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Abstract

A vast amount of the world’s data is stored in tab-
ular form, and a significant portion of it contains
personally identifiable attributes (e.g., electronic
health records and financial records). The public
sharing of such data could expedite Al research
for resolving pressing societal, medical and other
problems, but attempts to do so are riddled with
obstacles because of privacy concerns. To circum-
vent the privacy issues, a line of statistical and
deep learning models seeks to generate synthetic
tabular data, which adhere to the distributional
statistics of the original data, without disclosing
any personally identifiable information. Those
preliminary models show promising results, but
have not attained their full potential because they
have yet to exploit a strong inductive bias that pre-
disposes them to tabular data. We propose a new
model called Oblivious Variational Autoencoder
(OVAE) that combines variational autoencoders
(VAEs) with a differentiable version of oblivious
decision trees (ODTs) (Lou & Obukhov, 2017).
Boosted ODTs have been highly successful for
predictive tasks on tabular data, outperforming
even deep learning systems in many Kaggle com-
petitions. However, their use in generative models
has largely been overlooked. OVAE incorporates
ODTs’ amenability to tabular data as an inductive
bias in VAESs, thereby generating synthetic tabular
data of high fidelity to the original tables. In an
extensive set of experiments, OVAE demonstrates
its efficacy and surpasses several state-of-the-art
models on a wide range of datasets.
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1. Introduction

Businesses, governments, hospitals, and other organizations
store a wealth of digital data in the form of tables. If these
data could be publicly shared, they would expedite data-
intensive Al research to the benefit of the organizations or
society at large. However, these tabular data usually con-
tain personal identifiers, which in conjunction with sensitive
financial and medical information, pose serious privacy con-
cerns. Thus access to such data are usually hampered by
the high walls and deep moats of security processes, such
as lengthy reviews by institutional review boards.

To mitigate the privacy risks and to expedite data release,
some early approaches sought to suppress, randomize, or
perturb potentially identifiable information. However, such
techniques were found to be susceptible to re-identification
attacks, e.g., via background knowledge (Emam et al., 2011).
In recent years, a series of research efforts have addressed
the problem from another angle, mitigating the privacy risks
through the generation of synthetic data that closely mimic
the true underlying tabular data. Because the generated
data are completely fake, there is little risk of personal at-
tribute disclosure. Those approaches (Choi et al., 2017;
Srivastava et al., 2017; Park et al., 2018; Xu et al., 2019)
typically utilize deep generative models (such as variational
autoencoders (Kingma & Welling, 2014) and generative
adversarial networks (Goodfellow et al., 2014)) in the hope
that the models’ success in generating synthetic images (Lin
et al., 2019) and text (Guo et al., 2018) would carry over
to tabular data. Those approaches have shown promising
empirical results, but have yet to achieve their full potential.
Many of the deep generative models are transplanted almost
wholesale from their initial image or text domains to the
tabular one. Consequently, they inherit inductive biases that
are more amenable to their original data types than tabular
data. We postulate that we can improve the fidelity of the
generated data to their true underlying tables by supplement-
ing the deep generative models with an appropriate tabular
inductive bias, such as one based on decision trees or their
variants.

Decision trees and their variants have proven to be highly
successful for the discriminative modeling of tabular data.
For example, Catboost (Prokhorenkova et al., 2018), which
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uses boosted oblivious decision trees (ODTs) (Lou &
Obukhov, 2017), is used in the winning solutions of many
Kaggle competitions involving tabular data (frequently beat-
ing even deep learning competitors). Though effective for
predictive tasks on tables, decision trees and their variants
have not been extensively used for the generative modeling
of tabular data.

Combining the best of deep generative models and decision
tree variants, we propose the Oblivious Variational Autoen-
coder (OVAE). OVAE embeds ‘softened’ oblivious decision
trees (ODTs) in a variational autoencoder (VAE) to both en-
code tabular data into a latent representation, and to decode
(generate) synthetic data from that representation. ODTs
are good at representing decision manifolds that approxi-
mate the hyperplane boundaries usually present in tabular
data. Thus the ODTs imbue a strong inductive bias for tabu-
lar data in OVAE, allowing it to preserve the distributional
characteristics of the original tabular data in its generated
synthetic data.

In sum, our contributions are as follows.

e We propose a new model called OVAE that combines
ODTs with a VAE to generate tabular data. To our
knowledge, we are the first to adapt a decision tree
variant so that it can be used with a VAE for generating
privacy-preserving synthetic tables.

e We extensively compare our OVAE model against sev-
eral state-of-the-art baselines, and show that OVAE
compares favorably against the baselines on 12 real-
world datasets.

2. Related Work

Early approaches for synthetic table generation utilize sta-
tistical models. Those models typically form a multivariate
probability distribution over all columns in a table, each
of which is regarded as a random variable. To generate
synthetic data, the models draw a sample (a row of val-
ues) from the distribution, with one value per random vari-
able (column). Examples of such statistical models in-
clude Bayesian networks (e.g., CLBN (Chow & Liu, 1968),
PrivBayes (Zhang et al., 2017), and (Aviii6 et al., 2018))
and copulas (Patki et al., 2016; Sun et al., 2019). The former
has been used to generate discrete variables, while the latter
has been used to generate (non-linearly correlated) continu-
ous variables. A drawback of those approaches is that they
either model discrete data or continuous data but not both, a
restriction that makes them unsuitable for a wide range of
real-world data that contain both discrete and continuous
values. Further, those approaches generally do not exploit
the parallel processing afforded by modern graphical pro-
cessing units (unlike deep learning models), a shortcoming
that limits their scalability.

Another line of models for tabular data generation is based
on deep learning, and is predominantly built upon genera-
tive adversarial networks (GANSs) (Goodfellow et al., 2014).
GAN:S are proposed to generate multi-categorical columns
of discrete data in (Camino et al., 2018), and continuous lab-
oratory time series data in (Yahi et al., 2017). ehrGAN (Che
et al., 2017) generates data to augment scarce medical
records in a semi-supervised manner. medGAN (Choi et al.,
2017) combines a GAN and an autoencoder to model both
continuous and binary table columns. VEEGAN (Srivas-
tava et al., 2017) ameliorates the mode collapse problem in
GAN:Ss through variational learning. tableGAN (Park et al.,
2018) uses a convolutional neural network as the discrimi-
nator in its GAN to maximize the quality of a table’s label
column. PATE-GAN (Yoon et al., 2019) modifies the Private
Aggregation of Teacher Ensembles (PATE) framework (Pa-
pernot et al., 2017), and uses it to enforce differential privacy
in the generator component of a GAN. Most recently, CT-
GAN (Xu et al., 2019) uses mode-specific normalization
(MSN) for modeling continuous data with multiple modes,
and introduces techniques for correctly modeling the minor
categories in categorical data with skewed distributions.

Another deep learning model that has been used for syn-
thetic tabular data generation is the variational autoencoder
(VAE). TVAE (Xu et al., 2019) is a vanilla VAE with fully
connected neural networks in both its encoder and decoder.
It also uses MSN to address the problems of mode collapse.
In an extensive empirical comparison, TVAE outperforms
CTGAN and other state-of-the-art GAN models, and is a
frontrunner that we compare against.

Unlike all of the aforementioned models that do not impose
strong tabular constraints, our proposed oblivious variational
autoencoder (OVAE) incorporates a strong inductive bias
for tabular data in the form of “softened” oblivious decision
trees (ODTs) into a VAE. OVAE is similar to TVAE in
that both use VAE as a building block, but OVAE differs
by using ODTs in place of TVAE’s standard feed-forward
neural networks.

There exists a body of work integrating inductive biases
in the form of grammars, templates, or other constraints
into deep generative models, but those biases are primarily
applicable to domains other than tabular data. GVAE (Kus-
ner et al., 2017) and TES-AE (Paassen et al., 2020) use
context-free grammars to constrain both their encoders and
decoders so that their generated outputs are syntactically
plausible. SD-VAE (Dai et al., 2018) borrows the idea of
syntax-directed definition from compiler theory, and inte-
grates it into SD-VAE’s decoder, thereby generating out-
puts that are semantically meaningful. GVAE, TES-AE,
and SD-VAE are primarily used to generate sequential data
such as molecular strings, arithmetic expressions, and pro-
gramming languages. (Hu et al., 2018) adapts principles of
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reinforcement learning to deep generative models so as to
tune pre-specified high-level constraints, and has been used
to generate human images constrained by pose templates,
and to generate missing words in a sentence constrained by
text templates. Similar to that body of research that uses
inductive biases for text, image and molecular data, our pro-
posed OVAE model also utilizes a strong inductive bias; but
unlike the other research, OVAE incorporates an inductive
bias that squares particularly well with tabular data.

3. Background

Our OVAE model is created upon the building blocks of vari-
ational autoencoders and differentiable oblivious decision
trees. We describe each in turn.

3.1. Variational Autoencoder

A variational autoencoder (VAE) (Kingma & Welling, 2014)
is a hierarchical Bayesian model (Gelman & Su, 2007)
that postulates the existence of latent variables z to help
model observed variables x. VAE learns a generative
model py(x,z) by approximating the (intractable) poste-
rior py(z|x) with a proposal distribution g4 (z|x), and by
maximizing the data log-likelihood log py(x). The log-
likelihood decomposes into two terms: the evidence lower
bound (ELBO) and the KL-divergence between g4(z|x) and
po(z]x).

po(X,2)

)

log pg(x) = Eqy, (z/x) log +Dr1.(q0(2]%)|[po(2]x))

ELBO
VAE uses a vanilla fully connected feed-forward neural net-
work to parameterize the variational distribution g, (z|x).
It jointly finds the model’s parameters 6 and the varia-
tional distribution ¢4(z|x) that maximize the ELBO via
stochastic gradient descent, using the reparameterization
trick (Kingma & Welling, 2014) to calculate the gradients
with respect to the variational parameters ¢. Assuming a
prior distribution p(z) on z, the generative model can be ex-
pressed as py(x,z) = py(x|z)p(z). In a VAE, g, (z|x) and
po(x|z) are respectively termed the encoder and decoder.

3.2. Differentiable Oblivious Decision Trees (DODTsSs)

An oblivious decision tree (ODT) (Lou & Obukhov, 2017)
is a full, binary decision tree whose internal nodes at the
same level are restricted to have the same splitting feature
and splitting threshold. An ODT is less expressive than a
regular decision tree, but its low variance makes it an ideal
weak learner for a gradient boosting algorithm. Such an
algorithm typically decreases bias at the cost of increasing
variance (Bauer & Kohavi, 1997; Ganjisaffar et al., 2011).
Because the variance of its component weak learner (ODT)
is very low to begin with, the boosting algorithm’s overall

increase in variance is controlled, and is more than offset by
the performance gains from decreasing bias. Empirically,
boosted ODTs (Lou & Obukhov, 2017; Prokhorenkova et al.,
2018) provide state-of-the-art results compared to regular
boosted decision/regression trees.

An ODT of depth d is equivalent to a table with 2¢ entries,
each corresponding to a particular combination of d fea-
ture splits. An ODT is completely specified by its splitting
features f € R4, splitting thresholds b € R4, and a d-
dimensional response tensor R (with 27 entries) that maps
the d decisions along a root-to-leaf path to the correspond-
ing leaf value. Given an n-dimensional input x € R”, the
output h(x) of an ODT is

h(x) = Ra(t, (x)—b1),.... L (£1(x)—bua)
where 1(-) is the Heaviside function.

In a differentiable ODT (DODT) (Popov et al., 2020), the
output of an ODT is made differentiable so that it can be
trained end-to-end via backpropagation. The splitting fea-
tures f and Heaviside functions are replaced by their differ-
entiable continuous approximations. Each splitting feature
f,(x) is now represented as a weighted sum of features f; (x),
with the weights obtained via an a-entmax function (Pe-
ters et al., 2019) over a learnable feature selection vector
F;, e R" ie,

f;(x) = Z x; - entmax(F; ;).

j=1
The Heaviside function 1(f;(x)—b;) is replaced with a two-
Ci (X) _ £i(x)—b;
class entmax [1 Ca| T entmax([-==—", 0]) where

7; is a learnable parameter to standardize the scales of the
features. A choice tensor C of the same size as the response
tensor R is obtained via an outer product over all ¢;’s and
(1—2¢)’s,ie.,

C(x) = {1 Clgf()x)} © [1 CQS()X)] @ [1 Cdg()X)]

The scalar output i(x) of a DODT is computed as a sum
over entries in the response vector R weighted by the corre-
sponding values in C, i.e.,
hx)= Y
i1,...,04€{0,1}¢
The parameters of a DODT (.e., F;, b;, 7, and R) can

be learned in an end-to-end fashion via stochastic gradient
descent.

Rii, ig Ciy,ig (%)

To mimic the collection of ODTs in a boosting algorithm,
DODTs can be ensembled together, with the output of one
feeding into the input of another. Such an ensemble outper-
forms regular boosted decision/regression trees and deep
neural networks in an extensive set of empirical compar-
isons (Popov et al., 2020). Figure 1 illustrates an example
DODT.
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Figure 1. An example of a differentiable oblivious decision tree
(DODT) of depth 2.

4. Oblivious Variational Autoencoder (OVAE)

4.1. Input/Output Representation

Our proposed OVAE model assumes that data are contained
in a table containing NNV, continuous columns (C', ..., Cn,)
and Ny discrete columns (Dq, ..., Dy, ), and regards each
column as a random variable. In the table, each j th
row (¢ij,..-,¢N,5,d1,j,---,dnN,,;) is assumed to be a
sample generated from an underlying joint distribution
P(C1.n,, D1:n,). To deal with the potential multi-modality
of each continuous variable, we preprocess its continuous
values using mode-specifc normalization (MSN) (Xu et al.,
2019). MSN first determines the number of modes in the
distribution of each continuous variable C; with variational
Gaussian mixture models (Bishop, 2006), in which each
mode m is associated with a normal distribution with mean
1m and standard deviation v,,,. Next, for each value ¢; of
the continuous variable, MSN randomly samples a mode m
from among the possible modes, and represents the selected
mode with a one-hot encoding 3;. MSN then “normal-
izes” the value c¢; with respect to the chosen mode’s normal
distribution, i.e., o; = % Finally, each ¢; is repre-
sented as the concatenation of «; and 3,. Each row in a
table is thus represented as a (2N.+N;)-dimensional vector
rj =aqy; EB,@LJ' D---Dan.,,; EB,@NCJ ®d1; @ --®dn,,;,
where @ is the concatenation operator and d; ; is a one-hot
encoding. Both input and generated rows share the same
representation.

4.2. OVAE Encoder

We construct OVAE’s encoder by placing differentiable
oblivious decision trees (DODTs) in parallel in a layer, and
then stacking such DODT layers one on top of another. The
outputs of the parallel trees in a layer are concatenated be-
fore being fed as input into another layer (see example in
Figure 2). We include several parallel DODTs in a layer so

that each DODT can capture a different way of partitioning
its input data. This is particularly useful for rich datasets
that can be partitioned in multiple valid ways because it
allows the DODTs to fully capture the data’s complexity.
We stack one DODT layer upon another so that the latter can
model the intricate dependencies among the different data
partitionings in the former. DODTLayer,,_,,(x) denotes
a DODT layer that consists of k parallel DODTs, and it
maps an n-dimensional input x € R" to a k-dimensional
output. The input x is fed into each of the K DODTs, and
each DODT outputs a scalar value.

The architecture for the encoder distribution g4 (z;|r;) is
as follows (r; represents a row in a table with /N, con-
tinuous columns and N, discrete columns as described in
Section 4.1).

h; = DODTLayer, |_(r;)
h, = DODTLayer;_,;(hy)
p# = DODTLayer;,_,;(h2)
o exp(DODTLayer;,_,;,(hs))

q9s(z;|r;) ~ N(p,diag(o))

4.3. OVAE Decoder

OVAE’s decoder has to model the a;; and 3, ; values
for continuous columns, and the d; ; values for discrete
columns for each j** row (the symbols are described in
Section 4.1). OVAE assumes that each «; ; has a normal
distribution (with a column-specific variance d;), and that
Bi,; and d; ; each has a categorical probability mass func-
tion. The architecture for the decoder distribution pg(r;|z;)
is as follows.

h; = DODTLayer,,_,;(z;)
hy, = DODTLayer;,_,; (h;)
O_éiJ‘ = tanh(DODTLayerkHl(hg))

forl <i< N,
d,j ~ N(a,;,6:) for1 <i< N,

B ; ~ softmax(DODTLayery,_,,, (hz)) forl<i< N,

d;; ~ softmax(DODTLayer,,_, p, (h2)) forl <i <Ny

Ne N. N

po(rjlz;) = H71=‘1 P(&i; = i) H71=‘1 P(B3; ;
Ny A~
I[P, =di)

m; is the number of modes in continuous column ¢, and | D;|
is the number of distinct discrete values in discrete column
D;. To obtain one-hot encodings from the Bi,j and (?lm-
vectors, we simply set the maximum value in each vector
to 1, and all other values to 0. The parameters of OVAE
are the §;’s and its constituent DODTS’ parameters. These
parameters are learned via stochastic gradient descent by
maximizing the evidence lower bound (Section 3.1).

= ﬁm)
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Table 1. Results on classification datasets.

adult census credit cover. intru. mnistl2/28

Macro- Macro- Micro- Micro- | Average

F1 F1 F1 F1 F1 F1 F1 F1

Identity 0.67 0.49 0.72 0.65 0.86 0.89 0.92 \ 0.74
CLBN 0.33 0.31 0.41 0.32 0.38 0.74 0.18 0.38
PrivBayes 0.41 0.12 0.19 0.27 0.38 0.12 0.08 0.23
medGAN 0.38 0.00 0.00 0.09 0.30 0.09 0.10 0.14
VEEGAN 0.24 0.09 0.00 0.08 0.26 0.19 0.14 0.14
tableGAN 0.49 0.36 0.18 0.00 0.00 0.10 0.00 0.16
CTGAN 0.60 0.39 0.67 0.32 0.53 0.39 0.37 0.47
TVAE 0.63 0.38 0.10 0.43 0.51 0.79 0.79 0.52
OVAE 0.60 0.38 0.51 0.45 0.53 0.83 0.84 0.59

5. Experiments
5.1. Datasets

For our experiments, we use 5 real-world regression datasets,
7 real-world classification datasets (12 tabular datasets in
total).

All 5 real-world regression datasets are from the UCI ma-
chine learning repository (Dua & Graff, 2017) (bike-sharing
(bike), GPU kernel performance (gpu), wine quality
(wine), power plant (power), and online news popular-
ity (news)). Among the 7 real-world classification datasets,
4 are from the UCI machine learning repository (adult,
census, covertype, and intrusion), and 1 is from
Kaggle (credit). The remaining 2 classification datasets
mnist28 and mnist12 are respectively obtained by bi-
narizing 28 x 28 and 12 x 12 MNIST images (LeCun &
Cortes, 2010) into feature vectors (with an additional label
column indicating the target digit). These two datasets allow
us to investigate the performances of OVAE and its com-
parison systems on high dimensional binary tabular data.
All datasets are tabular in nature, and each is divided into a
training set T'y,.q;, and a test set Teq;.

5.2. Methodology

We compare our OVAE model against 7 other models (see
Section 2). Two of these models are based on Bayesian net-
works: CLBN (Chow & Liu, 1968) and PrivBayes (Zhang
et al., 2017). The remaining models are state-of-the-art
deep learning ones: medGAN (Choi et al., 2017), VEE-
GAN (Srivastava et al., 2017), tableGAN (Park et al., 2018),
CTGAN (Xu et al., 2019), and TVAE (Xu et al., 2019).

We follow the experimental methodology adopted by (Xu
et al., 2019). For every real-world dataset, we train each
model on the training tabular data T4,,;,, and use the
trained model to generate synthetic tabular data T,,,,. We
then train a set of standard regressors or classifiers (e.g.,
(boosted) regression/decision tree, linear regression, and
multilayer perceptron) on Ty, and evaluate the set of

regressors/classifiers on the test tabular data Ty.s;. We
run this process thrice for each model per dataset, and re-
port the average result of the set of regressors/classifiers.
For regression tasks, we report the average R? score of a
set of regressors on Tcg;. R? reflects the proportion of
the variance in a dependent variable that is successfully
modeled. R? is (negatively) related to mean-squared er-
ror (MSE) such that a higher R? leads to a correspond-
ingly lower MSE (and vice versa). Thus the higher the R?
score, the better the performance of a model. For classifi-
cation tasks, we report variants of the F1 score depending
on the skew of class labels in a dataset. adult, credit
and census are binary-class datasets, and their class-label
distributions are skewed towards one of two classes. To
measure a model’s performance on the (more) difficult task
of predicting the minority class, we consider the minority
class as the positive class, and report the standard F1 score
for these three datasets. covertype and intrusion are
multi-class datasets, and they also exhibit highly imbalanced
class labels. Thus we report the macro-F1 score for them.
mnist12 andmnist28 are multi-class datasets with class
labels that are well-balanced. Hence, we use micro-F1 (ac-
curacy) as a suitable metric for these two datasets. The
higher the F1 score (or its variants), the better the perfor-
mance of a model.

We also have an Identity system that simply copies Ty qin.,

| bODT
Layer

[fl 1(x), ilz(x). il;;(x)]

Figure 2. A DODT layer with 3 parallel DODTs (each triangle
represents a DODT). The outputs of the DODTSs are concatenated.
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Table 2. Results on regression datasets.

bike gpu wine power news

R? R? R? R? R? | Average R?
Identity 0.86 0.75 0.28 0.88 0.14 | 0.58
CLBN —49x 10" —18 —-27 —22x10° —6.3 —45 %102
PrivBayes 0.71 —29x10? —10 0.88 —4.5 —58x%10
medGAN  —50x1016  —54x10? —42 —11.82 —8.80 | —10x10'6
VEEGAN —0.43 —16x10? -11 —0.67 —65x10° —13x10°
tableGAN 0.74 —82x10%> —0.10 0.77 -3.09 | —16x10?
CTGAN 0.78 0.60  0.02 —0.19 —0.43 0.16
TVAE 0.70 0.68 0.22 0.72 —0.20 0.42
OVAE 0.82 0.70 0.22 0.81 —0.30 0.45

and treats it as T, in the aforementioned methodology
(rather than doing the hard work of learning a model to
generate Tgy,). The R?, F1, and Ly, scores associ-
ated with the Identity system serve as upper bounds for
the scores of OVAE and its comparison models. OVAE
is trained with stochastic gradient descent using quasi-
hyperbolic ADAM (Ma & Yarats, 2018) as the optimizer
(we use the recommended parameters in its paper). In each
DODT layer in the OVAE model, we use either 128, 256
or 512 parallel differentiable oblivious decision trees, (i.e.,
k€ {128,256,512} in Section 4.2 and 4.3). The depth of
each DODT is set to 6. The « in a-entmax activation func-
tion used in Differentaible Oblivious Decision Tree(DODT)
is 1.5. The parameters are chosen using preliminary exper-
iments, and depend on whether the resultant models can
fit into our GPU’s memory (Nvidia Geforce RTX 2080 Ti;
11GB).

The regression results are shown in Table 2 (best results
are boldfaced; second best results are underlined). The
numbers in the news are as reported in (Xu et al., 2019)
(modulo the OVAE results). All other numbers are from
our experiments. Our OVAE model outperforms TVAE on
3 real-world regression datasets (bike, gpu, and power),
ties on one, and loses on another. OVAE differs from TVAE
primarily in using layers of differentiable oblivious deci-
sion trees (DODTs) in place of the standard feedforward
neural networks in TVAE’s encoders and decoders. The
results give credence to our hypothesis that DODTs provide
a useful inductive bias for improving tabular data generation.
Note that where OVAE is not the best model (power and
news), it is second best. On average, OVAE is the best
performer on the real-world regression datasets. (We were
unable to replicate CTGAN’s and TVAE’s results on news
as given in (Xu et al., 2019) using its provided code, but
decided to still report those numbers in Table 2 to cast the
comparison systems in the best light. From our experiments,
CTGAN’s and TVAE’s R? scores on news are respectively
-0.07 and -0.64, and their resulting average R? scores are
0.23 and 0.34. The relative ordering of the systems remains
unchanged, with OVAE being the best, but its R? gap from

TVAE is larger: 0.11 as opposed to the current 0.03.)

The classification results are shown in Table 1. The numbers
in the OVAE row are obtained from our experiments; all
other numbers are as reported in (Xu et al., 2019). OVAE
outperforms TVAE on 5 real-world classification datasets
(credit, covertype, intrusion, mnist12, and
mnist28), ties on one, and loses on another; on average,
OVAE outperforms TVAE on the real-world classification
datasets. Again, this shows that using DODTs in OVAE
leads to better results vis-a-vis TVAE. Like on the real-
world regression datasets, OVAE is consistently the best
model (on covertype, intrusion, mnist12, and
mnist28) or the second best performer (adult, census,
and credit). In aggregate, OVAE is the best performing
system.

6. Conclusion and Future Work

We presented OVAE, a new model for generating synthetic
tabular data. OVAE combines differentiable oblivious deci-
sion trees (DODTSs) with variational autoencoders (VAEs),
thereby incorporating a strong inductive bias for tabular
data into VAEs. To fully capture the richness in tabular
data, OVAE gathers several parallel DODTs into a layer,
and stacks such layers one upon another. Empirical com-
parisons with seven systems on 12 real-world datasets show
the promise of our approach. Our proposed OVAE model
advances the line of research that obviates privacy restric-
tions on sensitive tabular data by generating high-fidelity
synthetic data. Our OVAE model could be used in a vari-
ety of fields (e.g., finance and healthcare) to expedite the
development of Al systems for social good (e.g., credit
scoring for micro-finance, and epidemiological forecasting)
preserving privacy. Our work is particularly pertinent in
the current Covid-19 pandemic, during which a constant
stream of Covid-19 patient data are collected by medical
institutions, but are only accessible to a select group of
researchers who are associated with the institutions. By
using OVAE to generate synthetic data, we could preserve
privacy of the patients and make high-fidelity fake patient
data publicly available, allowing a wider span of intellectual
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resources and human ingenuity to be brought to bear on
Covid-19 problems. As future work, we want to incorpo-
rate domain knowledge as additional tabular constraints into
OVAE, utilize normalizing flows to improve OVAE.
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