
Markov Logic 
 

Ø A logical KB is a set of hard constraints on the set of possible 
worlds → brittle 

Ø Let’s make them soft constraints: When a world violates a 
formula, it becomes less probable, not impossible 

Ø Give each formula a weight 
(Higher weight  ⇒  Stronger constraint) 

Ø A Markov logic network (MLN) is a set of pairs (F,w) 
•  F is a formula in first-order logic 
•  w is a real number 
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Datasets 
Ø Cora 

•  Citations to computer science papers 
•  Papers, author, titles, etc., & their relationships 
•  687,422 ground atoms; 42,558 true ones 

Ø Two other publicly-available datasets: IMDB, UW-CSE 
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FindPaths 
 

Ø Trace paths in motifs using variant of depth-first search 

CreateMLN 
 

Ø Conjoin literals in paths found by FindPaths 
Ø Convert conjunction to clauses 
Ø Create new clauses by flipping signs of literals 

Ø Score clauses according to pseudo-likelihood 
Ø Retain clause if it does better than all sub-clauses (taken 

individually) 
Ø Add all retained clauses to MLN 
Ø Trains weights of clauses 
Ø Remove clauses with absolute weight less than threshold 
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Goal 
Ø Learn probabilistic knowledge base (KB) from relational 

database (DB) 
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Output: Probabilistic KB 

Main Idea 
 

Ø Find recurring patterns in data (structural motifs) 
Ø ↑Efficiency by restricting search to within structural motifs 

•  Avoids spurious searches between motifs 
•  Searches within a motif once, rather than in all 

occurrences 
Ø Creates different motifs over same set of objects  
    → captures different interactions among objects 

MLN Structure Learning 
 

Ø MLN structure learning = learn formulas (and weights) 
Ø Many previous systems use generate-&-test approach and/

or have element of greedy search 
•  e.g., MSL [Kok & Domingos, ICML’05] and  
            BUSL [Mihalkova & Mooney, ICML’07] 
•  Explore large search space → computationally expensive  
•  Susceptible to local maxima 

Ø LHL [Kok & Domingos, ICML’09] ameliorates above problems 
by clustering constants to form high-level concepts 
•  But for long paths ! search exponential space of paths. 
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Methodology 
Ø Five-fold cross validation 
Ø  Inferred prob. true for groundings of each pred. 

•  Groundings of all other predicates as evidence 
Ø For Cora, inferred four predicates jointly too 

•  SameCitation, SameTitle, SameAuthor, SameVenue 
Ø MCMC to eval test atoms: 106 samples or 24 hrs 
Ø Evaluate area under precision-recall curve (AUC) 
Ø Evaluate average conditional log-likelihood  (CLL) 
Ø Compared against state-of-the-art MLN structure learners: 

LHL, BUSL, MSL 
Ø Two clause lengths per system: short length of 4, and long 

length of 10 

Learning Using Structural Motifs (LSM) 
 

Ø First MLN structure learner that can learn long clauses 
•  Long clauses capture more complex dependencies than short clauses 
•  Typically want to set max. clause length to large value so as not to a 

priori preclude good clauses 
Ø Finds literals that are densely connected by arguments 

•  Using random walks & truncated hitting times 
Ø Clusters constants into high-level concepts 

•  Using symmetrical paths & nodes 
Ø Structural Motifs = a set of literals 

•  Defines a set of clauses that can be created from one or more of the 
literals, i.e., a sub-space of clauses 

Ø Represents relational data as a graph 
•  Nodes = constants; edges = true ground atoms 

Random Walks & Hitting Times 
 

Ø Random walk: random traversal of a graph  
•  When at a node, randomly select one neighbor to move to 

Ø Hitting time btw node i and j: expected number of steps in a 
random walk starting from i to reach j for the first time 
•  Smaller hitting time → node i and  j are more densely 

connected → closer node j is to i 
•  Expensive to compute for all pairs of nodes 

Ø Truncated hitting time: random walk limited to T steps 
•  Only visit vicinity of node i 
•  Efficiently estimated by sampling [Sarkar, Moore & Prakash, ICML’08] 

Symmetrical Paths & Nodes 
 

Ø  In a graph, two paths are symmetrical iff the strings created 
by replacing the nodes with integers indicating the order in 
which the nodes are visited are identical 

Ø Two nodes v and w are symmetrical wrt. to a node s iff each 
path from s to v is symmetrical  to some path from s to w 
and vice versa 
•  Intuition: v and w are indistinguishable wrt. s 
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    VenueOfCit(v,c)   ᴧ VenueOfCit(v,c')    ᴧ  
 AuthorOfCit(a,c)  ᴧ AuthorOfCit(a',c')  ᴧ SameAuthor(a,a') ᴧ 

    TitleOfCit(t,c)       ᴧ TitleOfCit(t',c')      ) SameTitle(t,t') 
     
    SameCitation(c,c') ᴧ TitleOfCit(t,c)          ᴧ TitleOfCit(t',c')    ᴧ  

 HasWordTitle(t,w)  ᴧ HasWordTitle(t',w) ᴧ AuthorOfCit(a,c) ᴧ  
 AuthorOfCit(a',c')   ᴧ SameAuthor(a,a') 

Examples of Clauses Learned 


