
Lecture 10Lecture 10
Sorting

Bringing Order to the World

Lecture Outline

 Iterative sorting algorithms (comparison based)

 Selection Sort

 Bubble Sort Bubble Sort

 Insertion Sort

 Recursive sorting algorithms (comparison based)

 Merge Sort

 Quick Sort

 Radix sort (non-comparison based)

 Properties of Sorting

 In-place sort, stable sort

 Comparison of sorting algorithms

 Note: we only consider sorting data in ascending order

[CS1020E AY1617S1 Lecture 10]

2

Why Study Sorting?

 When an input is sorted, many problems become
easy (e.g. searching, min, max, k-th smallest)

 Sorting has a variety of interesting algorithmic
solutions that embody many ideas

 Comparison vs non-comparison based

 Iterative

Recursive Recursive

 Divide-and-conquer

 Best/worst/average-case bounds

 Randomized algorithms

[CS1020E AY1617S1 Lecture 10]

3

Applications of Sorting

 Uniqueness testing

 Deleting duplicates

 Prioritizing events

 Frequency counting

 Reconstructing the original order

 Set intersection/union

 Finding a target pair x, y such that x+y = z

 Efficient searching

[CS1020E AY1617S1 Lecture 10]

4

Selection SortSelection Sort

Selection Sort: Idea

 Given an array of n items

1. Find the largest item x, in the range of [0…n−1]

2. Swap x with the (n−1)th item

3. Reduce n by 1 and go to Step 1

[CS1020E AY1617S1 Lecture 10]

6

Selection Sort: Illustration

29 10 14 37 13
37 is the largest, swap it with
the last element, i.e. 13.
Q: How to find the largest?

29 10 14 13 37

13 10 14 29 37

13 10 14 29 37
x

x

x Unsorted items

Largest item for
current iteration

Sorted items

[CS1020E AY1617S1 Lecture 10]

7

13 10 14 29 37

10 13 14 29 37 Sorted!

We can also find the smallest and put it the front instead
http://visualgo.net/sorting?create=29,10,14,37,13&mode=Selection

Selection Sort: Implementation
void selectionSort(int a[], int n) {

for (int i = n-1; i >= 1; i--) {

int maxIdx = i;

for (int j = 0; j < i; j++)

Step 1:
Search for for (int j = 0; j < i; j++)

if (a[j] >= a[maxIdx])

maxIdx = j;

// swap routine is in STL <algorithm>

swap(a[i], a[maxIdx]);

}

}

Search for
maximum
element

Step 2:
Swap

[CS1020E AY1617S1 Lecture 10]

8

} Swap
maximum
element

with the last
item i

void selectionSort(int a[], int n) {

for (int i = n-1; i >= 1; i--) {

int maxIdx = i;

for (int j = 0; j < i; j++)

Selection Sort: Analysis

 n−1

 n−1

Number of times
executed

for (int j = 0; j < i; j++)

if (a[j] >= a[maxIdx])

maxIdx = j;

// swap routine is in STL <algorithm>

swap(a[i], a[maxIdx]);

}

}

 n−1

 (n−1)+(n−2)+…+1

= n(n−1)/2

 n−1

Total }

[CS1020E AY1617S1 Lecture 10]

9

• c1 and c2 are cost of statements in
outer and inner blocks

Total

= c1(n−1) +

c2*n*(n−1)/2

= O(n2)

Bubble SortBubble Sort

Bubble Sort: Idea

 Given an array of n items

1. Compare pair of adjacent items

2. Swap if the items are out of order

3. Repeat until the end of array

 The largest item will be at the last position

4. Reduce n by 1 and go to Step 1

 Analogy

 Large item is like “bubble” that floats to the end of the
array

[CS1020E AY1617S1 Lecture 10]

11

Bubble Sort: Illustration

At the end of Pass 2, the second
largest item 29 is at the second

[CS1020E AY1617S1 Lecture 10]

12

At the end of Pass 1, the largest
item 37 is at the last position.

largest item 29 is at the second
last position.

x

x

Sorted Item

Pair of items
under comparison

Bubble Sort: Implementation

void bubbleSort(int a[], int n) {

for (int i = n-1; i >= 1; i--) {

for (int j = 1; j <= i; j++) {
Step 1:

Compare for (int j = 1; j <= i; j++) {

if (a[j-1] > a[j])

swap(a[j], a[j-1]);

}

}

}
Step 2:

Swap if the
items are out

Compare
adjacent
pairs of

numbers

[CS1020E AY1617S1 Lecture 10]

13

29 10 14 37 13

items are out
of order

http://visualgo.net/sorting?create=29,10,14,37,13&mode=Bubble

Bubble Sort: Analysis

 1 iteration of the inner loop (test and swap) requires
time bounded by a constant c

 Two nested loops Two nested loops

 Outer loop: exactly n iterations

 Inner loop:

 when i=0, (n−1) iterations

 when i=1, (n−2) iterations

 … …

 when i=(n−1), 0 iterations

 Total number of iterations = 0+1+…+(n−1) = n(n−1)/2

 Total time = c n(n−1)/2 = O(n2)

[CS1020E AY1617S1 Lecture 10]

14

Bubble Sort: Early Termination

 Bubble Sort is inefficient with a O(n2) time
complexity

However, it has an interesting property However, it has an interesting property

 Given the following array, how many times will the
inner loop swap a pair of item?

Idea

3 6 11 25 39

 Idea

 If we go through the inner loop with no swapping
 the array is sorted
 can stop early!

[CS1020E AY1617S1 Lecture 10]

15

Bubble Sort v2.0: Implementation
void bubbleSort2(int a[], int n) {

for (int i = n-1; i >= 1; i--) {

bool is_sorted = true;

for (int j = 1; j <= i; j++) {

Assume the array
is sorted before
the inner loop

for (int j = 1; j <= i; j++) {

if (a[j-1] > a[j]) {

swap(a[j], a[j-1]);

is_sorted = false;

}

} // end of inner loop

if (is_sorted) return;

the inner loop

Any swapping will
invalidate the
assumption

If the flag

[CS1020E AY1617S1 Lecture 10]

16

if (is_sorted) return;

}

}

If the flag
remains true
after the inner
loop  sorted!

Bubble Sort v2.0: Analysis

 Worst-case

 Input is in descending order

 Running time remains the same: O(n2) Running time remains the same: O(n2)

 Best-case

 Input is already in ascending order

 The algorithm returns after a single outer iteration

 Running time: O(n)

[CS1020E AY1617S1 Lecture 10]

17

Insertion SortInsertion Sort

Insertion Sort: Idea

 Similar to how most people arrange a hand of
poker cards

 Start with one card in your hand Start with one card in your hand

 Pick the next card and insert it into its proper sorted
order

 Repeat previous step for all cards

10♠1st card: 10♠

[CS1020E AY1617S1 Lecture 10]

19

K♠

5♠10♠

5♠ 10♠

2nd card: 5♠

3rd card: K♠

… … … …

Insertion Sort: Illustration

40 13 20 8Start
x Sorted

x

x Unsorted

Unsorted
To be inserted

13 40 20 8Iteration 1

13 20 40 8Iteration 2

[CS1020E AY1617S1 Lecture 10]

20

8 13 20 40Iteration 3

http://visualgo.net/sorting?create=40,13,20,8&mode=Insertion

Insertion Sort: Implementation

void insertionSort(int a[], int n) {
for (int i = 1; i < n; i++) {

int next = a[i];

next is the
item to be
inserted

int next = a[i];
int j;

for (j = i-1; j >= 0 && a[j] > next; j--)
a[j+1] = a[j];

a[j+1] = next;
}

inserted

Shift sorted
items to make
place for next

[CS1020E AY1617S1 Lecture 10]

21

}
}

29 10 14 37 13

Insert next to
the correct

location

http://visualgo.net/sorting?create=29,10,14,37,13&mode=Insertion

Insertion Sort: Analysis

 Outer-loop executes (n−1) times

 Number of times inner-loop is executed depends on
the inputthe input

 Best-case: the array is already sorted and
(a[j] > next) is always false

 No shifting of data is necessary

 Worst-case: the array is reversely sorted and
(a[j] > next) is always true

Insertion always occur at the front Insertion always occur at the front

 Therefore, the best-case time is O(n)

 And the worst-case time is O(n2)

[CS1020E AY1617S1 Lecture 10]

22

Merge SortMerge Sort

Merge Sort: Idea

 Suppose we only know how to merge two sorted
sets of elements into one

 Merge {1, 5, 9} with {2, 11}  {1, 2, 5, 9, 11} Merge {1, 5, 9} with {2, 11}  {1, 2, 5, 9, 11}

 Question

 Where do we get the two sorted sets in the first place?

 Idea (use merge to sort n items)

 Merge each pair of elements into sets of 2

 Merge each pair of sets of 2 into sets of 4

 Repeat previous step for sets of 4 …

 Final step: merge 2 sets of n/2 elements to obtain a
fully sorted set

[CS1020E AY1617S1 Lecture 10]

24

Divide-and-Conquer Method

 A powerful problem solving technique

 Divide-and-conquer method solves problem in
the following stepsthe following steps

 Divide step

 Divide the large problem into smaller problems

 Recursively solve the smaller problems

 Conquer step

 Combine the results of the smaller problems to produce  Combine the results of the smaller problems to produce
the result of the larger problem

[CS1020E AY1617S1 Lecture 10]

25

Divide and Conquer: Merge Sort

 Merge Sort is a divide-and-conquer sorting
algorithm

Divide step  Divide step

 Divide the array into two (equal) halves

 Recursively sort the two halves

 Conquer step

 Merge the two halves to form a sorted array

[CS1020E AY1617S1 Lecture 10]

26

Merge Sort: Illustration

7 2 6 3 8 4 5

7 2 6 3 8 4 5Divide into
7 2 6 3 8 4 5

2 3 6 7 4 5 8

Divide into
two halves

Recursively
sort the
halves

2 3 4 5 6 7 8Merge them

[CS1020E AY1617S1 Lecture 10]

27

2 3 4 5 6 7 8Merge them

 Question

 How should we sort the halves in the 2nd step?

Merge Sort: Implementation
void mergeSort(int a[], int low, int high) {
if (low < high) {
int mid = (low+high) / 2;

mergeSort(a, low , mid);

Merge sort on
a[low...high]

Divide a[] into two mergeSort(a, low , mid);
mergeSort(a, mid+1, high);

merge(a, low, mid, high);
}

} Conquer: merge the
two sorted halvesFunction to merge

a[low…mid] and

Divide a[] into two
halves and recursively

sort them

[CS1020E AY1617S1 Lecture 10]

28

a[low…mid] and
a[mid+1…high] into

a[low…high]

 Note

 mergeSort() is a recursive function

 low >= high is the base case, i.e. there is 0 or 1 item

Merge Sort: Example
mergeSort(a[low…mid])

mergeSort(a[mid+1…high])

merge(a[low..mid],

a[mid+1..high])

38 16 27 39 12 27

38 16 27 39 12 27 a[mid+1..high])

38 16

38 16

16 38

27 39 12

39 12

12 39

27
Divide Phase

Recursive call to
mergeSort()

Conquer Phase

[CS1020E AY1617S1 Lecture 10]

29

16 27 38 12 27 39

12 16 27 27 38 39

Conquer Phase
Merge steps

http://visualgo.net/sorting?create=38,16,27,39,12,27&mode=Merge

Merge Sort: Merge

3 7 8

a[3..5]a[0..2] b[0..5]

2 4 5

3 7 8

3 7 8

3 7 8

3 7 8

2 4 5

2 4 5

2 4 5

2 4 5

2

2 3

2 3 4

2 3 4 5

[CS1020E AY1617S1 Lecture 10]

30

3 7 8

3 7 8

2 4 5

2 4 5

2 3 4 5

2 3 4 5 7 8 x

x

x
Unmerged

items

Items used for
comparison

Merged items
Two sorted halves to be

merged

Merged result in a
temporary array

Merge Sort: Merge Implementation

void merge(int a[], int low, int mid, int high) {

int n = high-low+1; b is a

temporary

PS: C++ STL <algorithm> has merge subroutine too

int* b = new int[n];

int left=low, right=mid+1, bIdx=0;

while (left <= mid && right <= high) {

if (a[left] <= a[right])

b[bIdx++] = a[left++];

else

Normal Merging
Where both

temporary
array to store

result

[CS1020E AY1617S1 Lecture 10]

31

else

b[bIdx++] = a[right++];

}

// continue on next slide

Where both
halves have

unmerged items

Merge Sort: Merge Implementation
// continued from previous slide

while (left <= mid) b[bIdx++] = a[left++];

while (right <= high) b[bIdx++] = a[right++];

for (int k = 0; k < n; k++)

a[low+k] = b[k];

delete [] b;

}

Merged result
are copied

back into a[]

Remaining
items are

copied into
b[]

[CS1020E AY1617S1 Lecture 10]

32

}
Remember to free
allocated memory

 Question
 Why do we need a temporary array b[]?

Merge Sort: Analysis

 In mergeSort(), the bulk of work is done in the

merge step

 For merge(a, low, mid, high) For merge(a, low, mid, high)

 Let total items = k = (high − low + 1)

 Number of comparisons ≤ k − 1

 Number of moves from original array to temporary array = k

 Number of moves from temporary array back to original
array = k

 In total, number of operations ≤ 3k − 1 = O(k)

 The important question is

 How many times is merge() called?

[CS1020E AY1617S1 Lecture 10]

33

Merge Sort: Analysis
Level 0:
mergeSort n items

Level 1:
mergeSort n/2 items

n

n/2 n/2

Level 0:
1 call to mergeSort

Level 1:
2 calls to mergeSortmergeSort n/2 items

Level 2:
mergeSort n/22 items

Level (lg n):
mergeSort 1 item

n/2 n/2

n/22n/22 n/22 n/22

…

1 1 1. . . 1

2 calls to mergeSort

Level 2:
22 calls to mergeSort

Level (lg n):
2lg n(= n) calls to

……

[CS1020E AY1617S1 Lecture 10]

34

mergeSort 1 item 1 1 1. . . 1 2lg n(= n) calls to
mergeSort

n/(2k) = 1  n = 2k  k = lg n

Merge Sort: Analysis

 Level 0: 0 call to merge()

 Level 1: 1 calls to merge() with n/2 items in each half,

O(1 x 2 x n/2) = O(n) timeO(1 x 2 x n/2) = O(n) time

 Level 2: 2 calls to merge() with n/22 items in each half,

O(2 x 2 x n/22) = O(n) time

 Level 3: 22 calls to merge() with n/23 items in each half,

O(22 x 2 x n/23) = O(n) time

 …

 Level (lg n): 2lg(n) − 1(= n/2) calls to merge() with n/2lg(n) (= 1)

item in each half, O(n) time

 Total time complexity = O(n lg(n))

 Optimal comparison-based sorting method

[CS1020E AY1617S1 Lecture 10]

35

Merge Sort: Pros and Cons

 Pros

 The performance is guaranteed, i.e. unaffected by
original ordering of the inputoriginal ordering of the input

 Suitable for extremely large number of inputs

 Can operate on the input portion by portion

 Cons

 Not easy to implement Not easy to implement

 Requires additional storage during merging operation

 O(n) extra memory storage needed

[CS1020E AY1617S1 Lecture 10]

36

Quick SortQuick Sort

Quick Sort: Idea

 Quick Sort is a divide-and-conquer algorithm

 Divide step

 Choose an item p (known as pivot) and partition the  Choose an item p (known as pivot) and partition the
items of a[i...j] into two parts

 Items that are smaller than p

 Items that are greater than or equal to p

 Recursively sort the two parts

 Conquer step

Do nothing! Do nothing!

 In comparison, Merge Sort spends most of the time
in conquer step but very little time in divide step

[CS1020E AY1617S1 Lecture 10]

38

Quick Sort: Divide Step Example

1927 38 12 39 27 16

Pivot
Choose first

element as pivot

3812 39 2716 27

Pivot

27 3912 27 3816

Pivot

Partition a[] about
the pivot 27

Recursively sort
the two parts

[CS1020E AY1617S1 Lecture 10]

39

27 3912 27 3816the two parts

Notice anything special about the
position of pivot in the final

sorted items?

Quick Sort: Implementation

void quickSort(int a[], int low, int high) {

if (low < high) {

int pivotIdx = partition(a, low, high);
Partition

a[low...high]
and return the

quickSort(a, low, pivotIdx-1);

quickSort(a, pivotIdx+1, high);

}

}

and return the
index of the
pivot item

Recursively sort
the two portions

[CS1020E AY1617S1 Lecture 10]

40

 partition() splits a[low...high] into two portions

 a[low ... pivot–1] and a[pivot+1 ... high]

 Pivot item does not participate in any further sorting

Quick Sort: Partition Algorithm

 To partition a[i...j], we choose a[i] as the pivot p

 Why choose a[i]? Are there other choices?

 The remaining items (i.e. a[i+1...j]) are divided into 3  The remaining items (i.e. a[i+1...j]) are divided into 3
regions

 S1 = a[i+1...m] where items < p

 S2 = a[m+1...k-1] where item ≥ p

 Unknown (unprocessed) = a[k...j], where items are yet to be
assigned to S1 or S2

[CS1020E AY1617S1 Lecture 10]

41

? p< pp

i m k j

S1 S2 Unknown

Quick Sort: Partition Algorithm

 Initially, regions S1 and S2 are empty

 All items excluding p are in the unknown region

For each item a[k] in the unknown region For each item a[k] in the unknown region

 Compare a[k] with p

 If a[k] >= p, put it into S2

 Otherwise, put a[k] into S1

?p

[CS1020E AY1617S1 Lecture 10]

42

?p

i k j

Unknown

Quick Sort: Partition Algorithm

 Case 1: if a[k] >= p

S1 S2

If a[k]=y  p,

Increment k

? p< pp
i m k j

x y

S1 S2

? p< pp x y

S1 S2

[CS1020E AY1617S1 Lecture 10]

43

Increment k ? p< pp
i m k j

x y

Quick Sort: Partition Algorithm

 Case 2: if a[k] < p

If a[k]=y < p ? p< pp x y

S1 S2

If a[k]=y < p

? p< pp
i m k j

x yIncrement m

? p< pp y x

? p< pp
i m k j

x y

[CS1020E AY1617S1 Lecture 10] 44

? p< pp
i m k j

y xSwap x and y

? p< pp
i m k j

y xIncrement k

Quick Sort: Partition Implementation

int partition(int a[], int i, int j) {
int p = a[i];
int m = i;

p is the pivot

S1 and S2 empty

PS: C++ STL <algorithm> has partition subroutine too

int m = i;

for (int k = i+1; k <= j; k++) {
if (a[k] < p) {
m++;
swap(a[k], a[m]);

}
else {

S1 and S2 empty
initially

Go through each
element in unknown

region

Case 1: Do nothing!

Case 2

[CS1020E AY1617S1 Lecture 10]

45

}
}
swap(a[i], a[m]);
return m;

}

Case 1: Do nothing!

Swap pivot with a[m]

m is the index of pivot

Quick Sort: Partition Example

[CS1020E AY1617S1 Lecture 10]

46

http://visualgo.net/sorting?create=27,38,12,39,27,16&mode=Quick

Quick Sort: Partition Analysis

 There is only a single for-loop

 Number of iterations = number of items, n, in the
unknown regionunknown region

 n = high − low

 Complexity is O(n)

 Similar to Merge Sort, the complexity is then
dependent on the number of times partition() is dependent on the number of times partition() is
called

[CS1020E AY1617S1 Lecture 10]

47

Quick Sort: Worst Case Analysis

 When the array is already in ascending order

195 18 23 39 44 57

What is the pivot index returned by partition()?

195 18 23 39 44 57

S1 = a[i+1...m]
empty when m = i

S2 = a[m+1...j]
p = a[i]

 What is the pivot index returned by partition()?

 What is the effect of swap(a, i, m)?

 S1 is empty, while S2 contains every item except
the pivot

[CS1020E AY1617S1 Lecture 10]

48

Quick Sort: Worst Case Analysis

n

1 n-1

Total no.
of levels
= n

1 n-1

1 n-2

1 1

…
…

As each partition takes
linear time, the

[CS1020E AY1617S1 Lecture 10]

49

1 1 linear time, the
algorithm in its worst
case has n levels and
hence it takes time
n+(n-1)+...+1 = O(n2)

contains the pivot only!

Quick Sort: Best/Average Case Analysis

 Best case occurs when partition always splits the
array into two equal halves

 Depth of recursion is log n Depth of recursion is log n

 Each level takes n or fewer comparisons, so the time
complexity is O(n log n)

 In practice, worst case is rare, and on the
average we get some good splits and some bad
ones (details in CS3230 :O)ones (details in CS3230 :O)

 Average time is also O(n log n)

[CS1020E AY1617S1 Lecture 10]

50

Lower Bound: Comparison-Based Sort

 It is known that

 All comparison-based sorting algorithms have a
complexity lower bound of n log ncomplexity lower bound of n log n

 Therefore, any comparison-based sorting
algorithm with worst-case complexity
O(n log n) is optimal

[CS1020E AY1617S1 Lecture 10]

51

Radix SortRadix Sort

Radix Sort: Idea

 Treats each data to be sorted as a character
string

It is not using comparison, i.e. no comparison  It is not using comparison, i.e. no comparison
between the data is needed

 In each iteration

 Organize the data into groups according to the next
character in each data

The groups are then “concatenated” for next iteration The groups are then “concatenated” for next iteration

[CS1020E AY1617S1 Lecture 10]

53

Radix Sort: Example

[CS1020E AY1617S1 Lecture 10]

54

Radix Sort: Implementation
void radixSort(vector<int>& v, int d) {
int i;
int power = 1;
queue<int> digitQueue[10];

10 groups. Each is
a queue to retain

for (i = 0; i < d; i++) {
distribute(v, digitQueue, power);
collect(digitQueue, v);
power *= 10;

}
}

a queue to retain
the order of item

[CS1020E AY1617S1 Lecture 10]

55

 distribute(): Organize all items in v into groups using
digit indicated by the power

 collect(): Place items from the groups back into v, i.e.
“concatenate” the groups

Radix Sort: Implementation

void distribute(vector<int>& v,
queue<int> digitQ[], int power) {

int digit;
for (int i = 0; i < v.size(); i++){for (int i = 0; i < v.size(); i++){
digit = (v[i]/power) % 10;
digitQ[digit].push(v[i]);

}
}

Question

[CS1020E AY1617S1 Lecture 10]

56

 Question

 How do we extract the digit used for the current
grouping?

Radix Sort: Implementation
void collect(queue<int> digitQ[], vector<int>& v) {
int i = 0, digit;

for (digit = 0; digit < 10; digit++)for (digit = 0; digit < 10; digit++)
while (!digitQ[digit].empty()) {
v[i] = digitQ[digit].front();
digitQ[digit].pop();
i++;

}
}

[CS1020E AY1617S1 Lecture 10]

57

 Basic Idea
 Start with digitQ[0]

 Place all items into vector v

 Repeat with digitQ[1], digitQ[2], ...

Radix Sort: Analysis

 For each iteration

 We go through each item once to place them into
groupgroup

 Then go through them again to concatenate the groups

 Complexity is O(n)

 Number of iterations is d, the maximum number
of digits (or maximum number of characters)

Complexity is thus O(dn) Complexity is thus O(dn)

[CS1020E AY1617S1 Lecture 10]

58

Properties of SortingProperties of Sorting

In-Place Sorting

 A sort algorithm is said to be an in-place sort

 If it requires only a constant amount (i.e. O(1)) of
extra space during the sorting processextra space during the sorting process

 Questions

 Merge Sort is not in-place, why?

 Is Quick Sort in-place?

 Is Radix Sort in-place? Is Radix Sort in-place?

[CS1020E AY1617S1 Lecture 10]

60

Stable Sorting

 A sorting algorithm is stable if the relative order
of elements with the same key value is
preserved by the algorithmpreserved by the algorithm

 Example application of stable sort

 Assume that names have been sorted in alphabetical
order

 Now, if this list is sorted again by tutorial group  Now, if this list is sorted again by tutorial group
number, a stable sort algorithm would ensure that all
students in the same tutorial groups still appear in
alphabetical order of their names

[CS1020E AY1617S1 Lecture 10]

61

Non-Stable Sort

 Selection Sort
1285 5a 4746 602 5b (8356)

1285 5 5 602 (4746 8356)1285 5a 5b 602 (4746 8356)

602 5a 5b (1285 4746 8356)

5b 5a (602 1285 4746 8356)

 Quick Sort
1285 5 150 4746 602 5 8356 (pivot=1285) 1285 5a 150 4746 602 5b 8356 (pivot=1285)

 1285 (5a 150 602 5b) (4746 8356)

 5b 5a 150 602 1285 4746 8356

[CS1020E AY1617S1 Lecture 10]

62

Sorting Algorithms: Summary
Worst
Case

Best
Case

In-place? Stable?

Selection
Sort O(n2) O(n2) Yes NoSort

Insertion
Sort

O(n2) O(n) Yes Yes

Bubble Sort O(n2) O(n2) Yes Yes

Bubble Sort 2 O(n2) O(n) Yes Yes

[CS1020E AY1617S1 Lecture 10]

63

Merge Sort O(n lg n) O(n lg n) No Yes

Quick Sort O(n2) O(n lg n) Yes No

Radix sort O(dn) O(dn) No yes

Summary

 Comparison-Based Sorting Algorithms

 Iterative Sorting

 Selection Sort Selection Sort

 Bubble Sort

 Insertion Sort

 Recursive Sorting

 Merge Sort

 Quick Sort

 Non-Comparison-Based Sorting Algorithms Non-Comparison-Based Sorting Algorithms

 Radix Sort

 Properties of Sorting Algorithms

 In-Place

 Stable
[CS1020E AY1617S1 Lecture 10]

64

