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ABSTRACT
Knowledge base completion, which involves the prediction of miss-
ing relations between entities in a knowledge graph, has been an
active area of research. Markov logic networks, which combine
probabilistic graphical models and first order logic, have proven
to be effective on knowledge graph tasks like link prediction and
question answering. However, their intractable inference limits
their scalability and wider applicability across various tasks. In
recent times, graph attention neural networks, which capture fea-
tures of neighbouring entities, have achieved superior results on
highly complex graph problems like node classification and link
prediction. Combining the best of both worlds, we propose Proba-
bilistic Logic Graph Attention Network (pGAT) for reasoning. In
the proposed model, the joint distribution of all possible triplets
defined by a Markov logic network is optimized with a variational
EM algorithm. This helps us to efficiently combine first-order logic
and graph attention networks. With the goal of establishing strong
baselines for future research on link prediction, we evaluate our
model on various standard link prediction benchmarks, and obtain
competitive results.

CCS CONCEPTS
• Computing methodologies → Probabilistic reasoning;

Artificial intelligence; Knowledge representation and reason-
ing;
KEYWORDS

Graph attention networks, Markov logic networks, Link predic-
tion, Knowledge graphs
ACM Reference Format:
L Vivek Harsha Vardhan, Guo Jia, and Stanley Kok. 2020. Probabilistic Logic
Graph Attention Networks for Reasoning. In Companion Proceedings of
the Web Conference 2020 (WWW ’20 Companion), April 20–24, 2020, Taipei,
Taiwan. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3366424.
3391265

1 INTRODUCTION
Knowledge graphs are used in recommendation systems [6], se-
mantic search [1, 2] and question answering [28]. Knowledge graph
reasoning, which is the task of inferring hidden relations between
∗Both authors contributed equally to this research.
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entities based on observed relations, is an active area of research.
Markov logic networks [17] combine first-order logic and proba-
bilistic graphical models. However, the computational intractability
of Markov logic networks limit their performance and applicabil-
ity to various tasks. In another line of work, graph convolutional
networks [9] (e.g.,R-GCN [19]) have shown their applicability to
relational data. Specifically, attention-based knowledge graph em-
beddings [11] have shown significantly superior performance on
tasks like link prediction. But they do not consider logic rules and
thereforemiss the knowledge that can be inferred from them. Hence,
we leverage the best of both worlds by combining Markov logic
networks and graph attention neural networks via a variational
EM algorithm [12]. In the E step, we use graph-attention-neural-
network embeddings for inferring the unobserved triplets. In the M
step, the weights of the rules of a Markov logic network are updated
based on the observed triplets and the inferred triplets obtained
from the aforementioned embeddings. Our proposed Probabilistic
Graph Attention Network (pGAT) yields competitive results over
the present state-of-the-art baselines on the FB15K-237 [8] and
WN18RR [23] datasets for link prediction. Our contributions lie
in proposing pGAT, and establishing strong baselines for future
research to compare against.

2 RELATEDWORK
First order logic has been extensively used for reasoning in the past
[21, 26]. Markov logic networks [18], which combines logic rules
and probabilistic graphical models, are very effective at reasoning
but their inference remains intractable for large datasets like those
typically used for knowledge base completion. This is due to their
complicated graph structures and their underlying combinatorially-
huge computational graphs.

Knowledge graph embedding methods [5, 20] are recent ad-
vancements that use low dimensional embeddings of entities and
relations to represent their semantics and reason about them. These
methods use various scoring functions to model different rule pat-
terns. In TransE [5], each relation is represented as a translational
vector to model composition rules and inverse rules effectively.
RotateE [20] models each relation as a rotation in a complex space.
Convolution neural networks (CNN) based models, like ConvE [8]
and ConvKB [13], use convolution filters on knowledge graphs
for link prediction. Recent works like KBAT [11] show that graph
attention networks lead to more effective knowledge graph em-
beddings. pLogicNet [16] uses Markov logic networks with neural
networks for inference. However, pLogicNet’s vanilla neural net-
work does not effectively model relational data because it considers
each triplet independently, and thus neglects the interaction among
triplets. Some recent works like Graph Markov Neural Networks
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Figure 1: Illustration of our work, pGAT.

[15] use statistical relational learning and graph neural networks
for the task of semi-supervised node classification.

3 APPROACH
We first introduce the knowledge graph embedding model em-
ployed in our framework. Then we elaborate on how the learned
graph-attention-based embeddings and the parameter learning of
Markov logic networks benefit each other in an iterative manner.

A knowledge graph KG is represented as a set of relational
triples, KG = {(𝑒ℎ, 𝑟𝑘 , 𝑒𝑡 )}, where 𝑒ℎ, 𝑒𝑡 ∈ E, 𝑟𝑘 ∈ R, and E and
R are a set of entities and a set of relations respectively. T𝑂 and
T𝑈 respectively denote the set of observed triples and unobserved
triples. Each triple (𝑒ℎ, 𝑟𝑘 , 𝑒𝑡 ) ∈ T𝑂 indicates that there exists a
directed relation 𝑟𝑘 from head entity 𝑒ℎ to tail entity 𝑒𝑡 (𝑒ℎ ≠ 𝑒𝑡 ).

3.1 Graph Attention-Based Embeddings
A recent model KBAT [11] surpassed the performances of several
state-of-the-art knowledge-embedding models. We choose KBAT
as our knowledge embedding component because its embeddings
provide rich semantic information about the relations between
entities. This allows for more accurate inference for the subsequent
parameter learning of logical rules.

The inputs to the attention layer in KBAT are a node embedding
matrix X ∈ R𝑁×𝑑𝑒 , and a relation embedding matrix Q ∈ R𝑀×𝑑𝑟 ,
where 𝑁 and 𝑀 are the total numbers of entities and relations
respectively, and 𝑑𝑒 and 𝑑𝑟 are the dimensions of the embedding
vectors for each entity and each relation respectively.

The feature vector of each triple (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ) is represented as
t𝑖 𝑗𝑘 = W𝑡 [x𝑖 | |x𝑗 | |q𝑘 ], whereW𝑡 represents the weight matrix of a

linear transformation over the concatenation of entity embeddings
x𝑖 , x𝑗 , and relation embedding q𝑘 .

The vector t𝑖 𝑗𝑘 is used to produce a corresponding attention
score 𝑒𝑖 𝑗𝑘 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝑙𝑢 (W𝑒 t𝑖 𝑗𝑘 ). The attention score 𝑒𝑖 𝑗𝑘 is nor-
malized through a 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 function over all entities and relations
in the neighborhood of entity 𝑒𝑖 to give the normalized value 𝛼𝑖 𝑗𝑘 .
The new embedding vector for entity 𝑖 is computed as the weighted
sum of all its connected triple representations weighted by the
normalized attention values. A multi-head attention mechanism is
used to compute the embedding vectors for entities. The final entity
embedding vector is obtained by concatenating the entity embed-
ding vectors from multiple attention mechanisms, and averaging
over the vectors as follows:

x̂𝑖 = 𝜎
(
1
𝐶

𝐶∑
𝑐=1

∑
𝑗 ∈N𝑖

∑
𝑘∈Q𝑖 𝑗

𝛼𝑐
𝑖 𝑗𝑘

t𝑖 𝑗𝑘

)
,

whereN𝑖 ,Q𝑖 𝑗 represent all connected nodes and relations of entity
𝑖 respectively, and 𝐶 is the number of head attentions. The final
embedding matrices for entities X̃, and for relations Q̃ are computed
as:

X̃ = W𝑥X + X̂, and

Q̃ = W𝑞Q,

whereW𝑥 ,W𝑞 are both parameters of linear transformations. This
model is trained by minimizing the pairwise ranking loss:

L =
∑

𝑠𝑖 𝑗𝑘 ∈T𝑂

∑
𝑠′
𝑖 𝑗𝑘

∈T′
𝑂

max{𝜃 + 𝑑𝑠𝑖 𝑗𝑘− 𝑑𝑠′𝑖 𝑗𝑘 , 0},

where 𝜃 is a margin hyper-parameter, and the distance function
of each triple is given by 𝑑𝑠𝑖 𝑗𝑘 = ∥x̃𝑖 + q̃𝑘 − x̃𝑗 ∥1 [5]. T ′

𝑂
is the set



Probabilistic Logic Graph Attention Networks for Reasoning WWW ’20 Companion, April 20–24, 2020, Taipei, Taiwan

Table 1: Results of link prediction on test sets of FB15K-237 andWN18RR respectively. The best scores are in bold. The second
best scores are underlined.

Method MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10
TransE [5] 323 0.279 19.8 37.6 44.1 2300 0.243 4.27 44.1 53.2
DistMult [27] 512 0.281 19.9 30.1 44.6 7000 0.444 41.2 47 50.4
ComplEx [24] 546 0.278 19.4 29.7 45 7882 0.449 40.9 46.9 50.4
RotatE [20] 185 0.297 20.5 32.8 48.0 3277 0.470 42.2 48.8 56.5
ConvE [8] 245 0.312 22.5 34.1 49.7 4464 0.456 41.9 47 53.1
ConvKB [13] 216 0.289 19.8 32.4 47.1 1295 0.265 5.82 44.5 55.8
R-GCN[19] 600 0.164 10 18.1 30 6700 0.123 20.7 13.7 8
KBAT [11] 204 0.431 35.5 46.2 57.8 1970 0.431 35.2 47.3 57.4
BLP [7] 1985 0.092 6.2 9.8 15.0 12051 0.254 18.7 31.3 35.8
MLN [17] 1980 0.098 6.7 10.3 16.0 11549 0.259 19.1 32.2 36.1
pLogicNet [16] 173 0.330 23.1 36.9 52.8 3436 0.230 1.5 41.1 53.1
pLogicNet* [16] 173 0.332 23.7 36.7 52.4 3408 0.441 39.8 44.6 53.7
pGAT 181 0.457 37.7 49.4 60.9 1868 0.459 39.5 48.9 57.8

of negative triples created by randomly replacing the head or tail
entity of triples in T𝑂 . We employ ConvKB [13] as our decoder after
updating entity embeddings and relation embeddings, and train
it using soft-margin loss [25]. More details about the decoder are
found in [13, 25].

3.2 Parameter learning of MLN
A Markov logic network (MLN) [17] consists of a set of weighted
first-order logic formulas, which can be viewed as templates for
constructing Markov networks. Given a knowledge graph KG, the
joint probability of all relational triples is given by

𝑝 (s) = 1
𝑍
exp

(
𝐿∑
𝑙=1

𝑤𝑙𝑛𝑙 (s)
)
,

where s represents triple (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ) ∈ KG, 𝐿 is the total number of
logical formulas in the MLN, 𝑛𝑙 (s) is the number of true groundings
of the 𝑙𝑡ℎ logical rule (that has s as is consequent) according to the
truth value of KG’s triples, and 𝑤𝑙 is the weight parameter of
the 𝑙𝑡ℎ logical rule. We follow the training regime which uses a
variational EM algorithm [12]. Due to the intractability of directly
optimizing the joint probability distribution, we instead optimize
the following evidence lower bound (ELBO) of its log-likelihood
function.

log𝑝 (s𝑜 ) ≥ log𝑝 (s𝑜 ) − 𝐾𝐿[𝑞(s𝑢 )∥𝑝 (s𝑢 |s𝑜 )]

=

∫
𝑞(s𝑢 ) log 𝑝 (s𝑜 , s𝑢 )ds𝑢−

∫
𝑞(s𝑢 ) log𝑞(s𝑢 )ds𝑢 ,

where 𝐾𝐿 denotes the KL divergence [10], and 𝑞(·) represents the
variational distribution of unseen triples s𝑢 . Equality in the above
expression holds when 𝑞(s𝑢 ) = 𝑝 (s𝑢 |s𝑜 ). In the variational E-step,

we fix 𝑝 (·) and optimize 𝑞(·) by inferring the true posterior distri-
bution with mean-field approximation [14], which is based on the
learned embeddings of the knowledge embedding model (KBAT)
we have trained, i.e.,

𝑞(s𝑢 ) =
∏

s𝑢 ∈T𝑈
𝑃𝑟 (𝑠𝑢 |𝑓𝑠𝑐𝑜𝑟𝑒 (𝑠𝑢 )),

𝑃𝑟 (·) measures the true probability of triples with the score funtion
𝑓𝑠𝑐𝑜𝑟𝑒 , which is computed on entity and relation embeddings. The
score function measures the plausibility of triples. Through min-
imizing the KL divergence between 𝑞(s𝑢 ) and the true posterior
distribution 𝑝 (s𝑢 |s𝑜 ), the optimal 𝑞(s𝑢 ) is computed as

log𝑞(s𝑢 ) = E𝑞 (s𝑢,𝑀𝐵 ) [log𝑝 (s𝑢 |s𝑢,𝑀𝐵)] + const,

where s𝑢,𝑀𝐵 is the Markov blanket of s𝑢 . If there exists any un-
seen triple in s𝑢,𝑀𝐵 , we replace it with a sample from the potential
distribution inferred by the knowledge graph embedding model.
To further optimize the objective, we enhance the knowledge em-
bedding model by updating its training dataset with added unseen
triples, which are predicted by the MLN. In the M-step, we fix 𝑞(·)
and update 𝑝 (·) by maximizing the pseudo-likelihood [3] as follows:

L𝑝𝑠𝑒𝑢𝑑𝑜 = E𝑞 (s𝑢 )
[ ∑
s𝑢 ∈T𝑈 ,s𝑜 ∈T𝑂

log 𝑝 (s𝑢 , s𝑜 )
]

= E𝑞 (s𝑢 )
[ ∑
s∈{T𝑂∪T𝑈 }

log𝑝 (s|s𝑀𝐵)
]
,

Similar to the variational E-step, we fill those unseen triples in
the Markov blanket with samples obtained from our knowledge
embeddingmodel. Therefore, by alternating between the variational
E-step and an M-step, this framework allows knowledge sharing
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Table 2: Hyperparameters for Graph Attention Embedding model.

Dataset Weight decay Epochs Negative-ratio Learning-rate Dropout Leaky Relu Heads Final-dimensions
FB15K-237 1𝑒−5 3000 2 1𝑒−3 0.3 0.2 2 200
WN18RR 5𝑒−5 3600 2 1𝑒−3 0.3 0.2 2 200

Table 3: Hyperparameters for Decoder (ConvKB).

Dataset Weight decay Epochs Negative-ratio Learning-rate Dropout Filters
FB15K-237 1𝑒−5 200 40 1𝑒−3 0.3 50
WN18RR 1𝑒−5 200 40 1𝑒−3 0 500

between the knowledge graph embedding model and the MLN as
in shown in Figure 1.

4 EXPERIMENTS
4.1 Datasets
We evaluated our model on the task of link prediction knowl-
edge graphs. We report the results of our work on two benchmark
datasets FB15K-237 from Freebase [4] and WN18RR from Wordnet
[5], which are created to resolve the reversible relation problem in
their respective source datasets.

4.2 Evaluation Metrics
We remove a head entity or tail entity and predict the resulting
triple using our proposed model. The average scores from replacing
head and replacing tail are reported. Other baselines results are
taken from their official code implementations and KBAT [11]. We
evaluated our models in a filtered setting following previous works
[11]. We report mean reciprocal rank (MRR), mean rank (MR) and
the proportion of correct entities in the top N ranks (Hits@N) for
N = 1, 3, and 10.

Table 4: Hyperparameters for Markov Logic Network.

Dataset Rule-
threshold

Triplet-
threshold

FB15K-237 0.6 0.7
WN18RR 0.1 0.4

4.3 Implementation Details
We used TransE [5] to initialise the knowledge graph embedding
before training. The knowledge graph embedding is used for in-
ference at test time. The candidate rules for Markov logic network
are generated using a brute force method where we search for all
possible composition rules, inverse rules, symmetric rules and sub-
relation rules in the observed triplets. We use an accuracy threshold
above which we select a rule as a candidate rule in our Markov logic
network. We also use a probability threshold above which we add a
triplet to the training set for knowledge graph embeddings. We use

the Adam optimizer for training knowledge graph embeddings. The
hyper-parameters of our model are in Table 2, Table 3 and Table 4.

4.4 Baselines
We compare our proposed pGAT model against knowledge graph
embedding methods (TransE, DistMult, ComplEx, RotateE [5, 20,
24, 27]) , convolution-based knowledge graph embedding methods
(ConvE [8] and ConvKB [13]), and graph-neural-networks-based
knowledge graph embedding methods (R-GCN [19] and KBAT
[11]). We also compare against Markov logic networks (MLN) [17],
Bayesian logic programs (BLP) [7], pLogicNet, and pLogicNet*[16].

5 RESULTS AND DISCUSSION
The results on two datasets are presented in Table 1. Our proposed
pGAT model outperforms all the baseline methods on the FB15K-
237 dataset, achieving 0.457 for MRR and 37.7 for HITS@1 . We are
one of the top two performers on the WN18RR dataset for most of
the metrics. The good empirical results of our PGAT model bears
out the efficacy of incorporating domain knowledge in the form of
Markov logic rules and using graph attention networks to leverage
neighbourhood information at various distances.

6 CONCLUSION
We propose pGAT, which combines Markov logic networks and
graph attention networks, for the task of link prediction in knowl-
edge graphs. Our work establishes strong baselines for future work
on knowledge base completion. As future work, we plan to extend
our model to inductive settings [22], and explore efficient ways to
find rules for the Markov logic network. This research is partly
funded by MOE AcRF Tier 1 grant (R -253-000-146-133) to Stanley
Kok.
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