Collective Graph Identification

Galileo Mark Namata
Dept. of Computer Science
University of Maryland

Stanley Kok
Dept. of Computer Science
University of Maryland

Lise Getoor
Dept. of Computer Science
University of Maryland

College Park, MD 20742, USA College Park, MD 20742, USA College Park, MD 20742, USA

namatag@cs.umd.edu

ABSTRACT

Data describing networks (communication networks, trans-
action networks, disease transmission networks, collabora-
tion networks, etc.) is becoming increasingly ubiquitous.
While this observational data is useful, it often only hints
at the actual underlying social or technological structures
which give rise to the interactions. For example, an email
communication network provides useful insight but is not
the same as the “real” social network among individuals. In
this paper, we introduce the problem of graph identification,
i.e., the discovery of the true graph structure underlying
an observed network. We cast the problem as a probabilis-
tic inference task, in which we must infer the nodes, edges,
and node labels of a hidden graph, based on evidence pro-
vided by the observed network. This in turn corresponds
to the problems of performing entity resolution, link predic-
tion, and node labeling to infer the hidden graph. While
each of these problems have been studied separately, they
have never been considered together as a coherent task. We
present a simple yet novel approach to address all three prob-
lems simultaneously. Our approach, called C3, consists of
Coupled Collective Classifiers that are iteratively applied
to propagate information among solutions to the problems.
We empirically demonstrate that C® is superior, in terms
of both predictive accuracy and runtime, to state-of-the-art
probabilistic approaches on three real-world problems.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data Mining

General Terms

Algorithm, Design, Experimentation, Performance

Keywords

entity resolution, link prediction, collective classification,
semi-supervised learning

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

KDD'11, August 21-24, 2011, San Diego, California, USA.

Copyright 2011 ACM 978-1-4503-0813-7/11/08 ...$10.00.

skok@cs.umd.edu

getoor@cs.umd.edu

1. INTRODUCTION

In recent years, there has been a surge of interest in net-
work analysis applied to diverse domains including social
networks, technological networks, biological networks and
more. In part, this interest is driven by the burgeoning
growth in the amount of digital information describing net-
work data that is available including e-mail, citation collec-
tions, epidemiological data, and social media. Such data
contain a wealth of information (e.g., key individuals, com-
munities, and contagion trends) that, when uncovered, can
help to create better predictive models and help elucidate
general laws governing network evolution. However, the
available network data is typically noisy, observational, and,
while it provides useful signal for uncovering the underlying
sociological or technological network, it is not the same thing.

We define the process of discovering the hidden structure
which gives rise to observational network data as the prob-
lem of graph identification. Figure 1 illustrates an example
of inferring a social network (Figure 1(b)) from an email
communication network (Figure 1(a)). We refer to the ob-
servational network data as the input graph, and the hidden
network of interest as the output graph. Graph identifica-
tion uncovers the hidden network by simultaneously solving
three problems:

Entity resolution: merging nodes in the input that refer
to the same entity, e.g., “Do Neil Smith and N. Smith
refer to the same person?”.

Link prediction: inferring the links between nodes in
the output graph, often based on links in the input
graph, e.g., “Does an employer-employee relationship
exist between Anne and Robert?”.

Node labeling: determining the label of nodes in the out-
put graph, e.g., “Is Neil a CEO, manager or assistant?”.

In addition to constructing the hidden output graph, graph
identification involves constructing the mapping from nodes
in the input graph to nodes in the output graph (Figure 1(c)).

Each task informs the others, and by solving them simul-
taneously, we allow information to propagate among them
to obtain better solutions. For example, in a bibliographic
domain, predicting whether one paper cites another (link
prediction) allows us to determine whether two papers cite
common papers. Co-citation helps us to decide whether they
have the same topic (node labeling), which in turn aids in
ascertaining whether they are the same paper (entity reso-
lution). This last information in turn helps to determine the
citation links from the two papers to other papers, closing
the information propagation loop. While previous work [19,

Email Communication Network Social Network Mapping
nsmith@msn.com Neil Smith
(b, miones@example.com neil@example.comNeil Smith
mtaylor@example.com e ’ nsmith@msn.com® Neil Smith
neil@example.com Mary Taylor Robert Lee mtaylor@example.cor»Mary Taylor
|:| N mary@example.co®Mary Taylor
D’ mjones@example.codMary Jones
3 ", el acole@example.comAnne Cole
D D ---- robert@example.com Anne Cole Mary Jones robert@example.coMRobert Lee
acole@example.commary@example.com Label: CEO . Managdil Assistant Programmer

@

(b) (©

Figure 1: Input and output of graph identification. (a) Input graph representing a communication network
where the nodes are email addresses and the edges are email communications. (b) Output graph representing

the social network identified by graph identification.

The nodes correspond to people and the edges to

employee-manager relationships. The people are also labeled with their roles. (c) Mapping from input to

output nodes.

13, 29, 3, 28, 2, 25] has addressed each of these tasks sep-
arately, to our knowledge, we are the first to efficiently ad-
dress them simultaneously.

To address the problem of graph identification, we present
the C* (Coupled Collective Classifiers) algorithm. C® de-
fines a probabilistic model to capture the dependencies within
each task as well as the relational interactions among all
three. While it is conceptually possible for standard prob-
abilistic inference algorithms to jointly solve all three tasks
within the framework of our model, in practice they are too
computationally expensive for large real-world datasets. C*
uses an iterative procedure that simultaneously solves all
three tasks. It begins by using a local classifier based solely
on observed information in the input graph to solve each
task independently. Then it iteratively propagates these so-
lutions among the three tasks by means of relational features
that capture the interactions within and among the tasks.
Empirically, we observed that by propagating information,
C? improved predictive accuracy by as much as 48%. To
further tailor C*® as a practical approach, we designed it to
address the real-world scenario where it is costly to obtain
fully labeled network data. C® adopts a semi-supervised
learning algorithm that can exploit training data with only
a small fraction of labeled examples.

The remainder of the paper is organized as follows. We
begin with a background review in Section 2. Then we de-
scribe C? in detail (Section 3) and report our experiments
(Section 4). Next we discuss related work (Section 5). Fi-
nally, we conclude with future work (Section 6).

2. BACKGROUND

Throughout the paper, we use an uppercase letter to rep-
resent a random variable (e.g., Y) and a lowercase letter
(e.g., y) to represent its value. Bold letters represent a vec-
tor or set (e.g., Y) and their values (e.g., y).

A Markov random field (also known as Markov network)
encodes a joint distribution over a set of random variables
Y. Let C denote a set of subsets (or cliques) of the ran-
dom variables, and let Y. denote the random variables in
a subset c. For each ¢ € C, we have an associated potential
¢c(Y.), which is a non-negative function defined over the
joint domain of Y.. The Markov random field defines the

following distribution:

Ply) = 5 [o:tv0)

ceC

(1)

where Z = 37, [.cc ¢c(y.) is a normalization constant.
The potential functions are often represented more com-
pactly as a log-linear combination over a set of features:
pe(ye) = exp (3, wifi(ye)) = exp (we - fo(ye)) - In this case,
Equation 1 can be equivalently expressed as

%exp <Z W - fc(yc)> .

ceC

P(y) ()

In many applications, we are interested in conditional
distributions where a subset of the variables X are pro-
vided as evidence, and we predict a set of target variables
Y. A conditional Markov network defines the distribution
Py | x) = ﬁ [l.cc ¢e(%c,ye), where the partition func-
tion Z(x) now depends on x : Z(x) = > _, [].cc bec(Xe, yo)-
Note that evaluating the above equation requires that we
compute Z(x), which in turn, requires that we sum over
all possible assignments to y’. Since this is exponential in
|Y|, computing Z(x) and hence the equation are generally
intractable.

A common approximation is the pseudolikelihood [1]:

P*(y | x)
= HP(yi|y7i,x)

€xp (ZceC:yieyc we - fe(xe, yc))
Z(yc\yi7x)

Y—i Y, Yi—1,Yi+1,- -3 Ym
Z(ye\yix) = 3,650 (Leceyrey, We - fo(5e,30)). Note
that we only sum over the possible values of y;. Hence eval-

uating the normalization constants of all terms only requires
time that is linear in |Y].

=11 (3)

where and

3. COUPLED COLLECTIVE CLASSIFIERS

C? takes a graph (V,E) as input where V and E are re-
spectively a set of vertices and directed edges®. Each vertex

1C? extends straightforwardly to graphs with more than one

v € V represents a reference to an entity, and each edge
(vi,v;) € E represents an interaction between references v;
and v;. Each node v; in the input graph has associated at-
tributes A;. For example, if a node represents a reference
to a paper, the attributes may describe the words which ap-
pear in the paper. Edges (v;,v;) may also have associated
attributes, denoted A;;. An example of an edge attribute is
the number of emails sent on a communication link from per-
son v; tov;. Weuse A = {A4,;}U{A4;;} wherei,j =1,...,|V]|
to denote the attributes of all input nodes and edges.

C? jointly performs the three tasks of entity resolution,
link prediction and node labeling. For entity Resolution,
we define binary random variables R ={R;;} where i,j =
1,...,]V] and R;; is an indicator variable denoting whether
references V; and Vj are co-referent. For Link prediction,
we define binary random variables L = {L;;} where i,j =
1,...,|V| and L;; is an indicator variable denoting whether
there is a link, or edge, from V; to V}, in the output graph?.
For Node labeling, we define random variables for each node
representing its label N = {Nl}‘z\:”1 and N; € {1,2,...,k}
where k is the number of possible label values.

We partition each set of variables into a set representing
variables that are observed (i.e., evidence), and a set rep-
resenting variables that are predicted (i.e., are target vari-
ables). We denote observed variables as Ro,, Lo, and N,,
and target variables as Rp, Ly, Np, where R = R, UR,,
L=L,UL, and N = N, UN,. In addition, attributes
A and edges E in the input graph are also assumed to be
observed. Thus R,, Lo, No, A and E constitute evidence,
ie., X=R,UL,UN,UAUE. The target variables Y are
made up of the predicted variables, i.e., Y = R, UL, UN,,.

Given the above definitions and using Equation 3, we
can represent the joint probability over the target variables
R,, Ly, N, given evidence X as follows:

P* (rp7lP7nP | X)

= HP(Tply\TP7X) HP(lpb’\lmx) HP(np|y\np7x) .

rpErp Ip€lp np€Eny
(4)
3.1 Features

C? makes use of two kinds of features: local and rela-
tional. Local features capture the dependencies between a
single predicted variable and evidence. For example, in a
bibliographic domain, a local feature f(N;, A;) represents
how the topic IV; of a paper i depends on its content words
A;. Relational features capture the interaction between mul-
tiple predicted variables. We further differentiate between
two kinds of relational features: intra-relational and inter-
relational. Intra-relational features help in propagating in-

formation among variables of one task, whereas inter-relational

features aid in disseminating information among variables
of different tasks. For example, for node labeling the intra-
relational feature f(Ni, {Nij }vj:(v;,0;)cE) represents the con-
dition that the label of node N; depends on the predicted

kind of edge and hypergraphs. We focus on the case of a
single edge type for simplicity of presentation.

2In practice, we do not instantiate all the |V|? variables in
R and L. Section 4 describes how we use filtering techniques
to only create variables for pairs that have some possibility
of being co-referent /linked.

label of its observed neighbors along edges E in the input
graph, and the inter-relational feature f(N;, {Nij}vj.r,;=1)
represents the condition that the label of node N; depends
on the predicted label of its inferred neighbors along edges L
in the output graph. Similarly, for entity resolution, we may
have an intra-relational feature f(R;;,{Rix 7Rjk}vk:Rik:Rjk:1)
representing the condition that nodes ¢ and j are likely to
be co-referent if they have a common neighbor k that they
are predicted to be co-referent with. And we may have an
inter-relational feature f(R;j;, N;, N;) expressing the condi-
tion that nodes 7 and j are likely to be co-referent if their
inferred node labels N; and N; are the same.

Note that a wide gamut of dependencies can be cast in
terms of C®’s features. This is essential for graph identi-
fication because it allows us to exploit the diverse set of
dependencies which have been proposed for each of the un-
derlying tasks. Previous work in entity resolution, for ex-
ample, has proposed using a variety of attribute similarity
measures between potentially co-referent pairs of nodes [6].
Similarity measures have also been proposed to quantify the
set similarity of “neighborhoods” of pairs of nodes [2]. Com-
mon definitions of a node’s neighborhood include adjacent
nodes, all nodes within a given shortest path distance, and
all nodes which have an adjacent node in common (e.g., all
papers which cite some common subset of papers). All of
these definitions can be captured in our framework.

Work in link prediction also makes use of features based on
attribute and neighborhood similarity. These features cap-
ture the assumption that many networks are homophilic,
i.e., similar nodes are likely to share a link. Link predic-
tion features also tend to rely on topology-based character-
istics which capture the structural similarity (e.g., degree) or
proximity (e.g., existence of paths) between two potentially
adjacent nodes [13]. In multi-relational networks, link pre-
diction may rely on features based on the attributes of links
between the same pair of nodes (e.g., attributes of a commu-
nication edge between people imply something about their
social relationship). For node labeling, features traditionally
include the observed attributes of the given node, as well as
observed and predicted values of nodes in its neighborhood.
Table 1 contains more examples of local and relational fea-
tures, and shows the diversity of features that we used in
our experimental evaluation.

We use F to denote the set of features used by C*, and
ys to denote the random variables used in the definition of
features f € F. Then, from Equation 3 and Equation 4, we
can represent the joint probability over the target variables
R,,L,, N, as follows:

P* (rP7lP7nP | X)

- I

yErpUlyUny

exp (Zfe}—:yeyf wy - f(xf7Yf))
Z(y5\y: %) ‘

3.2 Weight Learning

Observe that Equation 4 decomposes into three terms,
one for each of the R,, L, and N, target variables. A
feature that is defined over more than one type of variable
appears in more than one of the terms with the same weight
(e.g.,f(Rp, Ly, x) appears in both HTPEer(rp|y\rp7x) and
HlpelpP(lp|y\lp,x)). We simplify the equation further by
assuming that the appearances of such a feature in a term

Table 1: Features used for entity resolution (ER), link prediction (LP), and node labeling (NL) for CoRa,
CITESEER, and ENRON. The evidence and inferred variables used in each features are in italics. We define
two nodes V; and V; as transitively co-referent if there exists a co-reference path along observed and predicted
co-reference edges between V; and Vj.

Task Type Feature Description
CORA/CITESEER Citation Network
ER Local - Jaccard similarity of observed words over nodes
- Jaccard similarity of the set of nodes adjacent via observed edges
Intra-Rel. - Jaccard similarity of the set of nodes adjacent via observed edges to observed and predicted
transitively co-referent nodes
- Indicator for whether or not there is a co-reference path along observed and predicted
co-reference edges between nodes
Inter-Rel. - Jaccard similarity of the set of nodes adjacent via observed and predicted citation edges
- Jaccard similarity of the set of nodes adjacent via observed and predicted citation edges to
observed and predicted transitively co-referent nodes
- For each possible label value pair, an indicator variable for the observed or predicted labels
of the nodes
LP Local - Jaccard similarity of observed words over nodes
- Indicator variable of matches of observed words at both nodes
Intra-Rel. - Indicator variable for the existence of nodes adjacent to both nodes via observed edges
- Indicator variable for the existence of nodes adjacent to both nodes via observed and
predicted citation edges
Inter-Rel. - For each possible label value pair, an indicator variable for the observed or predicted labels
of the nodes
- Transitive existence of edge due to observed and predicted citation edges in observed and
predicted transitively co-referent nodes
NL Local - Observed words of node
Intra-Rel. - For each possible label value, the % of nodes adjacent via observed edges with this observed
and predicted label
Inter-Rel. - For each possible label value, the % of nodes adjacent via observed and predicted citation
edges with this observed and predicted label
- For each possible label value, the % of nodes which are observed and predicted transitively
co-referent with this observed and predicted label
ENRON Email Communication and Social Network
ER Local - String similarity of observed email addresses
- Percent similarity of observed word usage
Intra-Rel. - Indicator for whether or not there is a co-reference path along observed and predicted
co-reference edges between nodes
- Jaccard similarity of the nodes adjacent via observed communication edges
- Jaccard similarity of the nodes adjacent to observed and predicted transitively co-referent
nodes via observed communication edges
Inter-Rel. - For each possible label value pair, an indicator variable for the observed or predicted labels
of the nodes
- Jaccard similarity of the nodes adjacent to observed and predicted transitively co-referent
nodes via observed and predicted managerial edges
LP Local - Indicator variable of observed words in shared communications
- Number of observed communications sent or received
Intra-Rel. - Indicator variable of observed and predicted managerial edges between nodes adjacent via
observed incoming and/or outgoing communication edges
Inter-Rel. - For each possible label value pair, an indicator variable for the observed or predicted labels
of the nodes
- Transitive existence of edge due to observed and predicted managerial edges in observed
and predicted transitively co-referent nodes
NL Local - Observed words in communications
- Number of observed communications sent and/or received
Intra-Rel. - For each label, the % of nodes adjacent via observed incoming and/or outgoing communi-
cation edges with this observed and predicted label
- For each label, the % of observed communications with nodes adjacent via observed in-
coming and/or outgoing communication edges with this observed and predicted label
Inter-Rel. - For each label, the % of nodes adjacent via observed and predicted managerial edges with
this observed and predicted label
- For each label, the % of observed and predicted transitively co-referent nodes with this
observed and predicted label

are distinct from those in another term, thus allowing the
weights of the feature to be different. This simplifies the
weight learning algorithm by allowing it to find the optimal
weights for each term separately.

In C®, we are interested in inferring the most likely as-

signment of the variables (also known as the mazimum a
posteriori state). Hence, for each term [], ., P(v]y\v,x)
(v € {rp,1,,n,}), we want to find feature weights that max-
% between the conditional probabil-
ity of each correct assignment v and every incorrect assign-

imize the ratio

ment v’. Taking logs of the ratio, we see that we are equiv-
alently maximizing the margins Zfe]::veyf wg - (f(xg,¥7\
v,v) — f(xys,ys\v,v")) for each v € v and v’ # v, i.e.,

maximize 7 s.t. Y. x w} <1 and
Yo € v, VW' #v Afsyp)(v,0") >y

where Af(xf’yf)(v,v') = Zfef:u&yf wy - (f(xf,y5\v,0) —
f(xg,y5\v, U,))‘

Applying a standard transformation to eliminate v and
introducing slack variables &, to allow some constraints to
be violated to accommodate non-linearly-separable data, we
get:

minimize %Zfefwj% + K cvéo st
Yo €V, V' £V Afxs iy (0,0) > 1=

where K is a constant. The above is precisely the optimiza-
tion that a multi-class support vector machine (SVM) [7]
performs®. Hence we train three SVMs, one for each of the
R,, L,, and N, variables.

Thus far, we have assumed that training data is fully ob-
served, i.e., we know the ground truth values of all R, L,
and N variables. For large real-world networks, this is an
impractical assumption because the ground truth values are
seldom readily available and it is too costly to manually la-
bel them. Hence, we focus on the more realistic scenario of
semi-supervised learning where only a small portion of the
variables are observed.

One difficulty with partially observed data is that we can-
not compute the values of relational features containing un-
labeled variables. We solve this problem by first using the
observed variables to train a new set of SVMs containing
only local features, one SVM for each of the R,, L,, and
N, variables. Next these are used to infer the values of the
target variables (recall that their values are not observed).
With these inferred values, we can evaluate the relational
features involving predicted variables, and hence learn fea-
ture weights that optimize the margins for the originally
observed variables. Algorithm 1 contains the pseudocode
for C*’s weight learning.

Even though we have derived the SVM optimization for
C?, we would like to emphasize that C* can easily be used
with other classifiers (logistic regression, naive Bayes, etc.).

3.3 Inference

Algorithm 2 gives the pseudocode for C*’s inference pro-
cedure. Given a set of target variables Y = (Rp, Ly, Np)
and evidence x, we begin by using a local SVM (i.e., one
containing only local features) learned by Algorithm 1 to
infer the values of each of the R,,L;,, and N, variables.
At this point, the variable assignments are based solely on
the evidence x. The algorithm then proceeds to capture the
dependencies between the variables. It iteratively evaluates
the relational features using the variable values inferred in
the previous iteration, and then infers new variable values
for the current iteration. The algorithm terminates when the
variable values converge or when a user-specified maximum
number of iterations is reached.

Given an assignment of values to the predicted variables,
we can construct an output graph. We create an entity

$We use a multi-class SVM rather than a binary-class one
because the node-labeling variables N can be assigned to
one of more than two possible values.

Algorithm 1 C® Semi-supervised Weight Learning

flocal 4 set of local features

fretational o get of relational features
yobserved values of observed variables
yrredicted hredicted variables
x, evidence variables
output: w, weights of floce! | frelational
vvlocal7 Weights of flocal
calls: LearnWeights(f,y,x,C), which returns weights of
features f given observed variables y, evidence x and
classifier C

input:

InferValue(Y,f,w,x,C), which returns the MAP value

of variable Y given features f, their weights w,
evidence x and classifier C

wilocal LearnWeights(flocal7 yobvserved SVM)
for each Y € ypredicted

ypredzcted — InferValue(Y, flocal7 vvlocal7 X, SVM)
f— flocal U frelational
w <« LearnWeights(f,y°?*emved x U yPredicted gyM)
return (w, w'°°¥)

Algorithm 2 C? Inference

input: Y, target variables
x, evidence
f, a set of local and relational features
w, weights of features in f

flocal g get of local features

w'ocel weights of features in

maxIter, maximum number of iterations
output:y, values of target variables
calls: InferValue(Y,f,w,x,C), which returns the MAP
value of variable Y given features , their weights w,
evidence x, and classifier C'

flocal

i1+ 0
for eachY €Y

y' «— InferValue(Y,fo! wiocel x SVM)
repeat

141+4+1

for eachY €Y

y' <« InferValue(Y,f,w,x U {y" '\ 4"}, SVM)

until ¢ = maxlter or y values converge
return y*

node in the output graph for each collection of co-referent
references. We also create edges between the entities based
on whether the majority of their corresponding variables L,
defined over their references, indicate that the entities are
linked. Finally, we can assign the label to an entity based
on the values in N corresponding to its references. It is
possible that assignments to these variables are inconsistent
(i.e., N; may not equal N; even though references ¢ and j
are predicted co-referent). In these cases, we can define a
procedure to resolve the inconsistencies prior to generating
the output graph (e.g., enforce transitivity over co-referent
pairs, add edges between entities whose references have an
edge, and taking the mode label over the labels of its refer-
ences). For the evaluation in this paper, we evaluate only
over the predicted variables Y; because we do not have ap-
propriate ground truth to test against, we do not perform
this additional set of steps.

4. EXPERIMENTAL EVALUATION

We evaluate our approach using two types of networks:
citations networks and email communication networks.*
Citation Networks We evaluate on two datasets, CORA
and CITESEER [25]. In a citation network, nodes represent
papers and directed edges represent citations. The CORA
network contains 2708 nodes with 5428 edges. The CITE-
SEER network contains 3312 nodes with 4732 edges. The
nodes of both networks also contain, after pruning, 500 bi-
nary attributes representing the presence of a word in a pa-
per, as well as a label indicating the topic of a paper (7
possible labels in CORA and 6 in CITESEER). Because noisy
versions of these networks are not readily available®, we cre-
ate noisy versions of these graphs (i.e., input graphs) which
attempt to mimic the types of noise likely encountered dur-
ing the extraction of a network from multiple sources.

We create an input network by first adding a “reference”
paper for a paper entity each time that paper is cited. For
each reference, we copy the words from the corresponding
entity, but introduce noise, with probability 14, by replac-
ing the observed word with a randomly chosen word that
did not occur in that paper. Next, for the citation links be-
tween the entity papers, we create a citation edge between
each each reference, and introduce noise by replacing a per-
centage of the edges, nedge, chosen randomly, with random
edges between previously unconnected input nodes. These
edges simulate the edges that may be encountered in a noisy
extraction process. In our experiments, we used settings of
Nattr and Nedge at 0.2, 0.3, and 0.4 (denoted Low, Medium,
and High Noise, respectively).

For entity resolution and link prediction, because the in-
ferences are made over pairs of nodes, there are important
scalability issues. If done naively, both entity resolution and
link prediction require O(|V|?) predictions. Clearly this will
be intractable for all but the smallest of graphs. In both
tasks, a filtering step is often applied to limit the potential
pairs that are considered [17, 29]. This is crucial for making
the algorithm scalable, and has been shown to improve the
accuracy of the predictions. The filtering step is referred to
as blocking [8] or canopies [17]. Any method that can quickly
identify the potential pairs while minimizing the false nega-
tives can be used. In our setting, the blocking criterion for
entity resolution filters potential pairs as nodes which have
at least two nodes, adjacent via edges in the input graph, in
common. For link prediction, the blocking criterion filters
potential pairs as nodes which have an extracted edge be-
tween them. Note that while this substantially reduces the
number of potential pairs, in our experiments there remain
up to 120, 000 pairs for entity resolution and 34, 000 pairs for
link prediction.

Email Communication Network The second type of net-
work we evaluate over is a corporate communication and
social network, based on the ENRON dataset [10]. The in-
put graph is an email communication network where the
nodes correspond to email addresses, directed edges repre-
sent emails sent from one email address to another, and

4Additional information about the datasets, features, and
settings used for these experiments are available from
http://www.cs.umd.edu/projects/lings/c3.

5We note that while there are annotations for entity reso-
lution (e.g., [2, 27]), link prediction (e.g., [13]), and node
labeling (e.g., [25]) available, we are unable to use them di-
rectly since they are over different subsets of the network.

edge attributes indicate the words used and the number of
communications between those email addresses. The output
graph is a social network where the nodes represent people,
edges indicate a managerial relationships, and the node la-
bels indicate people’s titles. We also have annotations on
which email addresses belong to the same person. The full
network consists of 211 email address nodes with 2837 di-
rected communication edges corresponding to 146 individu-
als with 5 job title labels and 139 managerial relationships
among them. Candidate pairs for entity resolution are lim-
ited to pairs of email addresses which are at most a distance
three away in the communication network. Similarly, candi-
date managerial relationships are limited to pairs of nodes
which share a communication edge.

The evaluation for these networks is semi-supervised; we
train on the observed part of the network and predict the
remaining parts of the network. We varied the percentage
of missing annotations over the reference labels for node la-
beling and the potential pairs for entity resolution and link
prediction, evaluating at 25%, 50%, and 75% for CORA and
CITESEER and 20%, 30%, and 40% for the much smaller
ENRON network (denoted Low, Medium, and High, respec-
tively). We construct five random samples for each setting
(and each noise level for COrA and CITESEER) using strati-
fied snowball sampling.

41 Evaluation

We evaluated C® on the three networks using the fea-
tures defined in Table 1. We used the LibSVM [4] im-
plementation and set maxlter = 10 in Algorithm 2. We
evaluated entity resolution, link prediction, and node la-
beling performance using the average F1 performance over
the predictions for the target variables Y, defined in Sec-
tion 3. We also examined the average training, testing,
and overall runtime for each of the approaches by defin-
ing variants of C® which use different subsets of full set of
features. In the first variant, LOCAL, we use only features
based on the observed attributes of the nodes (i.e., words,
email address string). This is equivalent to commonly used
approaches for entity resolution, link prediction, and node
labeling which make predictions independently and base pre-
dictions on only observed attributes [4, 6]. The second
variant, INTRA, performs C® using only the relational fea-
tures which capture the intra-dependencies of the predic-
tions (dependencies on predictions of the same type). This
variant allows us to study the relative impact of captur-
ing the collective propagation among target variables of the
same type. The INTRA variant is also representative of ap-
proaches which perform collective entity resolution, collec-
tive link prediction, and collective node labeling as separate,
unrelated tasks [19, 28, 2].

We also compare against two popular approaches to per-
forming inference involving multiple tasks: PIPELINE and
Markov Logic Networks (MLN) [22]. The PIPELINE ap-
proach performs tasks one at a time and in a fixed order. At
each stage of the PIPELINE, we perform collective inference
for a particular task only, using a similar learning and infer-
ence procedure to C® for comparability, but with the intra-
relational features for that task and the inter-relational fea-
tures from tasks which occurred earlier. Consequently, while
the intra-dependencies are captured at each stage, the flow
of information in PIPELINE does not allow earlier stages
to use the predictions of later stages. This baseline is sen-

sitive to ordering so we consider all possible orderings (six
in total for the three tasks in graph identification). Due
to space, we only present the performance of the best pos-
sible ordering (denoted PIPELINE"). The other approach
we compare to, MLN, is a state-of-the-art joint inference
model proposed by Richardson and Domingos [22]. For this
comparison, we use an open source implementation of MLN
called Alchemy[11).° Because dependencies in MLN are rep-
resented using first order logic, we define first order logic
formulae to mimic features defined in Table 1. We explored
various data representations and parameters for Alchemy,
including the option to perform MAP or marginal inference,
and present the results for the best performing combination
in terms of both runtime and performance.

4.2 Results

We present the overall F1 performance (representing the
average over the entity resolution, link prediction, and node
labeling F1 performances) over the multiple levels of noise
and annotation in Table 2. The best performance for each
set is indicated in bold. We also perform statistical signif-
icance tests, using a paired-t test with significance > 95%,
over the F1 values for all pairs of approaches. The results
are summarized in Table 3. The table indicates the number
of times one approach, shown in each row, significantly out-
performs another approach, shown in the columns. In Table
4, we list the average training, testing, and overall runtimes
for a representative subset of the CORA experiments. These
experiments were run on a single server with dual Intel Xeon
2.66Ghz processors and 48GB of memory. All implementa-
tions are in Java except for Alchemy which is in C++.

Comparing the performances of all the approaches, we see
that C® is overall the best performing. C? is the best per-
forming in all but one of the columns and in that single
instance, the difference is not statistically significant. Look-
ing at Table 3, we see that C* significantly outperforms all
the other approaches in most cases while there are no in-
stances where C* does significantly worse than any other
algorithm. Next, looking at the approaches which exploit
varying subsets of the dependencies within and among the
different tasks, we see that LOCAL has the worst perfor-
mance, followed by INTRA, and PIPELINE*. The trend in
performance is directly correlated with the amount of intra-
and inter-dependencies used by each approach; the more
intra- and inter-dependencies are exploited, the better the
overall performance. In addition, while increasing the num-
ber of dependencies used in the models increases runtime,
we see that the difference in runtime is minimal compared
to the performance improvement.

Relating the performance of the INTRA and LOCAL ap-
proaches, we see that making use of the intra-dependencies
can, by itself, significantly improve performance. This is
consistent with previous work which looked at these tasks in
isolation and shows the importance of exploiting these types
of dependencies. Similarly, comparing the relative perfor-
mance of the INTRA to the PIPELINE* and C® approaches,
we find that further making use of the inter-dependence
yields a comparable, if not larger, improvement in perfor-
mance with little impact on overall runtime. While using
the inter-dependencies in these tasks has not been widely
studied, the results show the importance of these types of

5We had to modify Alchemy to improve its efficiency when
grounding its large underlying Markov network.

dependencies. Relative to the PIPELINE* approach, we
found the best performing PIPELINE* to be a competitive
baseline in both performance and runtime. We note, how-
ever, that there is a significant variance in the performance
of PIPELINE™ based on the ordering of the tasks. Successful
application of the PIPELINE" requires the non-trivial task
of identifying which ordering is optimal which we accomplish
by evaluating all possible orderings (generally requiring six
times more runtime than C®). Our C® approach, on the
other hand, requires no ordering yet still significantly out-
performs even the best performing PIPELINE" in all but
three, statistically insignificant, cases.

Comparing the performance of the two joint models, we
find that C*® significantly outperforms MLN performance
while being an order of magnitude faster. We found that
despite multiple attempts to optimize the MLN, the perfor-
mance of MLN in our experiments remained relatively poor.
One possibility for this is that there is insufficient training
data for the MLN weight learning given the number of de-
pendencies and features involved. We may also need to look
at extensions of the basic MLN model [30, 9]. Understand-
ing the causes of the poor MLN performance and addressing
those issues is part of our future work. Our experience with
MLN, however, highlights the challenge in efficiently and
successfully modeling all the dependencies to jointly infer
the tasks involved in graph identification, and the advan-
tages of using a simpler approach based on collections of
coupled classifiers.

5. RELATED WORK

Graph identification is related to domain-specific prob-
lems such as information extraction in natural language pro-
cessing [24], network mapping in computer networks [26],
and biological network inference in bioinformatics [16]. While
graph identification may provide a unifying paradigm for
these problems and others, there are some important dif-
ferences as well. Information extraction traditionally infers
structured output from unstructured text (e.g., newspaper
articles, emails), while graph identification is specifically fo-
cused on inferring structured data (i.e., the output graph)
from other structured data (i.e., the input graph, perhaps
produced from a noisy information extraction process). Net-
work mapping and biological network inference are also re-
lated to graph identification, but they are mainly concerned
with inferring only network topology.

There is significant prior work exploring the components
of graph identification individually; representatives include
work on collective classification (which we refer to as node
labeling) [15, 18, 25], link prediction [13, 29, 5], and entity
resolution [28, 2, 31]. More recently, there is work that looks
at various ways these tasks are inter-dependent and can be
modeled jointly [29, 23, 32, 21]. To our knowledge, however,
previous work has not formulated the complex structured
prediction problem as interacting components in order to
collectively infer a graph.

Our iterative approach is similar in spirit to the itera-
tive classification algorithm (ICA) presented by Neville and
Jensen [19] and the link-based classification work by Lu and
Getoor [14]. It is also related to work on relational depen-
dency networks (RDN) [20] and stacked inference [12], which
also use local conditional classifiers. In a RDN, a joint prob-
ability distribution is estimated using a variant of Gibbs
sampling over the predicted local conditional distributions.

Table 2: Overall F1 performance (representing the average over the entity resolution, link prediction, and
node labeling F1 performance) on the different models. Bold indicates the highest value in a given column.
C? is the best performing in all but one statistically insignificant case.

CITESEER CORA ENRON
% Unknown Low Noise Medium Noise High Noise | Low Noise Medium Noise High Noise
Low MLN 0.512 0.449 0.382 0.435 0.367 0.329 0.098
LOCAL 0.648 0.526 0.409 0.682 0.557 0.390 0.352
INTRA 0.678 0.574 0.468 0.747 0.631 0.507 0.426
PIPELINE* 0.705 0.612 0.505 0.779 0.676 0.565 0.451
c3 0.713 0.621 0.519 0.790 0.688 0.577 0.465
Medium MLN 0.373 0.399 0.385 0.352 0.373 0.310 0.089
LOCAL 0.698 0.592 0.482 0.735 0.626 0.466 0.379
INTRA 0.736 0.642 0.545 0.801 0.703 0.581 0.420
PIPELINE* 0.756 0.672 0.579 0.830 0.745 0.641 0.440
c3 0.763 0.679 0.588 0.837 0.753 0.649 0.457
High MLN 0.202 0.177 0.168 0.180 0.182 0.177 0.077
LOCAL 0.713 0.619 0.507 0.744 0.648 0.502 0.388
INTRA 0.748 0.668 0.568 0.805 0.716 0.592 0.441
PIPELINE* 0.764 0.692 0.599 0.829 0.756 0.653 0.458
c3 0.768 0.695 0.602 0.836 0.761 0.656 0.455

Table 3: Each row indicates the number of times the approach, in each row, significantly outperforms the
average overall performance of the approaches in each column, over all three levels of noise and three levels
of sampling (a maximum of 9 pairwise comparisons for CorA and CITESEER and a maximum of 3 for ENRON).

CITESEER CORA ENRON
MLN LOCAL INTRA PIPELINE* C3|MLN LOCAL INTRA PIPELINE* C3|MLN LOCAL INTRA PIPELINE* C3
MLN - 0 0 0 0 - 0 0 0 0 - 0 0 0 0
LOCAL 9 - 0 0 o 9 - 0 0 0| 3 - 0 0 0
INTRA 9 9 - 0 o 9 9 - 0 0| 3 2 - 0 0
PIPELINE*| 9 9 9 - o 9 9 9 - 0| 3 3 0 - 0
c3 9 9 9 8 -1 9 9 9 9 -1 3 3 2 2 -

Table 4: Average training, testing, and overall runtimes (in minutes) for each model over a subset of the
experiments on CorA. PIPELINE* does not include the runtime of other orderings that are needed to identify

the optimal one.

Train Time
MLN 535.0
LOCAL 3.6
INTRA 11.3
PIPELINE* 12.6
Cc3 14.5

Test Time Overall Time
45.3 580.3
0.3 3.9
10.9 22.2
12.7 25.3
13.3 27.9

In stacked inference, classifiers retrained at every iteration
are “stacked” such that the output of one classifier is used
to augment the feature space and serves as input to an-
other. We explored both approaches and found that in the
semi-supervised setting described here they did not perform
as well as C®. Also, previous work in these methods have
mainly looked only at the problem of node labeling, using
simple aggregations for relational features. C?® is a gener-
alization of these approaches which use coupled classifiers
to perform multiple tasks simultaneously, as well as using
a richer set of relational features including aggregate, set
similarity, and path-based features.

6. CONCLUSION

Graph identification is an important emerging problem.
As more observational data describing networks becomes
available, the need to properly map from the observational
data to the “true” underlying social, technical or biologic
network of scientific interest grows in importance. Correctly
identifying these networks from noisy data before they are
further analyzed is of huge importance. Not only do the in-
ferred networks prevent us from drawing erroneous conclu-

sions, they expedite our analysis as they are often orders of
magnitude smaller than the observed ones. The problem is
extremely challenging, in terms of propagating information
correctly, training the models appropriately, and evaluating
the results. In this work, we have formulated this prob-
lem as a probabilistic inference problem, and shown how to
combine the results of entity resolution, link prediction, and
node labeling in a coherent manner. We developed C* which
can capture the intra- and inter-relational dependencies and
showed that it can achieve significant performance gains over
existing approaches. There is much room for further explo-
ration; for example applying graph identification to evolving
networks, studying convergence and complexity properties,
exploring the use of other algorithms and models for graph
identification, and applying the algorithm to other types of
network data. In this paper, we have shown that a simple
and intuitive coupled collective classification approach can
be effective in this complex, highly inter-dependent, predic-
tion problem.

7. ACKNOWLEDGMENTS

This work was supported by NSF Grant # IIS-0746930
and AFRL contract # FA8750-10-C-0191.

8.
[1]

2]

8]

[4]

[5]

(6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

REFERENCES

J. Besag. Statistical analysis of non-lattice data. The
Statistician, 24:179-195, 1975.

I. Bhattacharya and L. Getoor. Collective entity
resolution in relational data. ACM Transactions on
Knowledge Discovery from Data, 1:1-36, 2007.

V. R. Carvalho and W. W. Cohen. On the collective
classification of email “speech acts”. In Proceedings of
the ACM SIGIR Conference on Research and
Development in Information Retrieval, 2005.

C.-C. Chang and C.-J. Lin. LIBSVM: a library for
support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/“cjlin/libsvm.

A. Clauset, C. Moore, and M. E. J. Newman.
Hierarchical structure and the prediction of missing
links in networks. Nature, 453:98, 2008.

W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A
comparison of string distance metrics for
name-matching tasks. In Proceedings of the IJCAI
Workshop on Information Integration, 2003.

K. Crammer, Y. Singer, N. Cristianini,

J. Shawe-taylor, and B. Williamson. On the
algorithmic implementation of multiclass kernel-based
vector machines. Journal of Machine Learning
Research, 2:2001, 2001.

I. P. Fellegi and A. B. Sunter. A theory for record
linkage. Journal of the American Statistical
Association, 64(328):1183-1210, 1969.

T. Huynh and R. Mooney. Max-margin weight
learning for markov logic networks. In W. Buntine,
M. Grobelnik, D. Mladenic, and J. Shawe-Taylor,
editors, Machine Learning and Knowledge Discovery
in Databases, volume 5781 of Lecture Notes in
Computer Science, pages 564-579. Springer Berlin /
Heidelberg, 2009.

B. Klimt and Y. Yang. Introducing the enron corpus.
In Conference on Email and Anti-Spam, 2004.

S. Kok, M. Sumner, M. Richardson, P. Singla,

H. Poon, and P. Domingos. The alchemy system for
statistical relational ai. Technical report, Department
of Computer Science and Engineering, University of
Washington, Seattle, WA, 2006.

Z. Kou and W. Cohen. Stacked graphical models for
efficient inference in markov random fields. In
Proceedings of the SIAM International Conference on
Data Mining, 2007.

D. Liben-Nowell and J. Kleinberg. The link prediction
problem for social networks. In Proceedings of the
ACM Conference on Information and Knowledge
Management, 2003.

Q. Lu and L. Getoor. Link-based classification using
labeled and unlabeled data. In Proceedings of the
ICML Workshop on the Continuum from Labeled to
Unlabeled Data in Machine Learning and Data
Mining, 2003.

S. A. Macskassy and F. Provost. Classification in

networked data: A toolkit and a univariate case study.

Journal of Machine Learning Research, 8:935-983,
2007.

S. Martin, D. Roe, and J.-L. Faulon. Predicting
protein-protein interactions using signature products.
Bioinformatics, 21:218-226, 2005.

(17]

28]

29]

A. McCallum, K. Nigam, and L. Ungar. Efficient
clustering of high-dimensional data sets with
application to reference matching. In Proceedings of
the ACM SIGKDD International Conference On
Knowledge Discovery And Data Mining, 2000.

L. McDowell, K. M. Gupta, and D. W. Aha. Cautious
inference in collective classification. In Proceedings of
the AAAI Conference on Artificial Intelligence, 2007.
J. Neville and D. Jensen. Iterative classification in
relational data. In Proceedings of the AAAI Workshop
on Learning Statistical Models from Relational Data,
2000.

J. Neville and D. Jensen. Relational dependency
networks. Journal of Machine Learning Research,
8:653-692, 2007.

H. Poon and P. Domingos. Joint unsupervised
coreference resolution with markov logic. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing, 2008.

M. Richardson and P. Domingos. Markov logic
networks. Machine Learning, 62:107-136, 2006.

D. Roth and W. Yih. A linear programming
formulation for global inference in natural language
tasks. In Proceedings of the Conference on
Computational Natural Language, 2004.

S. Sarawagi. Information extraction. Foundations and
Trends in Databases, 1(3):261-377, 2008.

P. Sen, G. M. Namata, M. Bilgic, L. Getoor,

B. Gallagher, and T. Eliassi-Rad. Collective
classification in network data. Al Magazine,
29(3):93-106, 2008.

R. Sherwood, A. Bender, and N. Spring. Discarte: a
disjunctive internet cartographer. SIGCOMM
Computer Communication Review, 38(4):303-314,
2008.

P. Singla and P. Domingos. Multi-relational record
linkage. In Proceedings of the ACM SIGKDD
International Conference On Knowledge Discovery
And Data Mining, 2004.

P. Singla and P. Domingos. Entity resolution with
markov logic. IEEE International Conference on Data
Mining, 21:572-582, 2006.

B. Taskar, M.-F. Wong, P. Abbeel, and D. Koller.
Link prediction in relational data. In Proceedings of
the Conference on Neural Information Processing
Systems, 2003.

J. Wang and P. Domingos. Hybrid markov logic
networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 1106-1111, 2008.

M. Wick, A. Culotta, K. Rohanimanesh, and

A. McCallum. An entity-based model for coreference
resolution. In Proceedings of the SIAM International
Conference on Data Mining, 2009.

M. L. Wick, K. Rohanimanesh, K. Schultz, and

A. McCallum. A unified approach for schema
matching, coreference and canonicalization. In
Proceedings of the ACM SIGKDD International
Conference On Knowledge Discovery And Data
Mining, 2008.

