Learning Markov Logic Networks Using Structural Motifs **Stanley Kok & Pedro Domingos**

Dept. of Computer Science and Engineering University of Washington, Seattle, USA

Goal

Learn probabilistic knowledge base (KB) from relational database (DB)

Output: Probabilistic KB 2.7 Teaches(p, c) \land *TAs*(s, c) \Rightarrow Advises(p, s) 1.4 Advises(p, s) ⇒ *Teaches*(p, c) ∧ TAs(s, c) -1.1 TAs(s, c) \land Advises (s, p)

Main Idea

- > Find recurring patterns in data (structural motifs)
- \succ \uparrow Efficiency by restricting search to within structural motifs
 - Avoids spurious searches between motifs
 - Searches within a motif once, rather than in all

Learning Using Structural Motifs (LSM)

- First MLN structure learner that can learn long clauses
 - Long clauses capture more complex dependencies than short clauses
 - Typically want to set max. clause length to large value so as not to a priori preclude good clauses
- Finds literals that are **densely** connected by arguments
- Using random walks & truncated hitting times
- Clusters constants into high-level concepts
- Using symmetrical paths & nodes
- > Structural Motifs = a set of literals
- Defines a set of clauses that can be created from one or more of the literals, i.e., a sub-space of clauses
- Represents relational data as a graph
 - Nodes = constants; edges = true ground atoms

LSM Input: **Relational DB Output**:MLN Advises Teaches ----

FindPaths

 \succ Trace paths in motifs using variant of depth-first search

CreateMLN

Conjoin literals in paths found by FindPaths \blacktriangleright Convert conjunction to clauses Create new clauses by flipping signs of literals

 $Advises(\bigcirc,\bigcirc)$, $Teaches(\bigcirc,\bigcirc)$, $TAs(\bigcirc,\bigcirc)$ Advises(p,s) \land Teaches(p,c) \land TAs(s,c) ¬Advises(p,s) V ¬Teaches(p,c) V ¬TAs(s,c) <= $\neg Advises(p,s) \lor Teaches(p,c) \lor TAs(s,c), \ldots$

Score clauses according to pseudo-likelihood

- Retain clause if it does better than all sub-clauses (taken) individually)
- Add all retained clauses to MLN

occurrences

Creates different motifs over same set of objects \rightarrow captures different interactions among objects

Markov Logic

- > A logical KB is a set of hard constraints on the set of possible worlds \rightarrow brittle
- \succ Let's make them soft constraints: When a world violates a formula, it becomes less probable, not impossible
- Give each formula a weight
- (Higher weight \Rightarrow Stronger constraint)
- \succ A Markov logic network (MLN) is a set of pairs (F,w)
 - F is a formula in first-order logic
 - w is a real number

$$P(x) = rac{1}{Z} \exp\left(\sum_{i=1}^{F} w_i n_i
ight)$$

vector of truth
assignments to
ground atoms partition weight of #true
function ith formula groundings
of ith formula

MLN Structure Learning

- \succ MLN structure learning = learn formulas (and weights) > Many previous systems use generate-&-test approach and/ or have element of greedy search
 - e.g., MSL [Kok & Domingos, ICML'05] and BUSL [Mihalkova & Mooney, ICML'07]

Trains weights of clauses Remove clauses with absolute weight less than threshold

Datasets

> Cora

Candidate

nodes

- Citations to computer science papers
- Papers, author, titles, etc., & their relationships
- 687,422 ground atoms; 42,558 true ones
- Two other publicly-available datasets: IMDB, UW-CSE

Methodology

Five-fold cross validation

- \succ Inferred prob. true for groundings of each pred.
- Groundings of all other predicates as evidence
- > For **Cora**, inferred **four predicates jointly** too
- SameCitation, SameTitle, SameAuthor, SameVenue
- \succ MCMC to eval test atoms: 10⁶ samples or 24 hrs
- > Evaluate area under precision-recall curve (AUC)
- Evaluate average conditional log-likelihood (CLL)
- Compared against state-of-the-art MLN structure learners: LHL, BUSL, MSL
- Two clause lengths per system: short length of 4, and long length of **10**

- Explore large search space \rightarrow computationally expensive
- Susceptible to local maxima
- > LHL [Kok & Domingos, ICML'09] ameliorates above problems by clustering constants to form high-level concepts
 - But for long paths \rightarrow search exponential space of paths.

Random Walks & Hitting Times

- > Random walk: random traversal of a graph
- When at a node, randomly select one neighbor to move to
- > Hitting time btw node *i* and *j*: expected number of steps in a random walk starting from *i* to reach *j* for the first time
 - Smaller hitting time \rightarrow node *i* and *j* are more densely connected \rightarrow closer node *j* is to *i*
 - Expensive to compute for all pairs of nodes
- > **Truncated** hitting time: random walk limited to T steps
 - Only visit vicinity of node *i*
 - Efficiently estimated by sampling [Sarkar, Moore & Prakash, ICML'08]

Symmetrical Paths & Nodes

- \succ In a graph, two paths are symmetrical iff the strings created by replacing the nodes with integers indicating the order in which the nodes are visited are identical
- \succ Two nodes v and w are symmetrical wrt. to a node s iff each path from s to v is symmetrical to some path from s to w and vice versa
 - Intuition: v and w are indistinguishable wrt. s

Examples of Clauses Learned

VenueOfCit(v,c) ∧ VenueOfCit(v,c') ∧ AuthorOfCit(a,c) ^ AuthorOfCit(a',c') ^ SameAuthor(a,a') ^ TitleOfCit(t,c) ∧ TitleOfCit(t',c') \Rightarrow SameTitle(t,t')

SameCitation(c,c') ∧ **TitleOfCit**(t,c) Λ TitleOfCit(t',c') Λ HasWordTitle(t,w) ∧ HasWordTitle(t',w) ∧ AuthorOfCit(a,c) ∧ AuthorOfCit(a',c') ∧ SameAuthor(a,a')

