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1. Introduction
Hospitals store a wealth of digital data in the form of ta-
bles. If these data could be publicly shared, they would
expedite data-intensive AI research to the benefit of the
medical organizations or society at large. However, these
tabular data usually contain personal identifiers of patients,
which in conjunction with sensitive medical information,
pose serious privacy concerns. Thus access to such data
are usually hampered by the high walls and deep moats
of security processes, such as lengthy reviews by medical
review boards.

To mitigate the privacy risks and to expedite data release,
some early approaches sought to suppress, randomize, or
perturb potentially identifiable information. However, such
techniques were found to be susceptible to re-identification
attacks, e.g., via background knowledge (Emam et al., 2011).
In recent years, a series of research efforts have addressed
the problem from another angle, mitigating the privacy risks
through the generation of synthetic data that closely mimic
the true underlying tabular data. Because the generated
data are completely fake, there is little risk of personal
attribute disclosure. Those approaches (Choi et al., 2017;
Srivastava et al., 2017; Park et al., 2018; Xu et al., 2019)
typically utilize deep generative models (such as variational
autoencoders (Kingma & Welling, 2014) and generative
adversarial networks (Goodfellow et al., 2014)) in the hope
that the models’ success in generating synthetic images (Lin
et al., 2019) and text (Guo et al., 2018) would carry over
to tabular data. Those approaches have shown promising
empirical results, but have yet to achieve their full potential.
Many of the deep generative models are transplanted almost
wholesale from their initial image or text domains to the
tabular one. Consequently, they inherit inductive biases
that are more amenable to their original data types than
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tabular data. Though effective for predictive tasks on tables,
decision trees and their variants have not been extensively
used for the generative modeling of tabular data.

Combining the best of deep generative models and decision
tree variants, we propose the Oblivious Variational Autoen-
coder (OVAE). OVAE embeds ‘softened’ oblivious decision
trees (ODTs) in a variational autoencoder (VAE) to both en-
code tabular data into a latent representation, and to decode
(generate) synthetic data from that representation. ODTs
are good at representing decision manifolds that approxi-
mate the hyperplane boundaries usually present in tabular
data. Thus the ODTs imbue a strong inductive bias for tabu-
lar data in OVAE, allowing it to preserve the distributional
characteristics of the original tabular data in its generated
synthetic data.

Our work is particularly pertinent in the current Covid-19
pandemic, during which a constant stream of Covid-19 pa-
tient data are collected by medical institutions, but are only
accessible to a select group of researchers who are asso-
ciated with the institutions. By using OVAE, we could
preserve privacy of the patients and make high-fidelity fake
patient data publicly available, allowing a wider span of
intellectual resources and human ingenuity to be brought to
bear on healthcare problems.

In sum, our contributions are as follows.

• We propose a new model called OVAE that combines
ODTs with a VAE to generate tabular data. To our
knowledge, we are the first to adapt a decision tree
variant so that it can be used with a VAE for generating
privacy-preserving synthetic tables.

• We extensively compare our OVAE model against sev-
eral state-of-the-art baselines, and show that OVAE
compares favorably against the baselines on 12 real-
world datasets.

2. Related Work
Early approaches for synthetic table generation utilize sta-
tistical models. Those models typically form a multivariate
probability distribution over all columns in a table, each
of which is regarded as a random variable. To generate
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synthetic data, the models draw a sample (a row of val-
ues) from the distribution, with one value per random vari-
able (column). Examples of such statistical models in-
clude Bayesian networks (e.g., CLBN (Chow & Liu, 1968),
PrivBayes (Zhang et al., 2017), and (Aviñó et al., 2018))
and copulas (Patki et al., 2016; Sun et al., 2019).

Another line of models for tabular data generation is based
on deep learning, and is predominantly built upon genera-
tive adversarial networks (GANs) (Goodfellow et al., 2014).
GANs are proposed to generate multi-categorical columns
of discrete data in (Camino et al., 2018), and continuous lab-
oratory time series data in (Yahi et al., 2017). ehrGAN (Che
et al., 2017) generates data to augment scarce medical
records in a semi-supervised manner. medGAN (Choi et al.,
2017) combines a GAN and an autoencoder to model both
continuous and binary table columns. VEEGAN (Srivas-
tava et al., 2017) ameliorates the mode collapse problem in
GANs through variational learning. tableGAN (Park et al.,
2018) uses a convolutional neural network as the discrimi-
nator in its GAN to maximize the quality of a table’s label
column. Most recently, CTGAN (Xu et al., 2019) uses
mode-specific normalization (MSN) for modeling contin-
uous data with multiple modes, and introduces techniques
for correctly modeling the minor categories in categorical
data with skewed distributions.Another deep learning model
that has been used for synthetic tabular data generation is
the variational autoencoder (VAE). TVAE (Xu et al., 2019)
is a vanilla VAE with fully connected neural networks in
both its encoder and decoder. It also uses MSN to address
the problems of mode collapse. In an extensive empirical
comparison, TVAE outperforms CTGAN and other state-of-
the-art GAN models, and is a frontrunner that we compare
against.

Unlike all of the aforementioned models that do not impose
strong tabular constraints, our proposed oblivious varia-
tional autoencoder (OVAE) incorporates a strong inductive
bias for tabular data in the form of “softened” oblivious
decision trees (ODTs) into a VAE. There exists a body of
work integrating inductive biases in the form of grammars,
templates, or other constraints into deep generative models,
but those biases are primarily applicable to domains other
than tabular data. Unlike the other research, OVAE incor-
porates an inductive bias that squares particularly well with
tabular data.

3. Background
Our OVAE model is created upon the building blocks of
differentiable oblivious decision trees. We describe it in the
following section.

3.1. Differentiable Oblivious Decision Trees (DODTs)

An oblivious decision tree (ODT) (Lou & Obukhov, 2017)
is a full, binary decision tree whose internal nodes at the

same level are restricted to have the same splitting feature
and splitting threshold. An ODT is less expressive than a
regular decision tree, but its low variance makes it an ideal
weak learner for a gradient boosting algorithm. Such an
algorithm typically decreases bias at the cost of increasing
variance (Bauer & Kohavi, 1997; Ganjisaffar et al., 2011).
Because the variance of its component weak learner (ODT)
is very low to begin with, the boosting algorithm’s overall
increase in variance is controlled, and is more than offset by
the performance gains from decreasing bias. Empirically,
boosted ODTs (Lou & Obukhov, 2017; Prokhorenkova et al.,
2018) provide state-of-the-art results compared to regular
boosted decision/regression trees.

An ODT of depth d is equivalent to a table with 2d entries,
each corresponding to a particular combination of d fea-
ture splits. An ODT is completely specified by its splitting
features f ∈ Rd, splitting thresholds b ∈ Rd, and a d-
dimensional response tensor R (with 2d entries) that maps
the d decisions along a root-to-leaf path to the corresponding
leaf value. Given an n-dimensional input x ∈ Rn, the out-
put h(x) of an ODT is h(x) = R1(f1(x)−b1),...,1(fd(x)−bd)

where 1(·) is the Heaviside function. In a differentiable
ODT (DODT) (Popov et al., 2020), the output of an ODT
is made differentiable so that it can be trained end-to-end
via backpropagation. The splitting features f and Heavi-
side functions are replaced by their differentiable contin-
uous approximations. Each splitting feature fi(x) is now
represented as a weighted sum of features f̂i(x), with the
weights obtained via an α-entmax function (Peters et al.,
2019) over a learnable feature selection vector Fi ∈ Rn,
i.e., f̂i(x) =

∑n
j=1 xj · entmax(Fi,j).The Heaviside func-

tion 1(fi(x)− bi) is replaced with a two-class entmax[
ci(x)

1− ci(x)

]
= entmax([ f̂i(x)−bi

τi
, 0]) where τi is a learn-

able parameter to standardize the scales of the features. A
choice tensor C of the same size as the response tensor R is
obtained via an outer product over all ci’s and (1−ci)’s , i.e.,

C(x) =

[
c1(x)

1− c1(x)

]
⊗
[

c2(x)
1− c2(x)

]
⊗ · · · ⊗

[
cd(x)

1− cd(x)

]
The scalar output ĥ(x) of a DODT is computed as a sum
over entries in the response vector R weighted by the corre-
sponding values in C, i.e.,

ĥ(x) =
∑

i1,...,id∈{0,1}d
Ri1,...,id ·Ci1,...,id(x).

The parameters of a DODT (i.e., Fi, bi, τi, and R) can
be learned in an end-to-end fashion via stochastic gradient
descent.To mimic the collection of ODTs in a boosting algo-
rithm, DODTs can be ensembled together, with the output
of one feeding into the input of another. Such an ensem-
ble outperforms regular boosted decision/regression trees
and deep neural networks in an extensive set of empirical
comparisons (Popov et al., 2020).
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4. Oblivious Variational Autoencoder (OVAE)
4.1. Input/Output Representation

Our proposed OVAE model assumes that data are contained
in a table containing Nc continuous columns (C1, . . . , CNc

)
and Nd discrete columns (D1, . . . , DNd

), and regards each
column as a random variable. In the table, each jth

row (c1,j , . . . , cNc,j , d1,j , . . . , dNd,j) is assumed to be a
sample generated from an underlying joint distribution
P(C1:Nc , D1:Nd

). To deal with the potential multi-modality
of each continuous variable, we preprocess its continuous
values using mode-specifc normalization (MSN) (Xu et al.,
2019). MSN first determines the number of modes in the
distribution of each continuous variable Ci with variational
Gaussian mixture models (Bishop, 2006), in which each
mode m is associated with a normal distribution with mean
ηm and standard deviation ψm. Next, for each value ci of
the continuous variable, MSN randomly samples a mode m
from among the possible modes, and represents the selected
mode with a one-hot encoding βi. MSN then “normal-
izes” the value ci with respect to the chosen mode’s normal
distribution, i.e., αi = ci−ηm

4ψm
. Finally, each ci is repre-

sented as the concatenation of αi and βi. Each row in a
table is thus represented as a (2Nc+Nd)-dimensional vector
rj = α1,j⊕β1,j⊕· · ·⊕αNc,j⊕βNc,j⊕d1,j⊕· · ·⊕dNd,j ,
where ⊕ is the concatenation operator and di,j is a one-hot
encoding. Both input and generated rows share the same
representation.

4.2. OVAE Encoder

We construct OVAE’s encoder by placing differentiable
oblivious decision trees (DODTs) in parallel in a layer, and
then stacking such DODT layers one on top of another. The
outputs of the parallel trees in a layer are concatenated be-
fore being fed as input into another layer We include several
parallel DODTs in a layer so that each DODT can capture
a different way of partitioning its input data. This is par-
ticularly useful for rich datasets that can be partitioned in
multiple valid ways because it allows the DODTs to fully
capture the data’s complexity. We stack one DODT layer
upon another so that the latter can model the intricate de-
pendencies among the different data partitionings in the
former.

DODTLayern→k(x) denotes a DODT layer that consists
of k parallel DODTs, and it maps an n-dimensional in-
put x ∈ Rn to a k-dimensional output. The input x is
fed into each of the k DODTs, and each DODT outputs
a scalar value. The architecture for the encoder distribu-
tion qφ(zj |rj) is as follows (rj represents a row in a table
with Nc continuous columns and Nd discrete columns as

described in Section 4.1).

h1 = DODTLayer|rj |→k(rj)

h2 = DODTLayerk→k(h1)

µ = DODTLayerk→k(h2)

σ = exp(DODTLayerk→k(h2))

qφ(zj |rj) ∼ N(µ,diag(σ))

4.3. OVAE Decoder

OVAE’s decoder has to model the αi,j and βi,j values
for continuous columns, and the di,j values for discrete
columns for each jth row (the symbols are described in
Section 4.1). OVAE assumes that each αi,j has a normal
distribution (with a column-specific variance δi), and that
βi,j and di,j each has a categorical probability mass func-
tion. The architecture for the decoder distribution pθ(rj |zj)
is as follows.

h1 = DODTLayerk→k(zj)

h2 = DODTLayerk→k(h1)

ᾱi,j = tanh(DODTLayerk→1(h2)) for 1 ≤ i ≤ Nc
α̂i,j ∼ N(ᾱi,j , δi) for 1 ≤ i ≤ Nc
β̂i,j ∼ softmax(DODTLayerk→mi

(h2)) for 1 ≤ i ≤ Nc
d̂i,j ∼ softmax(DODTLayerk→|Di|(h2)) for 1 ≤ i ≤ Nd

pθ(rj |zj) =
∏Nc

i=1
P(α̂i,j = αi,j)

∏Nc

i=1
P(β̂i,j = βi,j)∏Nd

i=1
P(d̂i,j = di,j)

mi is the number of modes in continuous column i, and |Di|
is the number of distinct discrete values in discrete column
Di. To obtain one-hot encodings from the β̂i,j and d̂i,j
vectors, we simply set the maximum value in each vector
to 1, and all other values to 0. The parameters of OVAE
are the δi’s and its constituents DODTs’ parameters. These
parameters are learned via stochastic gradient descent by
maximizing the evidence lower bound (ELBO) (Kingma &
Welling, 2014). Supplementary material consists figures of
DODT and OVAE to better illustrate our approach.

5. Experiments
5.1. Datasets

For our experiments, we use 5 real-world regression datasets,
7 real-world classification datasets (12 tabular datasets in
total). Two of the classification datasets mnist28 and
mnist12 are respectively obtained by binarizing 28× 28
and 12× 12 MNIST images (LeCun & Cortes, 2010) into
feature vectors (with an additional label column indicating
the target digit).
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Table 1. Results on classification datasets.
adult census credit cover. intru. mnist12/28

Macro- Macro- Micro- Micro- Average
F1 F1 F1 F1 F1 F1 F1 F1

Identity 0.67 0.49 0.72 0.65 0.86 0.89 0.92 0.74

CLBN 0.33 0.31 0.41 0.32 0.38 0.74 0.18 0.38
PrivBayes 0.41 0.12 0.19 0.27 0.38 0.12 0.08 0.23
medGAN 0.38 0.00 0.00 0.09 0.30 0.09 0.10 0.14
VEEGAN 0.24 0.09 0.00 0.08 0.26 0.19 0.14 0.14
tableGAN 0.49 0.36 0.18 0.00 0.00 0.10 0.00 0.16
CTGAN 0.60 0.39 0.67 0.32 0.53 0.39 0.37 0.47
TVAE 0.63 0.38 0.10 0.43 0.51 0.79 0.79 0.52
OVAE 0.60 0.38 0.51 0.45 0.53 0.83 0.84 0.59

Table 2. Results on regression datasets.
bike gpu wine power news
R2 R2 R2 R2 R2 Average R2

Identity 0.86 0.75 0.28 0.88 0.14 0.58

CLBN −49×101 −18 −27 −22×103 −6.3 −45×102

PrivBayes 0.71 −29×102 −10 0.88 −4.5 −58×10
medGAN −50×1016 −54×102 −42 −11.82 −8.80 −10×1016

VEEGAN −0.43 −16×102 −11 −0.67 −65×105 −13×105

tableGAN 0.74 −82×102 −0.10 0.77 −3.09 −16×102

CTGAN 0.78 0.60 0.02 −0.19 −0.43 0.16
TVAE 0.70 0.68 0.22 0.72 −0.20 0.42
OVAE 0.82 0.70 0.22 0.81 −0.30 0.45

5.2. Methodology

We compare our OVAE model against 7 other models (see
Section 2). Two of these models are based on Bayesian net-
works: CLBN (Chow & Liu, 1968) and PrivBayes (Zhang
et al., 2017). The remaining models are state-of-the-art
deep learning ones: medGAN (Choi et al., 2017), VEE-
GAN (Srivastava et al., 2017), tableGAN (Park et al., 2018),
CTGAN (Xu et al., 2019), and TVAE (Xu et al., 2019).

We follow the experimental methodology adopted by (Xu
et al., 2019). For every real-world dataset, we train each
model on the training tabular data Ttrain, and use the
trained model to generate synthetic tabular data Tsyn. We
then train a set of standard regressors or classifiers (e.g.,
(boosted) regression/decision tree, linear regression, and
multilayer perceptron) on Tsyn, and evaluate the set of re-
gressors/classifiers on the test tabular data Ttest. We run
this process thrice for each model per dataset, and report
the average result of the set of regressors/classifiers. For
regression tasks, we report the average R2 score of a set of
regressors on Ttest. For classification tasks, we report on
metrics like F1, macro-F1, micro-F1 for a set of classifiers
on Ttest depending on the skew of the datasets. We also
have an Identity system that simply copies Ttrain, and treats
it as Tsyn in the aforementioned methodology (rather than
doing the hard work of learning a model to generate Tsyn).
The R2, F1, and Ltest scores associated with the Identity
system serve as upper bounds for the scores of OVAE and
its comparison models. All the hyperparameters of OVAE
are in supplementary. The regression results are shown

in Table 2 (best results are boldfaced; second best results
are underlined). The numbers in the news are as reported
in (Xu et al., 2019) (modulo the OVAE results). All other
numbers are from our experiments. Our OVAE model out-
performs TVAE on 3 real-world regression datasets (bike,
gpu, and power), ties on one, and loses on another. The
results give credence to our hypothesis that DODTs provide
a useful inductive bias for improving tabular data generation.
Note that where OVAE is not the best model (power and
news), it is second best. On average, OVAE is the best
performer on the real-world regression datasets.

The classification results are shown in Table 1. The numbers
in the OVAE row are obtained from our experiments; all
other numbers are as reported in (Xu et al., 2019). OVAE
outperforms TVAE on 5 real-world classification datasets
(credit, covertype, intrusion, mnist12, and
mnist28), ties on one, and loses on another; on average,
OVAE outperforms TVAE on the real-world classification
datasets. Again, this shows that using DODTs in OVAE
leads to better results vis-à-vis TVAE. Like on the real-
world regression datasets, OVAE is consistently the best
model (on covertype, intrusion, mnist12, and
mnist28) or the second best performer (adult, census,
and credit). In aggregate, OVAE is the best performing
system.

6. Conclusion and Future Work
We presented OVAE, a new model for generating synthetic
tabular data. OVAE combines differentiable oblivious deci-
sion trees (DODTs) with variational autoencoders (VAEs),
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thereby incorporating a strong inductive bias for tabular data
into VAEs. Empirical comparisons with seven systems on
12 real-world datasets show the promise of our approach.
Our proposed OVAE model advances the line of research
that obviates privacy restrictions on sensitive medical tab-
ular data by generating high-fidelity synthetic data. Our
OVAE model can be used in healthcare to expedite the de-
velopment of AI systems while preserving privacy of the
patients. As future work, we want to incorporate domain
knowledge as additional tabular constraints into OVAE.
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8. Supplementary

Figure 1. An example of a differentiable oblivious decision tree
(DODT) of depth 2.

Figure 2. A DODT layer with 3 parallel DODTs (each triangle
represents a DODT). The outputs of the DODTs are concatenated.

Hyperparameters : OVAE is trained with stochastic gradi-
ent descent using quasi-hyperbolic ADAM (Ma & Yarats,
2018) as the optimizer. In each DODT layer in the OVAE
model, we use either 128, 256 or 512 parallel differentiable
oblivious decision trees, (i.e., k∈{128, 256, 512} in OVAE
Encoder and OVAE Decoder). The depth of each DODT
is set to 6. The parameters are chosen using preliminary
experiments, and depend on whether the resultant models
can fit into our GPU’s memory (Nvidia Geforce RTX 2080
Ti; 11GB).
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