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Typical Statistical Learning Goals
• Classification:

▶ Spam detection, image classification, medical diagnosis, etc.

• Regression:

▶ Stock price prediction, environmental monitoring, parameter optimization, etc.
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Underfitting and Overfitting
• Example from [scikit-learn.com]:

• Typical behavior of training/test error (at least classically) [ds100.org]:

• Generalization error: Difference between (average) test error and training error
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Hypothesis Testing and Adaptive Data Analysis
• Scientific hypothesis testing:

Hypothesis 
TestData Accept/Reject

Hypothesis 
Test 1

Data

Accept/Reject

Hypothesis 
Test M

...
Accept/Reject

• Scientific hypothesis testing of several hypotheses:
Hypothesis 

TestData Accept/Reject

Hypothesis 
Test 1

Data

Accept/Reject

Hypothesis 
Test M

...
Accept/Reject

• Scientific adaptive data analysis:

Hypothesis 
TestData Accept/Reject

Hypothesis 
Test 1

Data

Accept/Reject

Hypothesis 
Test M

...
Accept/Reject

• This talk: Information-theoretic study of generalization error and spurious findings
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(Very) Brief Overview of Some
Classical Learning Theory



Statistical Learning

• Basic notions:
▶ Input (feature) space X
▶ Output (label) space Y
▶ Function class F (e.g., set of all linear functions from X to Y)
▶ Loss function ℓf (x, y) (e.g., squared loss (y − f (x))2)
▶ Data set D = {(xi , yi )}ni=1 (i.i.d. from unknown PXY )

• Measures of error:
▶ True average loss (true risk):

L(f ) = E[ℓf (X,Y )]

▶ Empirical average loss (empirical risk):

LD(f ) =
1
n

n∑
i=1

ℓf (xi , yi )

▶ A useful decomposition:

L(f )︸︷︷︸
test error

= LD(f )︸ ︷︷ ︸
training error

+
(
L(f )− LD(f )

)︸ ︷︷ ︸
generalization error

.
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Classical Generalization Bounds

• PAC guarantee for bounded ℓ and finite F : If n ≥ 2
ϵ2 log 2|F|

δ
then

L(Ferm(D)) ≤ min
f∈F

L(f ) + ϵ

with probability at least 1 − δ.
▶ Empirical risk minimization: Ferm(D) = argminf∈F LD(f )

▶ Analysis: Show that the true risk and empirical risk are close for every function in
the class (uniform convergence)

• PAC guarantee for 0-1 loss and infinite F : Similar to the case of finite classes,

but with n ≥ C · dVC+log 1
δ

ϵ2 (dVC = VC dimension)

• Other useful notions. Rademacher complexity, algorithmic stability, PAC-Bayes, etc.
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Proof Outline (Finite Function Class)

• Concentration bound. For any fixed f ∈ F , we have

P[|LD(f )− L(f )| ≥ ϵ0] ≤ 2e−2nϵ20

by Hoeffding’s inequality

• Union bound. Applying the union bound gives

P
[ ⋃
f∈F

{
|LD(f )− L(f )| ≥ ϵ0

}]
≤ 2|F|e−2nϵ20

• Re-arranging. The above bound is at most δ provided that

n ≥
1

2ϵ20
log

2|F|
δ

• Wrapping up. Conditioned on the corresponding high probability event, we can
easily show that L(Ferm) ≤ Lmin + 2ϵ0. Then set ϵ = 2ϵ0.
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Structural Risk Minimization

• Multiple function classes. If we have multiple function classes F1, . . . ,FM , then
the empirical risk minimizer for a “richer” Fm will tend to have lower training error,
but higher generalization error

• Bayes optimal decision rule.

F∗ = argmin
m=1,...,M

argmin
f∈Fm

L(f )

(can’t be implemented if we don’t know the true data distribution)

• Structural risk minimization rule.

Fsrm = argmin
m=1,...,M

argmin
f∈Fm

Ln(f ) + gen(Fm)

where gen(Fm) is an upper bound on the generalization error for class Fm

▶ First term: Seek small training error
▶ Second term: Regularization; penalize complex classes that may overfit
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The Need for New Theoretical Tools

• Key limitation of classical theory: Overly pessimistic due to worst-case PXY

▶ Also often difficult to gain insight on specific learning algorithms and/or
unbounded loss functions

▶ (Note: More recent developments such as Rademacher complexity, PAC-Bayes,
etc. are partially addressing some of these issues)

• Modern challenges:
▶ Generalization performance can depend strongly on the data distribution
▶ Would like theory to capture all ingredients of learning: Data distribution,

function class, learning algorithm, and loss function
▶ Many unsolved open problems (e.g., highly over-parametrized deep neural

networks still generalize very well)
▶ (Note: No claim of solving these using today’s methods!)
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Information Theory Approach



An Information-Theoretic Bound

• Recap of notation:
▶ Data set D = {(Xi ,Yi )}ni=1, loss function ℓF (x, y)
▶ True average loss L(F ), empirical average loss LD(F )

▶ Data distribution PXY , learning algorithm PF |D

• Average generalization error:

gen(PXY ,PF |D) = E[L(F )− LD(F )]

= E
[
ℓF (X,Y )−

1
n

n∑
i=1

ℓF (Xi ,Yi )

]

Claim. If ℓf (X,Y ) is σ2-subgaussian for all f , then [Russo and Zou, 2015]

gen(PXY ,PF |D) ≤ σ

√
2
n
I (D;F )

▶ σ2-subgaussian: E[eλ(Z−E[Z ])] ≤ eλ
2σ2/2 for all λ
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Connection to Le Cam’s Method
• Let P0(z) and P1(z) be two distributions on z = (x, y)

• A very basic inequality (essentially by definition):

|P0[A]− P1[A]| ≤ ∥P0 − P1∥TV

for any event A
▶ Le Cam’s Method: Use this inequality to lower bound hypothesis testing error probability

in terms of TV norm; also extend to testing sets of distributions

• Weakened version (via Pinsker’s inequality):

|P0[A]− P1[A]| ≤
√

1
2
D(P1∥P0)

(could also swap P0 and P1 on the right-hand side)

• Useful generalization: [Auer et al., 1995]

|E0[a(z)]− E1[a(z)]| ≤ amax

√
1
2
D(P1∥P0)

for any function a(·) taking values in the range [0, amax]

Starts to look like what we want by setting (i) P1 ∼ PDF ; (ii) P0 ∼ PD × PF ; (iii)
a(D,F ) = LD(F ). But not quite there (missing the crucial 1√

n
dependence).
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Proof Details
• Variational representation of relative entropy:

D(P∥Q) = sup
g̃

(
EP [g̃(Z)]− logEQ [e

g̃(Z)]
)

• Let g0(f ,D) = 1
n

∑n
i=1 ℓf (Xi ,Yi ), and g(f ,D) = g0(f ,D)− E[g0(f ,D)].

▶ For fixed f and an independent data set D, g(f ,D) is zero-mean and σ2
n -subgaussian (by

the i.i.d. data assumption), i.e., E[eλg(f ,D)] ≤ e
λ2σ2

2n

▶ Hence, for F and D independent, E[eλg(F,D)] ≤ e
λ2σ2

2n

▶ Also note that E[g(F ,D)] is the generalization error

• Applying the above to I (D;F ) = D(PDF ∥PD × PF ) and using g̃ = λg gives

I (D;F ) ≥ λE[g(F ,D)]− logE[eλg(F ,D)]

≥ λE[g(F ,D)]]−
λ2σ2

2n
.

• Setting λ = nE[g(F ,D)]]
σ2 gives

I (D;F ) ≥
nE[g(F ,D)2]

2σ2

Re-arranging and noting E[g(F ,D)] = gen(PXY ,PF |D) gives the desired result.
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Examples



Example 1: Finite Function Class

• Generalization bound:

gen(PXY ,PF |D) ≤ σ

√
2
n
I (D;F )

• Simple weakened version for finite F : [Xu and Raginsky, 2017]

gen(PXY ,PF |D) ≤ σ

√
2H(F )

n

▶ Further bounding H(F ) ≤ log |F| gives classical bound for finite F
▶ But some learning algorithms may have much lower entropy! For instance, if

some function in the class is “clearly best” then it has a much higher chance of
being selected, so H(F ) is small.

▶ Can also show that the general bound recovers the VC dimension based bound
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Example 2: Quantization of Continuous Function Class

• Generalization bound:

gen(PXY ,PF |D) ≤ σ

√
2
n
I (D;F )

• Quantization of output function for infinite F : Take initial output and “round” it
to F restricted in some finite set, then use I (D;F ) ≤ H(F )

• Example. [Xu and Raginsky, 2017]
▶ If F is parametrized by some θ ∈ Rd with ∥θ∥ ≤ B, then quantizing to some θ̂

with ∥θ̂ − θ∥ ≤ 1√
n

gives

gen(PXY ,PF |D) ≤ σ

√
2d
n

log(2B
√
dn)

since it takes at most (2B
√
dn)d points to always guarantee ∥θ̂ − θ∥ ≤ 1√

n
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Example 3: Randomized Selection

• Generalization bound:

gen(PXY ,PF |D) ≤ σ

√
2
n
I (D;F )

• Randomized selection example: List the top m “best” functions in F and then
select one of those uniformly at random [Russo and Zou, 2015]

• Analysis. Write

I (D;F ) = H(F )− H(F |D)

≤ log |F| − logm

= log
|F|
m

and hence

gen(PXY ,PF |D) ≤ σ

√
2
n
·
log |F|

m
.

▶ Multiplication of 1√
m

compared to the standard finite-F bound

• Increasing m tends to increase empirical risk but improve generalization
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Example 4: Noisy ERM

• Empirical risk minimization:

f̂erm = argmin
f∈F

LD(f ),

i.e., choose the f with smallest training error

• Noisy empirical risk minimization:

f̂erm = argmin
f∈F

LD(f ) + Nf ,

where Nf is an independent noise variable (e.g., exponential distribution)
▶ Can choose higher noise mean for more “a priori preferred” functions

• Example risk guarantee: For a countable function class f1, f2, f3, . . . , under noisy
ERM with Nfi ∼ Exponential(bi ), if bi = i1.1/n1/3 then [Xu and Raginsky, 2017]

L(F ) ≤ min
i

L(fi ) +
I1.1 + 3
n1/3

where I = argmini L(fi )
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Example 5: Iterative Algorithms

• Generalization bound:

gen(PXY ,PF |D) ≤ σ

√
2
n
I (D;F )

• Iterative algorithms: Suppose that we iteratively choose some Fj based on D and
the outputs of previous stages (F1, . . . ,Fj−1)

▶ e.g., iterative optimization, going back to our data set because we didn’t like
what we obtained previously, etc.

• Stage-wise upper bound on mutual information:

I (D;Fk ) ≤ I (D;F1, . . . ,Fk )

≤
k∑

j=1

I (D;Fj |F1, . . . ,Fj−1)

which resembles the upper bounding technique for channel coding with feedback

• See [Pensia et al., 2018] for examples in stochastic gradient Langevin dynamics
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Example 6: Gibbs Distribution

• Mutual information regularization: Since smaller I (D;F ) reduces the
generalization bound, one can consider using it as a regularizer:

minimizePF|D E[LD(F )] +
1
β
I (D;F )

• A computable variant: For fixed QF , upper bound I (D;F ) ≤ D(PF |D∥QF |PD);
the resulting minimization

minimizePF|D E[LD(F )] +
1
β
D(PF |D∥QF |PD)

has a solution given by the Gibbs algorithm:

PF |D(f |D) =
e−βLD (f )

EQ [e−βLD (F )]

• Generalization error: [Xu and Raginsky, 2017]

gen(PXY ,PF |D) ≤
β

2n
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Useful References

• Original paper: [Russo and Zou, 2015]

https://arxiv.org/abs/1511.05219

• Follow-up work: [Xu and Raginsky, 2017]

https://arxiv.org/abs/1705.07809

• (and several more – see “Cited By” on Google Scholar)
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