
Language Modeling with Sum-Product Networks

Wei-Chen Cheng1, Stanley Kok1, Hoai Vu Pham1

Hai Leong Chieu2, Kian Ming A. Chai2

1Information Sys. Tech. & Design Pillar, Singapore University of Technology & Design, Singapore
2DSO National Laboratories, Singapore

{weichen cheng,stanleykok,hoaivu pham}@sutd.edu.sg
{chialeon,ckianming}@dso.org.sg

Abstract
Sum product networks (SPNs) are a new class of deep proba-
bilistic models. They can contain multiple hidden layers while
keeping their inference and training times tractable. An SPN
consists of interleaving layers of sum nodes and product nodes.
A sum node can be interpreted as a hidden variable, and a prod-
uct node can be viewed as a feature capturing rich interactions
among an SPN’s inputs. We show that the ability of SPN to use
hidden layers to model complex dependencies among words,
and its tractable inference and learning times, make it a suitable
framework for a language model. Even though SPNs have been
applied to a variety of vision problems [1, 2], we are the first to
use it for language modeling. Our empirical comparisons with
six previous language models indicate that our SPN has superior
performance.

Index Terms: language models, sum-product networks, deep
learning, probabilistic graphical models

1. Introdution
Language models play a critical role in automatic speech
recognition by modeling prior knowledge about a natural lan-
guage and bringing it to bear on the likelihood of speech
transcriptions. Typically they model the probability distri-
bution over the sequence of words wm

1 in a transcription as
P (wm

1 ) ≈
∏m

k=1 P (wk|wk−1
k−n+1) where wj

i is a sequence of
wordswi, wi+1, . . . , wj−1, wj . From the right-hand side of the
above equation, we observe that the crux of a language model
lies in the conditional probability of a word wk given its previ-
ous n−1 words, i.e., P (wk|wk−1

k−n+1). A basic language model
is the n-gram model, which simply counts the fraction of times
wk appears after a fixed (n-1)-length sequence wk−1

k−n+1 among
all occurences of the sequence in a corpus. However, n-gram
models for moderately large n’s often do not reliably estimate
the conditional probability because many plausible word se-
quences have too few (often zero) occurrences in a corpus. To
ameliorate this data sparsity problem, several approaches com-
bine n-gram models by computing their weighted sum over a
range of n’s (to smooth over unseen sequences). One promi-
nent method among such approaches is the Kneser-Neys KN5
algorithm [3].

More sophisticated language models include the log-
bilinear model [4], feedforward neural networks [5], and recur-
rent neural networks (RNN) [6].

The log-bilinear model [4] is a probabilistic graphical
model [7] that encodes the dependencies between all pairs of
words in a vocabulary. It performs moderately well but can-
not exploit the rich information that exists among three or

more words. Although its creators proposed other probabilistic
graphical models that use hidden variables to represent higher-
order interactions among words, they found that those models
performed similarly to their log-bilinear counterpart but took
longer to train.

Bengio et al. [5] used a feedforward neural network as a
language model. It uses the common 1-of-N representation of a
word (i.e., an N -dimensional vector with a single 1 at the index
corresponding to the word and 0’s everywhere else), but com-
presses it into a smaller continuous-valued feature vector. (Our
proposed approach uses feature vectors too as will be described
in Section 3.) Intuitively, a feature vector provides a distributed
continuous representation of an input word, with the vector’s
continuous values varying gradually among similar words and
differing greatly among dissimilar ones. Such vectors are then
used to learn a probability distribution over the words they rep-
resent. The continuity in the vectors automatically smoothens
the distribution and alleviates the data sparsity problem. To
model high-order interactions among words, a neural network
adds a hidden layer that uses the feature vectors as inputs. As
more hidden layers are added (one on top of another), a neu-
ral network can model more complex interactions, but at the
expense of longer training times. Thus, Bengio et al.’s neural
network uses only one hidden layer to capture the dependencies
among words, without incurring too large a penalty in training
time. To improve upon Bengio et al.’s neural network, Emani
and Jelink [8] augmented words with their syntactic informa-
tion.

Recurrent neural networks (RNNs) [6] have also been pro-
posed as language models. An RNN is similar to a feedforward
neural network in having an input layer of words that is con-
nected to a hidden layer, which in turn is connected to an out-
put layer representing a probability distribution over words. It
differs by linking the hidden layer back to itself with recurrent
connections, which propagate information across a sequence of
words in an RNN. Conceptually, when an RNN is “unrolled”,
it is equivalent to a feedforward neural network with an infi-
nite number of connected hidden layers stacked on top of one
another. Because of this depth of hidden layers, it can poten-
tially learn complex dependencies among words, but also incur
a large penalty in training time. To improve upon the RNN
language models, Mikolov et al. [9] augmented them with con-
textual information via latent Dirichlet allocation [10] to obtain
state-of-the-art results. Recently, Sundermeyer et al. [11] pro-
vided empirical evidence that RNNs are better than their feed-
forward counterparts as language models. However, they used
a feedforward neural network with only one hidden layer. Con-
ceivably, feedforward neural networks with more hidden layers



could be competitive against RNNs (as we will show with our
proposed approach in Section 4).

In this paper, we show that a new probabilistic graphical
model called sum-product networks (SPNs) [12, 2] can func-
tion as a language model. Our proposed SPN is able to en-
capsulate multiple hidden layers while maintaining tractable in-
ference and training. Empirically, it achieves better predictive
accuracy than the aforementioned methods.

SPNs have been successfully applied to vision problems [1,
2], but to date, no one has brought it to bear on the problem of
language modeling. To our knowledge, we are the first to do so.

We begin by describing SPNs in the next section. Then we
describe our SPN architecture in detail (Section 3) and report
our experiments (Section 4). Finally, we conclude with future
work (Section 5).

2. Sum-Product Networks
We briefly review sum-product networks (SPNs). More details
can be found in [12, 2, 13]. An SPN is a rooted directed acyclic
graph that efficiently computes the marginals and modes of a
probabilistic graphical model (PGM) [7] by compactly repre-
senting the PGM’s partition function. A PGM encodes a proba-
bility distribution over a set of variables X as

P (X = x) =
1

Z

∏
c

φc(xc)

where φc is a function over a subset of variables Xc and Z =∑
x

∏
c φc(xc) is the partition function. We can regard Φ(x) =∏

c φc(xc) as an unnormalized probability that we divide by Z
to obtain a valid probability. Computing marginals in a PGM
is generally intractable because it involves a sum in Z over an
exponential number of terms (i.e., all combinations of values of
the variables in X). Since Z involves only sums and products,
it can be computed efficiently if we can reorganize it compactly
in terms of a polynomial number of sums and products using
the distributive law. SPNs overcome the intractability of Z by
learning such a compact structure.

Definition 1. (Gens & Domingos [13]) An SPN is recursively
defined as follows.

1. A tractable univariate distribution is an SPN (a tractable
univariate distribution is one whose partition function
and mode can be computed in O(1) time).

2. A product of SPNs with disjoint scopes is an SPN (an
SPN’s scope consists of the variables that appear in it).

3. A weighted sum of SPNs with the same scope is an SPN,
provided all weights are positive.

4. Nothing else is an SPN.

Figure 1 shows an example of an SPN over two binary vari-
ables X1 and X2. An SPN has internal nodes that are alternat-
ing layers of sums and products, and leaves that are indicators
x̄1, . . . , x̄n and x1, . . . , xn. (Indicators x̄i and xi take on the
values of 1 when variable Xi is respectively false and true, and
the value of 0 when Xi is respectively true and false.) Each
edge linking a sum node i to a child product node j is associ-
ated with a non-negative weight wij . The value of a product
node is given by the product of its children’s values. The value
of a sum node is the sum of its children’s values weighted by
the values of the children’s edges, i.e.,

∑
j∈C(i) wijvj where

C(i) is the set of i’s children and vj is the value of child j.

The value of an SPN is given by its root value and is denoted as
S(x̄1, . . . , x̄n, x1, . . . , xn).

Figure 1: An SPN over two variables.

Theorem. (Gens & Domingos [13]) An SPN can compute each
of the following quantities in time linear in its number of edges:
the partition function, the probability of evidence, and the max-
imum a posteriori (MAP) state.

The partition function Z is the value at the root node,
which can be tractably computed by setting all indicators to
1 and making a single upward pass. In Figure 1, the parti-
tion function is S(x̄1 = 1, x1 = 1, x̄2 = 1, x2 = 1) =
0.3(2x̄1+8x1)(4x̄2+6x2)+0.7(x̄1+9x1)(4x̄2+6x2) = 100.
It is easy to see that if the weights of each sum node are nor-
malized to add to 1, then Z = 1 and P (X) is given by the
value of the root node. The marginal of a variable can also be
tractably computed via a single upward-downward pass through
the SPN as described by [12]. A multi-valued categorical vari-
able in an SPN is modeled by replacing the Boolean indicators
x and x̄ with an indicator for each of the variable’s possible
values (which is what we do for our SPN described in the next
section). Continuous variables are dealt with by replacing sum
nodes with integral nodes and assuming a parametric distribu-
tion (e.g., Gaussian) over the variables.

Poon and Domingos [12] have shown that each sum node
of an SPN can be viewed as a hidden variable whose value is
defined in terms of its children. Alternatively, a sum node can
be interpreted as a mixture model with its children as its mix-
ture components, and an entire SPN can be seen as a mixture
model with exponentially many mixture components formed
through the layers, with higher-level components reusing lower-
level ones.

The SPN described thus far is a generative model, i.e.,
one that encodes the probability distribution over all vari-
ables, P (X). However, it is generally noted that better pre-
dictive performance is obtained with a discriminative model,
i.e., one which represents the conditional probability distribu-
tion P (Y|X) only over variables of interest Y (called query
variables) given the values of input variables X (known as ev-
idence). Intuitively, discriminative models concentrate on en-
coding interactions among query variables, without modeling
the (unimportant) distribution among evidence, whose values
are always provided (and thus never inferred). The constraints
in Definition 1 only apply to query variables, thus allowing flex-
ible features to be defined over evidence.

Gens & Domingos [2] propose a discriminative SPN that
divides a set of variables into disjoint subsets Y (query), X
(evidence) and H (hidden variables). It models the conditional



Figure 2: SPN for language modeling.

probability as

P (Y=y|X=x) =
Φ (Y=y|X=x)∑
y′ Φ (Y=y′|X=x)

=

∑
h Φ (Y=y,H=h|X=x)∑

y′,h Φ (Y=y′,H=h|X=x)

where Φ (Y = y|X = x) is an unnormalized probability. Thus
the partial derivative of the conditional log-likelihood with re-
spect to a weight w in an SPN is given by:

∂

∂w
logP (y|x)=

∂

∂w
log
∑
h

Φ (y,h|x)− ∂

∂w
log
∑
y′,h

Φ
(
y′,h|x

)
(1)

To train an SPN, we first specify its architecture, i.e., its
sum and product nodes, and the connections between them.
Then we learn the weights of the sum nodes via gradient de-
scent to maximize the conditional log-likelihood of a training
set of (x,y) examples. The gradient of each weight (Equa-
tion 1) is computed via backpropagation. The first summation
on the right-hand side of Equation 1 can be computed tractably
in a single upward pass through the SPN by setting all hid-
den variables to 1, and the second summation can be computed
similarly by setting both hidden and query variables to 1. The
partial derivatives are passed from parent to child according to
the chain rule as described by [14]. Each weight is changed
by multiplying a learning rate parameter η to Equation 1, i.e.,
∆w = η ∂

∂w
logP (y|x). To speed up training, we could esti-

mate the gradient by computing it with a subset (mini-batch) of
examples from the training set, rather than using all examples.

3. SPN Architecture
Figure 2 shows the architecture of our discriminative SPN for
language modeling1. To predict a word (a query variable), we

1https://github.com/stakok/lmspn/blob/master/faq.md contains
more details about the architecture.

use its previousN words as evidence in our SPN. Each previous
word is represented by a K-dimensional vector where K is the
number of words in a vocabulary. Each vector has exactly one
1 at the index corresponding to the word it represents, and 0’s
everywhere else. When we predict the ith word, we have a
vector vi−j (1 ≤ j ≤ N ) at the bottommost layer for each of
the previous N words.

Above the bottommost layer, we have a (hidden) layer of
sum nodes. There are D sum nodes Hj1 . . . HjD for each vec-
tor vi−j . Each sum nodeHjl has an edge connecting it to every
entry in vi−j . Let the mth entry in vi−j be denoted by vm

i−j ,
and the weight of the edge from Hjl to vm

i−j be denoted by
wlm. We constrain each weight wlm to be the same for each
pair of Hjl and vm

i−j (1 ≤ j ≤ N ). This layer of sum nodes
can be interpreted as compressing each K-dimensional vectors
vi−j into a smaller continuous-valued D-dimensional feature
vector (thus gaining the same advantages of [5] as described in
Section 1). Because the weights wlm’s are constrained to be
the same between each pair of K-dimensional input vector and
D-dimensional feature vector, we ensure that the weights are
position independent, i.e., the same word will be compressed
into the same feature vector regardless of its position. This
also makes it easier to train the SPN by reducing the number
of weights to be learned.

Above the Hjl layer, we have another layer of sum nodes.
In this layer, each node Mk (1 ≤ k ≤ K) is connected to every
Hjl node. Moving up, we have a layer of product nodes. Each
Gk product node is connected via two edges to an Mk node.
Each Gk node transforms the output from its child Mk node by
squaring it. This helps to capture more complicated dependency
among the input words.

Moving up, we have another layer of sum nodes. Each Bk

node in this layer is connected to an Mk node and a Gk node in
the lower layers. Above this, there is a layer of Sk nodes, each
of which is connected to aBk node and an indicator variable yk
representing a value in our categorical query variable (i.e., the
ith word which we are predicting). yk = 1 if the query variable
is the kth word, and yk = 0 otherwise. Intuitively, the indicator
variables select which part of the SPN below an Sk node gets
“activated”. Finally, we have an S node which connects to all
Sk nodes. When we normalize the weights between S and the
Sk nodes to sum to 1, S’s output is the conditional probability
of the ith word given its previous N words.

4. Experiments
4.1. Dataset

We performed our experiments on the commonly used Penn
Treebank corpus [15], and adhered to the experimental setup
used in previous work [6, 9]. We used sections 0-20, sections
21-22, and sections 23-24 respectively as training, validation
and test sets. These sections contain segments of news re-
ports from the Wall Street Journal. We treated punctuation as
words, and used the 10,000 most frequent words in the cor-
pus to create a vocabulary. All other words are regarded as
unknown and mapped to the token <unk>. The percentages
of out-of-vocabulary (<unk>) tokens in them are about 5.91%,
6.96% and 6.63% respectively. Thus only a small fraction of
the dataset consists of unknown words.

4.2. Methodology

Using the training set, we learned the weights of all sum
nodes in our SPN described in Section 3. To evaluate



its performance on the test set, we used the standard
(per-word) perplexity measure. The perplexity (PPL)
on a sequence of words w1, w2, . . . , wM is given by

PPL = M

√√√√ M∏
i=1

1

P (wi|w1, ..., wi−1)
.

We estimated the probability P (wi|w1, ..., wi−1) in PPL as
P (wi|wi−1, ..., wi−N ) that is given by our SPN.

We used a learning rate of η=0.1, a mini-batch size of 100,
randomly initialized the weights to a value between 0 and 1, and
imposed an L2 penalty of 10−5 on all weights. With reference
to Figure 2, We used K=10000, feature vectors with D=100
dimensions, and N = 3 and N = 4 previous words. We denote
an SPN that uses N previous words as SPN-N . We stopped
training our SPN when its performance on the validation set
stops improving at two consecutive evaluation points, or when
it has run for 40 hours, whichever occurred first. (It turned out
that both SPN-3 and SPN-4 ran for the maximum of 40 hours.)
We parallelized our SPN code2 to run on a GPU, and ran our
experiments on a machine with a 2.4 GHz CPU and an NVIDIA
Tesla C2075 GPU (448 CUDA cores, 5GB of device memory).

We compared our SPNs to an interpolated 5-gram model
with modified Kneser-Ney smoothing and no count cutoffs
(KN5) [3], the log-bilinear model [4], feedforward neural net-
works [5], syntactical neural networks [8], recurrent neural net-
works (RNN) [6], and LDA-augmented RNN [9], all of which
are described in Section 1.

4.3. Results

Table 1 shows the results of our experiments. The scores of
comparison systems are obtained from [9]. The “Individual
PPL” column shows the perplexity score of the respective
systems. The “+KN5” column shows the perplexity score af-
ter taking a weighted average of a system’s predictions and
KN5’s predictions (both equally weighted). ‘TrainingSetFre-
quency’ refers to a system that sets the probability of a token
to its frequency of occurrence in the training set. This base-
line is outperformed by all other models, suggesting that they
are capturing some form of dependency among words when
making their predictions. As the table shows, both SPN-3 and
SPN-4 outperform all other systems. Note that even though
LDA-augmented RNN uses additional information from latent
Dirichlet allocation (LDA; which is not used by our SPNs),
SPN-3 and SPN-4 still do better by 8.4% and 5.4% respectively
on “Individual PPL”, and by 16.6% and 16.2% respectively on
“+KN5”. They have more pronounced improvements over the
next best comparison system, RNN (which is a fairer compari-
son because it does not use information beyond what is available
to our SPNs). SPN-3 and SPN-4 outperform RNN by 16.4%
and 13.7% respectively on “Individual PPL”, and by 22.4%
and 22.0% respectively on “+KN5”.

We were initially surprised by SPN-3’s better performance
over SPN-4 (because the latter uses more information and thus
should make better predictions). Upon inspecting their perplex-
ity scores on the training set, we found that SPN-4 consistently
had lower perplexity than SPN-3 during the later stages of train-
ing. This suggests that SPN-4 is overfitting the data. (From Fig-
ure 2, we see that SPN-4 has D×K+D×K = 2×106 more
parameters than SPN-3, and hence is more likely to overfit.)

2Our implementation is publicly available at
https://github.com/stakok/lmspn.

Table 1: Perplexity scores (PPL) of different language models.

Model Individual PPL +KN5
TrainingSetFrequency 528.4
KN5 [3] 141.2
Log-bilinear model [4] 144.5 115.2
Feedforward neural network [5] 140.2 116.7
Syntactical neural network [8] 131.3 110.0
RNN [6] 124.7 105.7
LDA-augmented RNN [9] 113.7 98.3
SPN-3 104.2 82.0
SPN-4 107.6 82.4
SPN-4’ 100.0 80.6

To ameliorate this problem, we used the weights of the smaller
SPN to guide the weight learning in the larger SPN. We trained
an SPN-(N−1) for 10 hours, and used its weights to initialize
the corresponding weights in an SPN-N (all other weights are
initialized to zero) before training the SPN-N for another 10
hours. We repeated this process for N = 2, 3, 4. The final SPN
thus obtained uses 4 previous words and is denoted SPN-4’. As
Table 1 shows, SPN-4’ is the best performing system3.

Running a test example on our SPNs is typically very fast
(sub-second). Our SPNs took less time to train than RNN. To
attain the level of KN5’s perplexity score, RNN4 and SPN-4
took about 10 hours and 4 hours to train respectively.

To demonstrate that our SPN can scale to larger data, we
trained an SPN-4 for 40 hours on the Brown Laboratory for
Linguistic Information Processing 1987-89 WSJ corpus, which
is about 40 times larger than Penn Treebank (PTB). We tested
this SPN-4 on the same test set (section 23-24 of PTB) and ob-
tained a perplexity of 93.0 (an improvement of 13.6% over the
SPN-4 trained on the smaller PTB dataset). This suggests that
our model can scale, and can perform better with more data.

To show that our trained SPN is encapsulating useful in-
formation, we “seeded” it with some random initial words, and
used it to generate a sequence of words. Some examples of the
generated word sequences are shown below. These sentences
have the “flavor” of news reports, and qualitatively suggest that
our SPN is capturing meaningful information from the data.
• IT COULD BE SIMPLY EARNINGS FOR MANY IN-

VESTOR IN THE WATERS FEDERAL CAPITAL

• BUSINESS REGULATORY SAID IT EXPECTS TO
ARGUE OWN ’S THREE MEDICAL INVESTMENT
IN <unk>

5. Conclusion and Future Work
We presented the first SPN that is used for language model-
ing. Our proposed SPN is able to contain multiple hidden layers
to capture rich dependencies among words, while maintaining
tractable inference and training times. Our empirical compar-
isons with six previous language models on the standard Penn
Treebank corpus demonstrate the effectiveness of our SPN.

As future work, we want to combine our SPN language
model with an SPN for acoustic modeling to create an integrated
speech recognition system. We also want to create a “recurrent”
SPN to capture long range dependencies in word sequences.

Acknowledgements. This work is supported by DSO grant
DSOCL13083.

3Note that the total training time for SPN-4’ is also 40 hours, so its
better performance is not due to longer training times.

4We used the RNNLM Toolkit at
http://www.fit.vutbr.cz/ imikolov/rnnlm.



6. References
[1] M. R. Amer and S. Todorovic, “Sum-product networks for mod-

eling activities with stochastic structure,” in Proceedings of the
2012 IEEE Conference on Computer Vision and Patttern Recog-
nition. Providence, RI: IEEE Computer Society Press, 2012, pp.
1314–1321.

[2] R. Gens and P. Domingos, “Discriminative learning of sum-
product networks,” in Advances in Neural Information Processing
Systems 25, Lake Tahoe, Nevada, 2012.

[3] R. Kneser and H. Ney, “Improved backing-off for M-gram lan-
guage modeling,” in Proceedings of the Twentieth International
Conference on Acoustics, Speech, and Signal Processing, 1995,
pp. 181–184.

[4] A. Mnih and G. E. Hinton, “Three new graphical models for sta-
tistical language modelling,” in Proceedings of the Twenty-Fourth
International Conference on Machine Learning, 2007, pp. 641–
648.

[5] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural
probabilistic language model,” Journal of Machine Learning Re-
search, vol. 3, pp. 1137–1155, 2003.

[6] T. Mikolov, M. Karafiat, J. Cernocky, and S. Khudanpur, “Recur-
rent neural network based language model,” in INTERSPEECH,
2010.

[7] D. Koller and N. Friedman, Probabilistic Graphical Models:
Principles and Techniques. MIT Press, 2009.

[8] A. Emami and F. Jelinek, “Exact training of a neural syntactic
language model,” in IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 1, 2004, pp. I–245–8.

[9] T. Mikolov and G. Zweig, “Context dependent recurrent neural
network language model.” IEEE Workshop on Spoken Language
Technology, Tech. Rep., 2012.

[10] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allo-
cation,” Journal of Machine Learning Research, vol. 3, pp. 993–
1022, 2003.

[11] M. Sundermeyer, I. Oparin, J.-L. Gauvain, B. Freiberg,
R. Schlüter, and H. Ney, “Comparison of feedforward and re-
current neural network language models,” in International Con-
ference on Acoustics, Speech and Signal Processing, 2013, pp.
8430–8434.

[12] H. Poon and P. Domingos, “Sum-product networks: A new deep
architecture,” in Proceedings of the Twenty-Seventh Conference
on Uncertainty in Artificial Intelligence, Barcelona, Spain, 2011.

[13] R. Gens and P. Domingos, “Learning the structure of sum-product
networks,” in Proceedings of the Thirtieth International Confer-
ence on Machine Learning. Atlanta, GA: Omnipress, 2013.

[14] A. Darwiche, Ed., Modeling and Reasoning with Bayesian Net-
works. Cambridge University Press, 2009.

[15] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini, “Building
a large annotated corpus of English: the Penn Treebank,” Compu-
tational Linguistics, vol. 19, pp. 313–330, 1993.


