
A Fresh Graduate’s Guide to Software Development Tools and Technologies

Chapter

 GUI Programming

CHAPTER AUTHORS

Ang Ming You

Ching Sieh Yuan

Francis Tam

Pua Xuan Zhan

12

Software Development Tools and Technologies

2

Ch12: GUI Programming

3

CONTENTS

1 Introduction .. 5

2 GUI Structure .. 7

3 GUI Behaviour ... 10

4 GUI Appearance .. 14

5 Concurrency in GUIs ... 16

6 GUI design Guidelines .. 17

7 Conclusion ... 18

8 References ... 18

Software Development Tools and Technologies

4

Ch12: GUI Programming

5

1 INTRODUCTION

Graphic User Interface (GUI) also pronounced as GOO-ee) is a software interface that the user
interacts with using a pointing device, such as a mouse. For example, when you browse Internet
you are looking at the GUI of the web browser. The alternative to (and predecessor of) GUIs is
the text-based Command Line Interface (CLI) which is much less user-friendly for layman user.
Given below are screenshots of a CLI and GUI of a software:

 Command line interface: Command Prompt Simple GUI of a number pad

Especially in the market today, a good GUI is essential for marketability of a product; having an
efficient and functional GUI is not enough, it has to be tasteful and intuitive for users to interact
with. This requires good handling of inputs and outputs with pleasing and comprehensive
layout structures for the user

 How can this chapter help you?

 Learn basics of Java Swing

 Understand the Swing framework

 Know the components available for GUI interaction

 Understand the basics of handling inputs

 Learn how to use layouts and design appearances of GUI

 Go in-depth to the programming aspects of events-handling

 Get advice on design techniques used today

For teaching the basics of GUI programming, we are going to use Swing, a Java GUI widget1
toolkit. As most of programmers have experienced coding in Java, programming in Swing would
be easy to pick up. Since Java is created by Sun Microsystems, Swing is also stable and reliable.
With its simplicity to create basic GUI templates, Swing is easy for beginners to pick up basic
GUI programming. Thus, the structure of the content in this chapter is built on the Swing
framework. A simple analogy of the content to follow...

1
 Widget is a component of a user interface that operates in a particular way.

Software Development Tools and Technologies

6

2

Swing GUI Structure: Similar to the study of the structure of a human skeleton, we study the
basic blocks used to build a Swing GUI application. The blocks consist of containers and
components; we will explore the roles of containers and components and how they are used.

Behaviour: With the skeleton of the GUI done, we need the muscle to make it work or react to
input. The muscle here refers to event-handling or event-driven programming. Imagine event-
handling as making the GUI react to inputs (i.e. mouse clicks or keyboard inputs).

Appearance: With event-handling, a basic GUI application is complete! However, this is not
enough to create a good GUI application; we also need to make the GUI presentable for making
the software more marketable, just like the reason why we suit up in formal attire in
preparation for an interview. Thus, we will be showing some graphical aspects of the Swing
framework; layouts, look and feel and some designing concepts.

Here is what to expect for this chapter; Figures 1a and 1b below show an example of a basic GUI
application written in Java using the Eclipse IDE:

2
 Skeleton: blog.lib.umn.edu. Muscle figure: store.cgsociety.org

Ch12: GUI Programming

7

 Figure 1a: Coding a basic GUI application with Eclipse

Figure 1b: Basic GUI application (from the code above)

2 GUI STRUCTURE

 What makes the
structure of Swing

GUI?

Software Development Tools and Technologies

8

What makes the structure of a Swing GUI? The structure of the application is made by
containers and components. Containers are on screen windows that contain user interactive
components or other sub-containers. Top-level containers are the containers existing on the
desktop directly and the non top-level containers are containers that are shown within the
top-level container. Components are the user interactive objects of the GUI that could be
added into containers.

 Figure 2.1: JFrame as a top-level container3

Figure 2.1 shows an application of the hierarchy in Swing. Each program that uses Swing
components has at least one top-level container, which is the root of the containment hierarchy.
As a rule, a standalone application with a Swing-based GUI has at least one containment
hierarchy with a Jframe as its root.

More top-level containers:

Besides JFrame, here are 2 more examples: JDialog is used for creating a custom dialog boxes;
JApplet compared to Applet (from Abstract Window Toolkit, AWT) gives more support for
Swing component architecture4.

Figure 2.2: JDialog (left) and JApplet (right)

General Purpose containers:

3
 Container hierarchy diagram from

http://download.oracle.com/javase/tutorial/uiswing/components/toplevel.html
4
 Swing component architecture (SMA) is an alternative to the Model- View- Controller (MVC) pattern. More

information on SMA found here : http://java.sun.com/products/jfc/tsc/articles/architecture/

http://download.oracle.com/javase/tutorial/uiswing/components/toplevel.html
http://java.sun.com/products/jfc/tsc/articles/architecture/

Ch12: GUI Programming

9

General purpose containers are also classified as a non top-level or sub-containers with
examples shown below. (i.e. JScrollPane gives a scrollable view of a large or growable
component; JSplitPane displays two components whose relative size can be manipulated by the
user.) These can only be added to a top-level container.

Figure 2.3: JScrollPane (top left, from java.sun.com) and JToolBar (top right, from java2s.com),
JInternalFrame (lower left, from codexion.com) and JSplitPane (lower right, from shrike.depaul.edu)

Components and Sub-containers:

Figure 2.4a: Menu Bar added to JFrame as a component

 Figure 2.4b: Content Pane of the JFrame is added with a JLabel (“Hello World!)

Software Development Tools and Technologies

10

Components available:

Here is a list of user interactive components the programmer can call upon to add to the content
pane of a sub or top-level container. The content pane contains the visible components of the
container’s GUI.

 Figure 2.5: JComponent’s list of components in Swing

 In summary, a Swing GUI structure is made of a (1) top-level container, (2) with sub-
containers and/or (3) components added onto the top-level container.

3 GUI BEHAVIOUR

How do we get a GUI to respond to interactions? Just like muscle is required to move a skeleton,
we now need to handle inputs from the user by programming interactions into the GUI. The
programming of interactions to the GUI is called event-handling or known as event-driven
programming. An example is shown in figure 4.5:

Ch12: GUI Programming

11

Figure 3.1: Event-handling example

In figure 4.5, we see a few new terms: event sources, event handlers and dispatching mechanism.
Event Sources creates events whenever it is used (i.e. clicking a button on the GUI), the
dispatching mechanism queues incoming events while determining its event type, event is sent
to the event handler that deals with events of that type (i.e. events from button “1” to Handler
1, events from button “2” to Hander 2, events from button “3” to Handler 3). Also, more than one
event handler can react to an event from an event source; such as having events from buttons “1”
and “2” to be handled by Handler 1. In Swing, the equivalent to an event source would be a
JButton component, while event handlers are known as listeners.

However, how should we control the routing of multiple events? (i.e. let an event be handled by
handlers 1 & 2) A solution is to use observer pattern which involves 2 entities; subjects and
observers. Observers register to subjects they are interested in and subjects will keep a list of
dependent observers with their addresses. If a subject has a change of state, all dependent
observers to the subject will be notified automatically (refer to figure 3.2). This is also known as
the publish/subscribe pattern, where the subjects are publishers and the observers are
subscribers. Publishers do not need to know subscribers to send out notifications and
subscribers also do not need to know publishers to subscribe and receive notifications.

 Figure 3.2: Subject-Observer relationship in Swing

Software Development Tools and Technologies

12

5

Figure 3.3: Observer pattern example

Figure 4.6 shows an example of using the observer pattern; the windows (observers) are all
using the same data (subject). If the values in data change, the 3 windows registered to data
would be notified and change accordingly; though how each window will change is unknown to
the data.

Using the Observer Pattern results in good decoupling between the subjects and the observers;
removing subjects or observers would not affect the overall mechanism of the GUI which makes
updating or editing of the code much easier for the programmer.

So how should we implement the Observer Pattern in our GUI? Here is how?

(1) Create a component: We create an event source; such as a JButton.

(2) Setting up the listener: We also need to prepare tasks for listeners to perform

when a particular event type6 is received.

(3) Bind a listener to the component: Add a listener to the component, so that the task

defined for the component is performed when the component produces an event.

 Figure 4.1: Binding a listener to a component

Figure 4.1 gives a simple method of binding an action listener 7to a component (button8) by
creating a class for the components (Keypad) and another class that stores the methods to

5
 Observer pattern example from http://www.research.ibm.com/designpatterns/example.htm

6
 Event type: please refer to Error! Reference source not found.

http://www.research.ibm.com/designpatterns/example.htm

Ch12: GUI Programming

13

perform during event occurrences (ButtonListener). We can do this for the other buttons and
listeners too. We can see that the components do not know who the listeners that will handle
their events are, the listeners also do not know who the event sources of the event type are until
a check is performed. This is how we achieve the Error! Reference source not found.; where
he subjects (components) and observers (listeners) are oblivious to each other.

There are also other methods of implementing event driven programming, depending on the
needs and requirements of the programmer. We will touch on 2 such topics:

 Nested Class vs. Inner Class

 Anonymous Inner Class vs. Inner Class

 Nested Class vs. Inner Class:

8

A nested class is a static class enveloped by another class, while an inner class is a non-static
class enveloped by another class. This idea is very similar to static and non-static elements of a
class. The nested class has access to all elements of the enveloping class while the inner class
requires an object reference to the enveloping class. Since most listeners and components are
specific to a certain model (i.e. number keys to a number pad of Keypad GUI), putting the
listeners with the modal is logical and uses less packages; making the listener class less prone to
data corruption. The inner class can extend to other members (methods and variables) in the
enveloping class as long as they are are non-static.

Anonymous Inner Class vs. Inner Class:

On the other hand, Java does not support multiple inheritance. Using the nested class method is
too restrictive if we are considering a GUI with multiple functionalities. We can use anonymous
inner classes, classes with no names, to define listeners. Why bother since there are inner classes?
If the component-to-listener is 1-to-1, anonymous inner class is used to create a no reusable
implementation of an abstract class. However, if the components-to-listeners’ ratio is many-to-
many, there will be a lot of duplicate code. In this case, the inner class would be recommended.

7
 There are other listener interfaces beside action listeners, refer to this website for more information:

http://download.oracle.com/javase/tutorial/uiswing/events/eventsandcomponents.html
8
 Nested class picture taken from http://users.ecs.soton.ac.uk/dem/teaching/proginjava/s10.html

http://download.oracle.com/javase/tutorial/uiswing/events/eventsandcomponents.html
http://users.ecs.soton.ac.uk/dem/teaching/proginjava/s10.html

Software Development Tools and Technologies

14

 Figure 4.2: Anonymous Inner Class example

4 GUI APPEARANCE

After creating the GUI structure and adding in interactions, how do we make it look good? In
this section, we will go through layouts and look-and-feel to provide more designing options for
the GUI. This is a rather big topic to cover, so we will attempt to give a general concept of Swing
GUI appearances in 2 sections:

 Layouts

 Look & Feel

Layouts: These are layout strategies used to position components and sub-containers. These
are strategies are controlled by a layout manager object that implements the LayoutManager
interface. The object determines and has the final say in the size and position of the components
in a container. A couple of layouts available are:

 Figure 5.1a: BorderLayout(left) and FlowLayout (right)

Ch12: GUI Programming

15

Commonly used layouts:

 BorderLayout creates a container, resizing its components to fit five regions:
north, south, east, west. Each region can only have 1 component.

 FlowLayout arranges components in a left-to-right flow, much like lines of text in
a paragraph.

 GroupLayout allows grouping of components together in a hierarchal manner. In
figure 2.6b, this is known as sequential group layout.

 SpringLayout lays out the children of its associated container according to a set
of constraints.

 Figure 5.1b: GroupLayout (left) and SpringLayout (right)

Layouts exist to provide more consistency and organization for the GUI application. For
beginners, these pre-defined layouts are useful as minimal coding is required. For more
information about layouts please check these sites:

http://www.formdev.com/jformdesigner/doc/layouts/

http://download.oracle.com/javase/tutorial/uiswing/layout/using.html

Look & Feel (L &F): It refers to the general appearance of a user interface; it acts like the skin of
a GUI. It has the ability to change the whole appearance of an application without programmer
having to change each individual component or container. However, this also means that
different L&Fs may have different font sizes or sizing schemes for containers and components.
Below, figure 2.7 highlights such an issue. L&F is good for providing a GUI with consistency and
organization since all components are similar in appearance and positioning.

Figure 5.2: Mac L&F versus Win7 L&F

http://www.formdev.com/jformdesigner/doc/layouts/
http://download.oracle.com/javase/tutorial/uiswing/layout/using.html

Software Development Tools and Technologies

16

Looking at figure 2.7, the biggest difference between the Mac L&F and the Win7 L&F is the font
size; with the Mac L&F having larger default font size. Even the sizes of the pop out windows are
different. Thus, a programmer also needs to know the differences when shifting L&F from one
operation system to another, so that alignment of buttons or text will not be out of place.

L&F’s main purpose is to provide beautification to the application, act as branding for a
company and it is ease of use to change the whole outlook of your application. On an interesting
note, this tends to be a hot legal issue because some software companies claim that competitors
who copy the L&F of their products are infringing on their copyright protection.

More on methods to use L&F in Java can be found here:

http://download.oracle.com/javase/6/docs/api/javax/swing/LookAndFeel.html

5 CONCURRENCY IN GUIS

Have you experienced a GUI that stops functioning and becomes unresponsive? This is known as
the “freezing” GUI, where it stops taking in inputs from the user and stops working until the task
at hand is complete. The task that requires a lot of computation is known as intensive. If this is
the case, we need a way to allow the GUI to continue working while running the intensive task
or tasks. This is done by multi-threading.

In multi-threading, we introduce threads to take care of certain tasks. For instance, in Swing we
have an initial thread that executes the GUI, an event dispatch thread that handles light weight
tasks which do not require much computation and the intensive tasks are delegated to worker
threads. Using this method, the GUI would “freeze” less.

 Figure 6.1: Multi-threading in Swing

http://download.oracle.com/javase/6/docs/api/javax/swing/LookAndFeel.html

Ch12: GUI Programming

17

6 GUI DESIGN GUIDELINES

Before going into the principles of designing a good GUI, we need to take note of the
common mistakes made by programmers.

Figure 3.1a: Bad interface (left, from designinginteractive.com and right,
from blog.vinova.sg)

Problem: Too many features.
Solution: Design for clarity.
Having a clear interface GUI design helps the use to focus on the basic functions of the
GUI. As we look at the bad interface examples in figure 3.1a, the cluttering of functions
make it very difficult to tell what functions we want to use at first glance. Besides the
basic functions, advanced or extra functions should be kept hidden until user requests
for them

Figure 3.1b: Bad feedback

Problem: Too much text.
Solution: Keep text clear.
 From figure 3.1b, it is difficult for the user to accept first glance on what this
window is about. Being concise and keeping feedback to about one line is difficult, but it
helps the user to understand the situation better. This is similar to the principle above.

There are many more principles to follow, for more information, please approach this
website: http://www.classicsys.com/css06/cfm/article.cfm?articleid=20

http://www.classicsys.com/css06/cfm/article.cfm?articleid=20

Software Development Tools and Technologies

18

7 CONCLUSION

What have learnt in this topic?

(1) We have gone through the basics of containers and components in the Swing

framework.

The adding of the components to a GUI can only be seen as making a basic GUI
skeleton, where the components do not react to user interaction (i.e. clicking a
button)

(2) To add muscle to skeleton, we use event driven programming to handle interactions

to the GUI by introducing listeners that react to events triggered from the event

source.

(3) We have gone through some basic design issues and concepts to when designing a

GUI.

For more information related to this chapter, or to see tutorials of coding Swing GUIs,
please visit our website at: https://sites.google.com/site/cs4217jan2011team6/

We hope that the journey so far has been an eventful one for the readers, especially the
beginners. We will like to leave the readers with this quote to figure out:

A picture is worth a thousand words. An interface is worth a thousand pictures.

- Ben Shneiderman, 2003

8 REFERENCES

Design Principles:

 http://www.classicsys.com/css06/cfm/article.cfm?articleid=20

Event Driven Programming:

 http://eventdrivenpgm.sourceforge.net/event_driven_programming.pdf

Components and Look-and-Feel:
http://download.oracle.com/javase/tutorial/uiswing/components/index.html

Observer Pattern:

http://www.research.ibm.com/designpatterns/example.htm

http://www.javaworld.com/javaworld/javaqa/2001-05/04-qa-0525-observer.html

Concurrency in Swing:

http://download.oracle.com/javase/tutorial/uiswing/concurrency/index.html

https://sites.google.com/site/cs4217jan2011team6/
http://www.classicsys.com/css06/cfm/article.cfm?articleid=20
http://eventdrivenpgm.sourceforge.net/event_driven_programming.pdf
http://download.oracle.com/javase/tutorial/uiswing/components/index.html
http://www.research.ibm.com/designpatterns/example.htm
http://www.javaworld.com/javaworld/javaqa/2001-05/04-qa-0525-observer.html
http://download.oracle.com/javase/tutorial/uiswing/concurrency/index.html

