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E-commerce platforms categorize their products into a multi-level taxonomy tree with thousands of leaf cat-

egories. Conventional methods for product categorization are typically based on machine learning classifica-

tion algorithms. These algorithms take product information as input (e.g., titles and descriptions) to classify

a product into a leaf category. In this article, we propose a new paradigm based on machine translation. In

our approach, we translate a product’s natural language description into a sequence of tokens representing a

root-to-leaf path in a product taxonomy. In our experiments on two large real-world datasets, we show that

our approach achieves better predictive accuracy than a state-of-the-art classification system for product cat-

egorization. In addition, we demonstrate that our machine translation models can propose meaningful new

paths between previously unconnected nodes in a taxonomy tree, thereby transforming the taxonomy into a

directed acyclic graph. We discuss how the resultant taxonomy directed acyclic graph promotes user-friendly

navigation, and how it is more adaptable to new products.
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1 INTRODUCTION

Product catalogs are critical to e-commerce platforms such as Alibaba, Amazon, Rakuten, and
Shopee. These catalogs typically categorize millions of products into a taxonomy tree 3 to 10 lev-
els deep with thousands of leaf nodes [McAuley et al. 2015; Shen et al. 2012] (Figure 1) and are
continually updated with millions of new products per month from thousands of merchants. Cor-
rectly categorizing a new product into the taxonomy is fundamental to many business operations,
such as enforcing category-specific listing and censorship policies, extracting and presenting rel-
evant product attributes, and determining appropriate handling and shipping fees. Further, the
accuracy and coherency of the taxonomy play important roles in customer-facing services such
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Fig. 1. Example of a product catalog organized in a tree structure (solid lines and circles). Individual products

are added to leaf nodes (e.g., Grits). The addition of the dotted edge turns the tree into a directed acyclic

graph (DAG), and there are now more than one root-to-leaf paths to the leaf node Pancake & Waffle Mix.

as product search and recommendation, and user browsing and navigation of the catalog. Clearly,
given the large scale of the product taxonomy, manually categorizing a new product into it is both
unscalable and error prone, and we need automated algorithms for doing so.

To date, algorithms for product categorization have largely formulated the problem as a standard
machine learning classification task, which takes the textual description of a product as input (e.g.,
“Mix Pancake Waffle 24 OZ -Pack of 6”) and outputs a leaf node that is the product’s most likely
category. Because the taxonomy is a tree and each leaf node uniquely defines a path from root to
leaf, these algorithms are effectively outputting an existing root-to-leaf path. Modulo the addition
of the product to the leaf, these algorithms do not alter the taxonomy’s tree structure.

In contrast to classification-based approaches, we map the problem of product categorization to
the task of machine translation (MT). An MT system takes text in one language as input (tradition-
ally denoted as f ) and outputs its translation as a sequence of words in another language (denoted
as e). The input f maps to the textual description of a product, and the output e maps to the se-
quence of categories and sub-categories in a root-to-leaf path (e.g., Baking Supplies → Flour
& Dough → Pancake & Waffle Mixes). By framing product categorization as an MT problem,
our approach offers several operational and technical advantages over previous algorithms.

First, large e-commerce companies typically operate their sites globally in a variety of languages
(e.g., www.rakuten.com in English and www.rakuten.co.jp in Japanese) and have invested heavily in
their MT capabilities. By utilizing these existing MT systems for the task of product categorization
(rather than developing a new disparate system), we are reducing the technical debt that these
companies incur. They have fewer algorithms to be cognizant of, fewer systems to develop, less
bugs to fix, and consequently lower maintenance cost.

Second, MT systems, through the use of deep learning [Goodfellow et al. 2016], have improved
their accuracy by leaps and bounds in recent years [Bahdanau et al. 2015; Kalchbrenner and
Blunsom 2013; Sutskever et al. 2014], even to the extent of achieving human parity on some lan-
guage pairs [Hassan et al. 2018]. By mapping the problem of product categorization to one of MT,
we bring the best of MT technology to bear on the problem of product categorization in a cost-
effective manner. In Section 4, we provide empirical results demonstrating that our MT approach
outperforms state-of-the-art systems.

Third, MT systems are by nature resilient to the vagaries and noise present in language and
thus are robust to errors in a product’s textual description and the varieties of ways in which a
product can be specified (e.g., “Mix Pancake Waffle 24 OZ -Pack of 6” and “Packet of six; waffle
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E-Commerce Product Categorization via Machine Translation 11:3

pancake mix; 24 ounces” refer to the same product). This makes MT systems ideal for dealing with
the uncertainties inherent in a product’s natural language description.

Fourth, our MT approach not only outputs pre-existing root-to-leaf paths in a taxonomy tree
but also produces novel root-to-leaf paths that do not exist in the taxonomy. These novel paths
transform the structure of a product catalog from a tree to a directed acyclic graph (DAG). This
is a powerful transformation, offering potentially multiple root-to-leaf paths to a single product
(rather than just one path as in previous systems). This better conforms to psychological findings
that humans tend to view an object in multiple ways [Heit and Rubinstein 1994; Ross and Murphy
1999; Shafto and Coley 2003; Shafto et al. 2005]. For example, a waffle is regarded as being primarily
carbohydrates because it is made of flour; however, it is often also regarded as a breakfast food.
The different ways of thinking about a waffle underline the different ways of thinking about food:
as a system of taxonomic categories like flour and sugar, or as situational categories like breakfast
foods and dinner fare. Likewise, in other product domains, items have different properties, and
more than one system of categories are required to fully represent these properties. By creating
multiple root-to-leaf paths, our system better caters to human intuition than previous systems
and can potentially improve customer-facing applications such as user product navigation. For
example, by having both of the following paths in a product DAG, a user who predominantly views
a waffle mix as baking supplies and a user who views it as a breakfast food can both expeditiously
navigate to what they need:

—Food & Beverage → · · · → Cooking & Baking Supplies → Baking Dough & Mixes
→ Pancake & Waffle Mix

—Food & Beverage → · · · → Breakfast → Pancake & Waffle Mix

The contribution of our work lies in empirically demonstrating that MT systems can be applied
with great accuracy to the task of e-commerce product categorization. To our knowledge, this
repositioning of MT systems for product categorization is not immediately obvious, and to the
best of our knowledge, we are the first to demonstrate the viability of doing so. We believe e-
commerce firms would reap the preceding operational and technical benefits should they adopt
our proposed approach.

Next, we briefly review related work (Section 2). We then describe state-of-the-art MT systems
and how we use them for product categorization (Section 3). Next, we describe our datasets, ex-
perimental methodology, comparison systems, and empirical results (Section 4). Then, we provide
a qualitative analysis of our results (Section 5). Finally, we conclude with future work (Section 6).

2 RELATED WORK

Most product categorization systems are based on machine learning classification algorithms.
These systems can be dichotomized into (a) those that classify a product in a single step into
one of thousands of leaf nodes in a taxonomy tree, and (b) those that classify the product stepwise,
first into higher-level categories, and then into lower-level sub-categories. This dichotomy is due
to the inherent skewness (long tail phenomenon [Anderson 2006]) that is typical of e-commerce
products—a large proportion of products are distributed over a small number of categories (leaf
nodes) with the remaining fraction of products sprinkled over a large number of remaining cat-
egories. This imbalance of category sizes poses a challenge to classification algorithms, which
generally require the sizes of categories to be approximately balanced. To circumvent this prob-
lem, the stepwise approach first performs classification across top-level categories, each of which
aggregates products in its lower-level sub-categories to ameliorate the data imbalance problem.
After assigning a product to a top-level category, the stepwise approach repeats the process and
performs classification across the sub-categories. Because these sub-categories belong to the same
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top-level category, they are likely to belong to the same class of products and hence have less im-
balance in their sizes. However, the stepwise approach suffers from two shortcomings: (a) errors
from classifiers at previous steps get propagated to classifiers at subsequent steps with no chance
of recovery, and (b) the number of classifiers grows exponentially with every step. Unlike the step-
wise systems, the single-step approach does not have these drawbacks but must contend with the
category imbalance problem at its full severity at the leaf nodes.

A variety of single-step classifiers have been used for product categorization. Yu et al. [2013]
explore a gamut of word-level features (e.g., n-grams) and use a support vector machine (SVM;
Cortes and Vapnik [1995]) as their classification algorithm. Chen and Warren [2013] sensitize the
objective function of an SVM to the average revenue loss of erroneous product classifications,
thereby trading high revenue loss errors for low revenue loss ones. Sun et al. [2014] use simple
classifiers (e.g., naive Bayes, k-nearest neighbors (KNN), and perceptron) and recruit manual labor
via crowdsourcing to flag their errors. Kozareva [2015] uses a variety of features (e.g., n-grams,
latent Dirichlet allocation topics [Blei et al. 2003], and word2vec embeddings [Mikolov et al. 2013])
in a multi-class algorithm. Both Ha et al. [2016] and Xia et al. [2017] use deep learning to learn a
compact vector representation of the attributes of a product (e.g., product title, merchant ID, and
product image), and use the representation to classify the product. They differ in terms of the kinds
of deep learning model used. The former uses recurrent neural networks (RNNs) [Hochreiter and
Schmidhuber 1997], and the latter uses convolutional neural networks [LeCun et al. 1998].

Several stepwise classifiers have also been used for product categorization. Shen et al. [2012] use
simple classifiers (e.g., naive Bayes and KNN) in the first step, then an SVM to assign a product to
a leaf node in the second step. Das et al. [2016] explore the use of gradient boosted trees [Friedman
2000] and convolutional neural networks in each of three steps. However, they only evaluated the
accuracy of their approach at the top two levels of a product taxonomy (a simpler problem because
of the smaller number of categories at the top levels) and did not provide the accuracy at the leaf
nodes. Cevahir and Murakami [2016] use deep belief networks (DBNs; Hinton et al. [2006]) and
KNN in a two-step approach. Because the number of models grows exponentially with the number
of steps, a large number of models are trained (72) even though only two steps are involved. This
large number of models makes it impractical to deploy their approach in a real-world production
setting. They also use a single-step approach (termed CUDeep) consisting of one DBN and one
KNN, and found that it is competitive against the 72-model, two-step approach. With only two
models, their single-step approach trains faster and is feasible for real-world deployment. In our
experiments in Section 4, we compare our MT approaches against CUDeep.

All of these classification systems assign a product into an existing leaf node (which is equiva-
lent to a unique existing root-to-leaf path). Unlike them, our MT approach is able to create both
existing root-to-leaf paths and novel non-existing paths for a product, thereby presenting a richer
representation of a product to both downstream business operations and customer-facing appli-
cations. In addition, our MT approach outperforms classification algorithms in terms predictive
accuracy (results in Section 4).

3 MT SYSTEMS

In the past, the predominant MT approach was phrase-based machine translation (PBMT), which
is grounded in information theory and statistics. Although moderately successful in its heyday,
it has recently been eclipsed by neural machine translation (NMT) approaches that utilize deep
learning [Goodfellow et al. 2016]. Deep learning contributes to NMT by incrementally building
more sophisticated models of languages and then linking them to models of their translations.

First, deep learning compresses the common 1-of-N representation of a word (i.e., an N-
dimensional vector with a single 1 at the index corresponding to the word and 0’s everywhere
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Fig. 2. The encoder-decoder model, also known as the sequence-to-sequence (Seq2Seq) model. The light

green boxes to the left of the vertical line make up the encoder RNN. The first dark box to the right of the

vertical line encodes the entire source sentence. As we move from lef to right, this source encoding is use to

generate words in the target language. (Image from Koehn [2017].)

Fig. 3. A language model encoded by a feedforward neural network. The previous 4 words are represented

as 1-of-N vectors (blue), compressed into continuous vectors (red) using the same matrix C for all words,

passed through a hidden layer, and then used to predict the next word as a 1-of-N vector (yellow) (Image

from Koehn [2017].)

else) into a smaller continuous-valued feature vector (also known as an embedding) [Mikolov et al.
2013].

Intuitively, this vector provides a distributed continuous representation of an input word, with
the vector’s continuous values varying gradually among similar words and differing greatly among
dissimilar ones. Such vectors are then used to represent a probability distribution over the words
they represent. The continuity in the vectors automatically smoothens the distribution and alle-
viates the data sparsity problem (this occurs when the vocabulary of a language is large and too
few occurrences of various words appear in a corpus).

Second, deep learning allows complex features to be learned automatically from text. Building
upon the vector embeddings of words, we could connect these to another layer of vectors that
are collectively termed hidden layers and in turn connect those to other hidden layers. As more
hidden layers are added (one on top of another) to form a feedforward neural network, they can
model more complex interactions and features among words in the input text. Feedforward neural
networks can model a language by using the previous n words in a sentence to predict the current
word (Figure 2 and Figure 3). This way, a feedforward neural network encodes the probability
distribution of a next word given its previous words as context.

Third, more powerful language models can be built using RNNs [Hochreiter and Schmidhuber
1997]. An RNN is similar to a feedforward neural network in having an input layer of words
that is connected to a hidden layer, which in turn is connected to an output layer representing
a probability distribution over words. It differs by linking the hidden layer back to itself with
recurrent connections, which propagate information across a sequence of words in an RNN.
Conceptually, when an RNN is “unrolled,” it is equivalent to a feedforward neural network with
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Fig. 4. A language model encoded as an RNN. After predicting Word 2 (yellow), we reuse the hidden layer

H1 (green) together with the correct Word 2 (blue) to predict Word 3 (yellow). (Image from Koehn [2017].)

an infinite number of connected hidden layers, one stacked on top of another. Because of this
depth of hidden layers, it can potentially learn complex dependencies among words (Figure 4).

Fourth, Cho et al. [2014b] extended RNNs for MT by creating the encoder-decoder model (also
known as the sequence-to-sequence (Seq2Seq) model). This model concatenates two RNNs to-
gether: one that encodes the source language, and one that decodes the target language. In Figure 2,
the light green boxes to the left of the vertical line make up the encoder RNN, which encodes the
words in the source sentence. The first dark green box to the right of the vertical line encodes the
entire source sentence. As we move from left to right, this source encoding is used to generate
words in the target language.

Fifth, a major advancement in NMT occurred through the use of a memory mechanism to align
the source sequence positions to the target sequence state. Cho et al. [2014a] observe that Seq2Seq
models deteriorate quickly as the input sequence length increases. This is because the decoder
is forced to make a hard decision to predict a target word at every state. Bahdanau et al. [2015]
propose an attention mechanism that allows the Seq2Seq model to focus on a set of positions from
the source sentence to form a context vector that are most relevant to the current state in the target
sequence. It uses the context vector from the attention mechanism to predict the current word.
Luong et al. [2015] extend the attention mechanism by introducing both global and local attention
mechanisms. The global attention mechanism functions as described previously by considering
all positions in a source sentence; the local attention mechanism restricts its focus to the vicinity
of source positions that best correspond to the target position that is to be predicted. Attentional
Seq2Seq models are among the best performers on standard MT benchmarks. Hence, we employ
one such model [Luong et al. 2015] for our experiments in Section 4.

Sixth, Vaswani et al. [2017] create an NMT model called Transformer that dispenses with RNNs.
RNNs require a time-consuming, left-to-right, word-by-word traversal of the entire input sentence
to model the full span of a sentence. However, such a traversal is not parallelizable and severely
slows down model training. By discarding RNNs, the Transformer model becomes highly par-
allelizable, and it retains the ability to model the entire span of a sentence through the use of
self-attention. In an attentional Seq2Seq model, the attention mechanism models the association
between an output word with every input word. In self-attention, we compute the association
between each input word and every other input word, thereby disambiguating an input word us-
ing other input words as context. Further, the Transformer uses multi-head self-attention—that is,
it applies self-attention in multiple representation spaces (e.g., one that captures the syntax of a
language and another that captures the morphology) to enrich the representation of a word. The
Transformer model is among the best performers on standard MT benchmarks, and we use it for
our experiments in Section 4.
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Table 1. Summary of the RDC and Ichiba Datasets

RDC Ichiba

Language English Japanese
Source www.rakuten.com www.rakuten.co.jp
Data Size 800,000 100,436,907
No. of First-Level Categories 14 35
No. of Unique Categories 3,008 21,819
Tokenization Moses tokenizer MeCab

+ lowercase

4 EXPERIMENTS

4.1 Datasets

We used the following two e-commerce datasets for our experiments (Table 1 provides a summary
of their characteristics):

—Rakuten Data Challenge (RDC)1: This dataset from www.rakuten.com contains 800,000
product titles in English with their respective multi-level category labels. We lowercase all
product titles and tokenize them with the Moses tokenizer.2

—Rakuten Ichiba3: This dataset from www.rakuten.co.jp consists of 280 million products
listed by more than 40,000 merchants and has 28,338 categories. We remove duplicate prod-
uct listings and those in the Others category that are erroneously assigned by merchants.
After this, we are left with about 100 million Japanese product titles that are paired with
their multi-level category labels. We tokenize the product titles with the MeCab Japanese
segmenter [Kudo et al. 2004].

In both datasets, the products are assigned to the leaf nodes of a taxonomy tree. For each product,
we have its title (e.g., “Mix Pancake Waffle 24 OZ -Pack of 6”) and its root-to-leaf path (e.g., Baking
Supplies → Flour & Dough → Pancake & Waffle Mixes). All of the models in Section 4.2
take the product title as input to predict its associated root-to-leaf path (we term this path the label
of the product). Each MT system in Section 4.2 tokenizes a product title into individual words and
then outputs a root-to-leaf path one node category at a time, similar to how a translated sentence
is generated one word at a time.

The distribution of products across categories in both datasets is skewed toward the most popu-
lar categories as is usually the case in e-commerce domains [He and McAuley 2016; Xia et al. 2017].
Figures 5 and 6 show the number of products in each category at the top level of the taxonomy
tree (each vertical bar reflects the number of products in that category). These figures show that a
majority of products is assigned to a few categories, and the rest are spread across the remaining
categories in a long tail. Further, the dark-colored portion of each bar represents the sub-category
with the highest count within the top-level category, and the lighter tip of the bar represents all
other sub-categories within that top-level category. As can be seen, the distribution within some
top-level categories may also be skewed.

We randomly split both the RDC and Ichiba datasets in a stratified manner into their respective
training, validation, and test sets in the proportion of 80/10/10. The validation set was used to
determine the early stopping criteria for our NMT models.

1https://sigir-ecom.github.io/data-task.html.
2https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl.
3https://rit.rakuten.co.jp/data_release/.
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Fig. 5. Skewed product distribution in RDC. The categories on the x-axis from left to right are Jacket, Elec-

tronics, Automotive & Parts, Clothing, Shoes & Accessories, Beauty & Personal Care, Media, Office Supplies,

Sports & Fitness, Toys, Toddlers & Baby, Everything Else, Health, Pet Supplies, Bags & Luggage, and Food &

Beverage.

Fig. 6. Skewed product distribution in Ichiba. The categories on the x-axis from left to right are (translated

from Japanese) Beauty, Cosmetics & Fragrances, Car Accessories & Bike Accessories, Books, Magazines &

Comics, Flowers, Garden & DIY, Home Decor, Bedding & Shelves, Daily Necessities, Stationery & Handi-

crafts, Sports & Outdoor, Toys, Hobbies & Games, Kitchenware, Tableware & Cookware, CD, DVD & Musical

Instruments, TV, Audio & Camera, Women’s Fashion, Jewelry & Accessories, Bags, Accessories & Designer

Items Men’s Fashion, Beauty, Cosmetics & Fragrances, Kids, Baby & Maternity, and Shoes.

4.2 Models

For our NMT models, we use the attentional Seq2Seq model of Luong et al. [2015] and the Trans-
former model of Vaswani et al. [2017] as implemented in the Fairseq toolkit (commit 5d99e13)4

(see Section 3 for their descriptions). The hyper-parameters of our models are given in Table 2.
Note that the RNN hidden layer size is specific to the attentional Seq2Seq model, whereas the
feedforward network (FFN) hidden layer and attention heads hyper-parameters are only used in

4https://github.com/pytorch/fairseq/tree/master/fairseq.
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Table 2. Hyper-Parameters of Attentional Seq2Seq and Transformer Models

Attentional Seq2Seq Transformer

Input/Output Embedding Dimension 512 512
RNN Hidden Layer Size 1,024 —
FFN Hidden Layer Size — 2,048
Stacked Layers 1 6
Dropout 0.2 0.2
Attention Heads — 8
No. of Parameters 7,5435,103 99,105,792

the Transformer model. We also ensemble the attentional Seq2Seq model and the Transformer
model together by averaging their decoder outputs.

As mentioned, each product is associated with its title and root-to-leaf path. Our NMT models
consider the title to be a sentence in a source language (English for RDC and Japanese for Ichiba)
and translate it into a sequence of tokens corresponding to the nodes in a root-to-leaf path.

We compare our MT models with a traditional classification-based system CUDeep [Cevahir and
Murakami 2016] that achieved state-of-the-art performance on the Ichiba dataset (this model is
described in Section 2). CUDeep trains a DBN using a stacked restricted Boltzmann machine archi-
tecture [Hinton and Salakhutdinov 2006] and learns an encoder that embeds a product title into
a vector representation. Next, it trains a feedforward neural layer to map the vector representa-
tion to a predicted product category. Henceforth, we will term this model DBN. Aside from using
DBNs, CUDeep also uses KNN [Cover and Hart 1967] to predict product categories by mapping a
product title to the 1-nearest neighbor’s category that is seen in the training data. We also com-
bined the outputs of the DBN and KNN models to form a DBN+KNN ensemble and averaged the
probabilities of their category predictions to rerank the predictions.

4.3 Evaluation Metrics

Cevahir and Murakami [2016] previously used n-best accuracy as the evaluation metric for the
Ichiba dataset, and Lin et al. [2018] applied the support weighted F-score as the metric to evaluate
the RDC dataset. To keep the comparisons consistent across datasets, we opted for the single metric
of weighted F-score. This metric weighs the accuracy in each leaf node by its number of products
and is thus better suited for multi-class prediction in skewed datasets. The multi-class F-score is
computed as follows:

TPc = |ŷc ∩ yc | Pc =
TP

|ŷc |
Rc =

TP

|yc |

Fc =
2 · Pc · Rc

Pc + Rc
F

weiдhted
c =

1

|C |
∑

c ∈C
TPc · Fc

, (1)

whereC represents all possible categories/labels; ŷc are the products that are labeled by the system

as c;yc are products with c as the true labels; andTPc , Pc ,Rc , Fc , F
weiдhted
c respectively are the true

positives, precision, recall, F-score, and weighted F-score for label c . Due to the highly skewed
category distribution, we use the weighted variant of the precision, recall, and F-score,5 where
the scores across labels are summed and weighted by their true positive values. (Note that for
weighted variants of precision, recall, and F-score, the F-score may not lie between precision and

5http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html.
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Table 3. Results of Our NMT Systems vs CUDeep Classification Systems

on the RDC Dataset

RDC

P R F

DBN 72.19 74.72 72.86
CUDeep KNN 71.14 72.10 70.94

DBN+KNN 73.46 75.57 73.85
Attentional Seq2Seq 74.03 73.43 72.50

Our Transformer 74.44 75.25 73.83
NMT Models Seq2Seq+Transformer 75.22 75.65 74.19

Table 4. Results of Our NMT Systems vs CUDeep Classification Systems

on the Ichiba Dataset

Ichiba

P R F

DBN 78.09 78.29 77.52
CUDeep KNN 79.24 78.69 78.66

DBN+KNN 82.65 82.27 82.05
Attentional Seq2Seq 82.65 82.27 82.05

Our Transformer 83.79 83.59 84.74

NMT Models Seq2Seq+Transformer 85.08 84.31 84.26

recall.) Since the precision and recall are components of the F-score, we reported them as well in
our empirical results lest a reader wishes to see how they contribute to the F-score.

4.4 Results

Table 3 and Table 4 reports the weighted precision (P), weighted recall (R), and weighted F-scores
(F) on the test sets of the RDC and Ichiba datasets. These scores only deem a label (i.e., a predicted
root-to-leaf path) to be correct if it is an exact match to the ground truth. As long as one node in
the path is wrong (even when the leaf node is correct), the prediction is deemed wrong. Note that
this penalizes our NMT models because they can predict novel root-to-leaf paths that do not exist
in a taxonomy tree and can thus arrive at the correct leaf nodes via multiple paths (and not only
through the unique root-to-leaf path in the taxonomy). Even though CUDeep also predicts a root-
to-leaf path, that path is an existing one in the taxonomy tree and is uniquely determined by the
leaf node. To allow for a consistent comparison with CUDeep, we decided to determine correctness
by the full root-to-leaf path. If we consider the correctness of the leaf nodes only, our results will
surpass those shown in the following.

From Table 4, the bolded numbers show that our Transformer model outperforms both CUDeep
single models (DBN and KNN) on both datasets (weighted F-scores of 73.83 and 84.74 on the RDC
and Ichiba test sets, respectively). Transformer also outperforms the DBN+KNN ensemble on the
Ichiba dataset and is competitive on the RDC dataset. Our attentional Seq2Seq model has mixed
results on RDC but outperforms all CUDeep models for all metrics on the larger Ichiba dataset.
Our Seq2Seq+Transformer ensemble is the best performer across the board. It is better than both
our single models and all CUDeep models. The only exception is that the weighted F-score of our
Seq2Seq+Transformer model is marginally lower than that of our Transformer model.
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Table 5. Confidence Interval of 1,000 Iterations of Bootstrap Resampling on the

Best-Performing Models on the RDC Dataset

RDC
p5 p95

P R F P R F

DBN+KNN 73.08 75.17 73.32 74.11 75.98 74.22
Seq2Seq+Transformer 74.81 75.23 73.68 75.76 76.05 74.57

Table 6. Confidence Interval of 1,000 Iterations of Bootstrap Resampling on the

Best-Performing Models on the Ichiba Dataset

Ichiba
p5 p95

P R F P R F

DBN+KNN 82.64 82.24 82.00 82.71 82.30 82.07
Seq2Seq+Transformer 85.07 84.28 84.22 85.13 84.35 84.28

Table 7. Effects of Data Size with Respect to Systems’ Weighted F-score

80-10-10 60-10-30 40-10-50 20-10-70

DBN+KNN 73.85 74.08 71.24 61.27
Seq2Seq+Transformer 74.19 74.94 73.77 69.58

To establish the statistical significance of our results, we conducted 1,000 iterations of bootstrap
resampling on the best-performing model in each system to find out the 95% confidence interval
of their performance scores. Tables 5 and 6 contain the results.

We investigated the effect of training data size on the performance of the systems on the
RDC data. Table 7 presents the F-scores of the ensembled systems with respect to various train-
validation-test sizes. For instance, “60-10-30” indicates that a model was trained, validated, and
tested on 60%, 10%, and 30% of the data, respectively.

We note that the 60-10-30 split has higher F-scores than the 80-10-10 split for both ensembled
systems. This is due to the random split of the 80-10-10 data giving its test set a higher proportion
of classes with one instance (i.e., these classes do not appear in the training set). The instances of
such classes are impossible to correctly predict for both systems. From Table 7, we see that our
MT-based Seq2Seq+Transformer ensemble is consistently more robust to reductions in data sizes
than the DBN+KNN ensemble. Even with only 20% of the training data, the performance of our
Seq2Seq+Transformer ensemble does not degrade as much as that of the DBN+KNN model. Fur-
ther, our Seq2Seq+Transformer ensemble consistently outperforms the DBN+KNN model across
data sizes.

5 ANALYSIS

As discussed in previous sections, our NMT models generate root-to-leaf paths based on the vo-
cabulary of categories. This generation allows new paths to be created based on product titles.
Although such system-created paths utilize existing nodes in a product taxonomy tree, the paths
(which are permutations of nodes) need not pre-exist in the tree. When the paths are added to the
tree to form new edges between nodes, they transform the tree into a DAG, which offers a richer
representation of the products.
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Table 8. Count of Full-Path Categories Created

RDC Ichiba

RNN 106 5,183
Transformer 76 113,287
RNN+Transformer 124 48,455

We present the count of novel categorization paths created by each of our models in Table 8.
In this section, we qualitatively analyze some notable examples of created paths in the English-
language RDC dataset.

The product Hal Leonard Neil Young-Rust Never Sleeps Guitar Songbook has its ground truth root-
to-leaf path as Home & Outdoor > Hobbies > Musical Instruments > Misc Accessories
> Sheet Music. Our Transformer model’s predicted path is identical to the ground truth, except
it omits Musical Instruments from the path. This is intuitively correct because the product is a
songbook, which does not belong to the Musical Instruments sub-category. This example suggests
that our NMT models can prune and restructure the taxonomy tree to more accurately describe
products.

Another notable example is the product Epson WorkForce Pro WP-4023 Inkjet Printer C11CB30
231 Compatible 10ft White, which has the ground truth category of Electronics>· · · >Printers.
Our NMT model predicts the root-to-leaf path as Office Supplies>· · · >Printers, which is
intuitively correct because printers constitute general office supplies. This suggests that our NMT
models can enrich the representation of products.

Our system-created paths are not constrained by the existing hierarchical ordering of nodes in
a taxonomy tree (e.g., it can place a leaf-category node at its start and a top-level-category node at
its end). However, we observe that the paths created in our experiments all begin with top-level-
category nodes and end with leaf nodes. This is because our MT models have successfully learned
from their training data the strong bias of top-level-category nodes to appear first and leaf nodes
to appear last. Beyond that, the paths conform less to the structure of the taxonomy tree, with
some spanning across branches and moving from lower-level categories to higher-level ones.

6 CONCLUSION AND FUTURE WORK

Product categorization is an important problem for e-commerce companies. By changing the fram-
ing of the problem from the traditional one of classification to one of MT, we show that state-of-
the-art MT models surpass previous classification approaches in categorizing products in two large
real-world e-commerce datasets.

Besides enhancing the performance of product categorization, our NMT models also create novel
root-to-leaf category paths. These novel paths can help adapt a product taxonomy to changes in
product listings. They also suggest ways to restructure the product taxonomy so that the category
paths better accommodate a user’s multiple conceptualizations of an product.

Future work includes crowdsourcing the evaluation of novel root-to-leaf paths, evaluating the 
impact of the new root-to-leaf paths on user interaction, experiments with more MT models and 
classification models, and automatic induction of the product taxonomy from data, among others.

This research was partly funded by MOE AcRF Tier 1 grant (R-253-000-146-133) to Stanley Kok.
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