisy empirical risk minimization:

ferm = arg min L’D(f) + Nf7
feFr

where Ny is an independent noise variable (e.g., exponential distribution)

> Can choose higher noise mean for more “a priori preferred” functions
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Example 4: Noisy ERM

e Empirical risk minimization:

ferm = arg min LD(f)’
feF
i.e., choose the f with smallest training error

e Noisy empirical risk minimization:

ferm = arg min L’D(f) + Nf7
feFr

where Ny is an independent noise variable (e.g., exponential distribution)

> Can choose higher noise mean for more “a priori preferred” functions

e Example risk guarantee: For a countable function class f1, f2, f3, ..., under noisy
ERM with Ng ~ Exponential(b;), if b; = it1/nl/3 then [Xu and Raginsky, 2017]

IlAl +3

L(F) < ml_in L(f) + Ve

where Z = arg min; L(f;)
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Example 5: Iterative Algorithms

o Generalization bound:

2 1(D; F)

gen(Pxy, Prip) <o o
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Example 5: Iterative Algorithms

o Generalization bound:

2I(D; F)

gen(Pxy, Pejp) < o o

o lterative algorithms: Suppose that we iteratively choose some F; based on D and
the outputs of previous stages (Fi,..., Fj_1)

> e.g., iterative optimization, going back to our data set because we didn't like
what we obtained previously, etc.
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Example 5: Iterative Algorithms

o Generalization bound:

2I(D; F)

gen(Pxy, Pejp) < o o

o lterative algorithms: Suppose that we iteratively choose some F; based on D and
the outputs of previous stages (Fi,..., Fj_1)

> e.g., iterative optimization, going back to our data set because we didn't like
what we obtained previously, etc.

e Stage-wise upper bound on mutual information:

I(D; Fy) < I(D; Fu, ..., Fi)
K
<> I(D;F|F,...,Fi_1)
=1

which resembles the upper bounding technique for channel coding with feedback

o See [Pensia et al., 2018] for examples in stochastic gradient Langevin dynamics
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Example 6: Gibbs Distribution

e Mutual information regularization: Since smaller /(D; F) reduces the
generalization bound, one can consider using it as a regularizer:

minimizep,:‘D E[Lp(F)] + %I(’D; F)
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Example 6: Gibbs Distribution

e Mutual information regularization: Since smaller /(D; F) reduces the
generalization bound, one can consider using it as a regularizer:

minimizep,:‘D E[Lp(F)] + %I(’D; F)

o A computable variant: For fixed QF, upper bound /(D; F) < D(Pg|pllQF|Pp);
the resulting minimization

e 1
minimizep, ., E[Lp(F)] + BD(PHDHQF\PD)

has a solution given by the Gibbs algorithm:
e—BLp(f)

Prp(fID) = Eole PLo(F)]
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Example 6: Gibbs Distribution

e Mutual information regularization: Since smaller /(D; F) reduces the
generalization bound, one can consider using it as a regularizer:

minimizep,:‘D E[Lp(F)] + %I(’D; F)

o A computable variant: For fixed QF, upper bound /(D; F) < D(Pg|pllQF|Pp);
the resulting minimization

e 1
minimizep, ., E[Lp(F)] + BD(PHDHQF\PD)

has a solution given by the Gibbs algorithm:

e—BLp(f)

Prp(fID) = Eole PLo(F)]

e Generalization error: [Xu and Raginsky, 2017]

B
gen(Pxy, Prip) < —
2n
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Useful References

e Original paper: [Russo and Zou, 2015]

https://arxiv.org/abs/1511.05219

e Follow-up work: [Xu and Raginsky, 2017]

https://arxiv.org/abs/1705.07809

e (and several more — see “Cited By" on Google Scholar)
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