Learning Markov Logic Networks Using Structural Motifs
Stanley Kok & Pedro Domingos
Dept. of Computer Science and Engineering
University of Washington, Seattle, USA

Goal
- Learn probabilistic knowledge base (KB) from relational database (DB)
- Output: Probabilistic KB

Main Idea
- Find recurring patterns in data (structural motifs)
- Efficiency by restricting search to within structural motifs
- Creates different motifs over same set of objects
- Captures different interactions among objects

Markov Logic
- A logical KB is a set of hard constraints on the set of possible worlds → brittle
- Let’s make them soft constraints: When a world violates a formula, it becomes less probable, not impossible
- Give each formula a weight (Higher weight → Stronger constraint)
- A Markov logic network (MLN) is a set of pairs (F, w)
 - F is a formula in first-order logic
 - w is a real number

\[
P(x) = \frac{1}{Z} \exp \left(\sum_{i=1}^{F} w_i n_i \right)
\]

vector of truth assignments to ground atoms
partition function
weight of \(i^{th}\) formula
true groundings of \(i^{th}\) formula

Markov Logic Structure Learning
- MLN structure learning = learn formulas (and weights)
- Many previous systems use generate-and-test approach and/or have element of greedy search
 - e.g., MSL [Kok & Domingos, ICML’05] and BUSL [Mihalkova & Mooney, ICML’07]
- Explore large search space → computationally expensive
- Susceptible to local maxima
- LHL [Kok & Domingos, IJCAI’09] ameliorates above problems by clustering constants to form high-level concepts
- But for long paths → search exponential space of paths.

Random Walks & Hitting Times
- Random walk: random traversal of a graph
 - When at a node, randomly select one neighbor to move to
 - Hitting time btw node i and j: expected number of steps in a random walk starting from i to reach j for the first time
 - Smaller hitting time → node i and j are more densely connected → closer node j is to i
 - Expensive to compute for all pairs of nodes
- Truncated hitting time: random walk limited to T steps
 - Only visit vicinity of node i
 - Efficiently estimated by sampling [Sarkar, Moore & Prakash, ICML’08]

Symmetrical Paths & Nodes
- In a graph, two paths are symmetrical if the strings created by replacing the nodes with integers indicating the order in which the nodes are visited are identical
- Two nodes \(v\) and \(w\) are symmetrical w.r.t. to node s iff each path from s to v is symmetrical to some path from s to w and vice versa
- Intuition: \(v\) and \(w\) are indistinguishable w.r.t. \(s\)

FindPaths
- Trace paths in motifs using variant of depth-first search

CreateMLN
- Conjoin literals in paths found by FindPaths
- Convert conjunction to clauses
- Create new clauses by flipping signs of literals

Datasets
- Cora
 - Citations to computer science papers
 - Papers, authors, titles, etc., & their relationships
 - 687,422 ground atoms; 42,555 true ones
- Two other publicly-available datasets: IMDB, UW-CSE

Methodology
- Five-fold cross validation
- Inferred prob. true for groundings of each pred.
 - Groundings of all other predicates as evidence
- For Cora, inferred four predicates jointly too
 - SameCitation, SameTitle, SameAuthor, SameVenue
- MCMC to eval test atoms: 10^6 samples or 24 hrs
- Evaluate area under precision-recall curve (AUC)
- Evaluate average conditional log-likelihood (CLL)
- Compared against state-of-the-art MLN structure learners:
 - LHL, BUSL, MSL
- Two clause lengths per system: short length of 4, and long length of 10

Examples of Clauses Learned

VenueOffCit\((t,c)\) \(\rightarrow\) VenueOffCit\((t,c')\)
AuthorOffCit\((c,a)\) \(\rightarrow\) AuthorOffCit\((t,c,a)\)
TitleOffCit\((t,c)\) \(\rightarrow\) TitleOffCit\((t,c')\)
SameCitation\((c,a)\) \(\rightarrow\) SameTitle\((t,t')\)
HasWordTitle\((t,w)\) \(\rightarrow\) HasWordTitle\((t,w')\)
AuthorOffCit\((c,a)\) \(\rightarrow\) AuthorOffCit\((c',a')\)
SameAuthor\((a,a')\)