Lecture 10

Sorting

Bringing Order to the World
Lecture Outline

- Iterative sorting algorithms (comparison based)
 - Selection Sort
 - Bubble Sort
 - Insertion Sort

- Recursive sorting algorithms (comparison based)
 - Merge Sort
 - Quick Sort

- Radix sort (non-comparison based)

- Properties of Sorting
 - In-place sort, stable sort
 - Comparison of sorting algorithms

- Note: we only consider sorting data in ascending order
Why Study Sorting?

When an input is sorted, many problems become easy (e.g. searching, min, max, k-th smallest)

Sorting has a variety of interesting algorithmic solutions that embody many ideas

- Comparison vs non-comparison based
- Iterative
- Recursive
- Divide-and-conquer
- Best/worst/average-case bounds
- Randomized algorithms
Applications of Sorting

- Uniqueness testing
- Deleting duplicates
- Prioritizing events
- Frequency counting
- Reconstructing the original order
- Set intersection/union
- Finding a target pair x, y such that $x+y = z$
- Efficient searching
Selection Sort
Selection Sort: Idea

- Given an array of n items
 1. Find the largest item x, in the range of $[0 \ldots n-1]$
 2. Swap x with the $(n-1)^{th}$ item
 3. Reduce n by 1 and go to Step 1
Selection Sort: Illustration

37 is the largest, swap it with the last element, i.e. 13.
Q: How to find the largest?

We can also find the smallest and put it the front instead
http://visualgo.net/sorting?create=29,10,14,37,13&mode=Selection
Selection Sort: Implementation

```c
void selectionSort(int a[], int n) {
    for (int i = n-1; i >= 1; i--) {
        int maxIdx = i;
        for (int j = 0; j < i; j++)
            if (a[j] >= a[maxIdx])
                maxIdx = j;
        // swap routine is in STL <algorithm>
        swap(a[i], a[maxIdx]);
    }
}
```

Step 1:
Search for maximum element

Step 2:
Swap maximum element with the last item i
Selection Sort: Analysis

```cpp
void selectionSort(int a[], int n) {
    for (int i = n-1; i >= 1; i--)
    {
        int maxIdx = i;
        for (int j = 0; j < i; j++)
        {
            if (a[j] >= a[maxIdx])
                maxIdx = j;
        }
        // swap routine is in STL <algorithm>
        swap(a[i], a[maxIdx]);
    }
}
```

- c_1 and c_2 are cost of statements in outer and inner blocks

Number of times executed

- $n-1$ for outer loop
- $n-1$ for inner loop
- $(n-1)+(n-2)+...+1 = n(n-1)/2$
- $n-1$ for swap

Total

$= c_1(n-1) + c_2*n*(n-1)/2$

$= O(n^2)$
Bubble Sort: Idea

- Given an array of n items
 1. Compare pair of adjacent items
 2. Swap if the items are out of order
 3. Repeat until the end of array
 - The largest item will be at the last position
 4. Reduce n by 1 and go to Step 1

- Analogy
 - Large item is like “bubble” that floats to the end of the array
At the end of **Pass 1**, the largest item **37** is at the last position.

At the end of **Pass 2**, the second largest item **29** is at the second last position.
Bubble Sort: Implementation

```c
void bubbleSort(int a[], int n) {
    for (int i = n-1; i >= 1; i--) {
        for (int j = 1; j <= i; j++) {
            if (a[j-1] > a[j])
                swap(a[j], a[j-1]);
        }
    }
}
```

Step 1: Compare adjacent pairs of numbers

Step 2: Swap if the items are out of order

http://visualgo.net/sorting?create=29,10,14,37,13&mode=Bubble
Bubble Sort: Analysis

- 1 iteration of the inner loop (test and swap) requires time bounded by a constant c

- Two nested loops
 - Outer loop: exactly n iterations
 - Inner loop:
 - when $i=0$, $(n−1)$ iterations
 - when $i=1$, $(n−2)$ iterations
 - …
 - when $i=(n−1)$, 0 iterations

- Total number of iterations = $0+1+…+(n−1) = \frac{n(n−1)}{2}$
- Total time = $c \cdot \frac{n(n−1)}{2} = \mathcal{O}(n^2)$
Bubble Sort: Early Termination

- Bubble Sort is inefficient with a $O(n^2)$ time complexity
- However, it has an interesting property
 - Given the following array, how many times will the inner loop swap a pair of items?

 | 3 | 6 | 11 | 25 | 39 |

- Idea
 - If we go through the inner loop with no swapping
 - the array is sorted
 - can stop early!
void bubbleSort2(int a[], int n) {
 for (int i = n-1; i >= 1; i--) {
 bool is_sorted = true;
 for (int j = 1; j <= i; j++) {
 if (a[j-1] > a[j]) {
 swap(a[j], a[j-1]);
 is_sorted = false;
 }
 }
 // end of inner loop
 if (is_sorted) return;
 }
}

Assume the array is sorted before the inner loop

Any swapping will invalidate the assumption

If the flag remains true after the inner loop ➞ sorted!
Bubble Sort v2.0: Analysis

- **Worst-case**
 - Input is in descending order
 - Running time remains the same: $O(n^2)$

- **Best-case**
 - Input is already in ascending order
 - The algorithm returns after a single outer iteration
 - Running time: $O(n)$
Insertion Sort
Insertion Sort: Idea

- Similar to how most people arrange a hand of poker cards
 - Start with one card in your hand
 - Pick the next card and insert it into its proper sorted order
 - Repeat previous step for all cards

1st card: 10\spadesuit

2nd card: 5\spadesuit

3rd card: K\spadesuit

...
Insertion Sort: Illustration

Start

Iteration 1

Iteration 2

Iteration 3

http://visualgo.net/sorting?create=40,13,20,8&mode=Insertion
Insertion Sort: Implementation

```c
void insertionSort(int a[], int n) {
    for (int i = 1; i < n; i++) {
        int next = a[i];
        int j;

        for (j = i-1; j >= 0 && a[j] > next; j--)
            a[j+1] = a[j];
        a[j+1] = next;
    }
}
```

Next is the item to be inserted
Shift sorted items to make place for next
Insert next to the correct location

http://visualgo.net/sorting?create=29,10,14,37,13&mode=Insertion
Insertion Sort: Analysis

- Outer-loop executes \((n-1)\) times

- Number of times inner-loop is executed depends on the input
 - **Best-case**: the array is already sorted and
 \((a[j] > \text{next})\) is always false
 - No shifting of data is necessary
 - **Worst-case**: the array is reversely sorted and
 \((a[j] > \text{next})\) is always true
 - Insertion always occur at the front

- Therefore, the **best-case** time is \(O(n)\)
- And the **worst-case** time is \(O(n^2)\)
Merge Sort
Merge Sort: Idea

- Suppose we only know how to merge two sorted sets of elements into one
 - Merge \(\{1, 5, 9\} \) with \(\{2, 11\} \) \(\rightarrow \) \(\{1, 2, 5, 9, 11\} \)

- Question
 - Where do we get the two sorted sets in the first place?

- Idea (use **merge** to sort \(n \) items)
 - Merge each pair of elements into sets of 2
 - Merge each pair of sets of 2 into sets of 4
 - Repeat previous step for sets of 4 …
 - Final step: merge 2 sets of \(n/2 \) elements to obtain a fully sorted set
Divide-and-Conquer Method

- A powerful problem solving technique

- Divide-and-conquer method solves problem in the following steps
 - **Divide** step
 - Divide the large problem into smaller problems
 - Recursively solve the smaller problems
 - **Conquer** step
 - Combine the results of the smaller problems to produce the result of the larger problem
Divide and Conquer: Merge Sort

- Merge Sort is a divide-and-conquer sorting algorithm

Divide step
- Divide the array into two (equal) halves
- Recursively sort the two halves

Conquer step
- Merge the two halves to form a sorted array
Merge Sort: Illustration

Divide into two halves

7 2 6 3
8 4 5

Recursively sort the halves

2 3 6 7
4 5 8

Merge them

2 3 4 5 6 7 8

Question

How should we sort the halves in the 2nd step?
Merge Sort: Implementation

```c
void mergeSort(int a[], int low, int high) {
    if (low < high) {
        int mid = (low+high) / 2;
        mergeSort(a, low, mid);
        mergeSort(a, mid+1, high);
        merge(a, low, mid, high);
    }
}
```

- **Merge sort on** `a[low...high]`
- **Divide** `a[]` into two halves and **recursively** sort them
- **Conquer:** merge the two sorted halves

Note
- `mergeSort()` is a recursive function
- `low >= high` is the base case, i.e. there is 0 or 1 item
Merge Sort: Example

Divide Phase
Recursive call to
mergeSort()

Conquer Phase
Merge steps

mergeSort(a[low...mid])
mergeSort(a[mid+1...high])
merge(a[low..mid], a[mid+1..high])

http://visualgo.net/sorting?create=38,16,27,39,12,27&mode=Merge
Merge Sort: Merge

<table>
<thead>
<tr>
<th>a[0..2]</th>
<th>a[3..5]</th>
<th>b[0..5]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 4 5</td>
<td>3 7 8</td>
<td></td>
</tr>
<tr>
<td>2 4 5</td>
<td>3 7 8</td>
<td>2</td>
</tr>
<tr>
<td>2 4 5</td>
<td>3 7 8</td>
<td>2 3</td>
</tr>
<tr>
<td>2 4 5</td>
<td>3 7 8</td>
<td>2 3 4</td>
</tr>
<tr>
<td>2 4 5</td>
<td>3 7 8</td>
<td>2 3 4 5</td>
</tr>
</tbody>
</table>

Two sorted halves to be merged

Merged result in a temporary array

<table>
<thead>
<tr>
<th>2 3 4 5</th>
</tr>
</thead>
</table>

Unmerged items

Items used for comparison

Merged items
Merge Sort: Merge Implementation

PS: C++ STL `<algorithm>` has `merge` subroutine too

```c
void merge(int a[], int low, int mid, int high) {
    int n = high - low + 1;
    int* b = new int[n];
    int left = low, right = mid + 1, bIdx = 0;

    while (left <= mid && right <= high) {
        if (a[left] <= a[right])
            b[bIdx++] = a[left++];
        else
            b[bIdx++] = a[right++];
    }

    // continue on next slide
```

- `b` is a temporary array to store result
- **Normal Merging**
 Where both halves have unmerged items

[CS1020E AY1617S1 Lecture 10]
Merge Sort: Merge Implementation

// continued from previous slide

while (left <= mid) b[bIdx++] = a[left++];
while (right <= high) b[bIdx++] = a[right++];

for (int k = 0; k < n; k++) a[low+k] = b[k];

delete [] b;

Merged result are copied back into a[]
Remaining items are copied into b[]

Question

Why do we need a temporary array b[]?
Merge Sort: Analysis

- In `mergeSort()`, the bulk of work is done in the `merge` step.

- For `merge(a, low, mid, high)`
 - Let total items = \(k = (high - low + 1) \)
 - Number of comparisons \(\leq k - 1 \)
 - Number of moves from original array to temporary array = \(k \)
 - Number of moves from temporary array back to original array = \(k \)

- In total, number of operations \(\leq 3k - 1 = O(k) \)

- The important question is
 - How many times is `merge()` called?
Merge Sort: Analysis

Level 0:
mergeSort \(n \) items

Level 1:
mergeSort \(\frac{n}{2} \) items

Level 2:
mergeSort \(\frac{n}{2^2} \) items

Level \((\log n) \):
mergeSort 1 item

\[
n/(2^k) = 1 \Rightarrow n = 2^k \Rightarrow k = \log n
\]
Merge Sort: Analysis

- **Level 0**: 0 call to `merge()`
- **Level 1**: 1 calls to `merge()` with \(n/2 \) items in each half,
 \(O(1 \times 2 \times n/2) = O(n) \) time
- **Level 2**: 2 calls to `merge()` with \(n/2^2 \) items in each half,
 \(O(2 \times 2 \times n/2^2) = O(n) \) time
- **Level 3**: \(2^2 \) calls to `merge()` with \(n/2^3 \) items in each half,
 \(O(2^2 \times 2 \times n/2^3) = O(n) \) time
- ...
- **Level \((\lg n)\)**: \(2^{\lg(n) - 1} (= n/2) \) calls to `merge()` with \(n/2^{\lg(n)} (= 1) \)
 item in each half, \(O(n) \) time
- Total time complexity = \(O(n \lg(n)) \)
- **Optimal** comparison-based sorting method
Merge Sort: Pros and Cons

- **Pros**
 - The performance is guaranteed, i.e. unaffected by original ordering of the input
 - Suitable for extremely large number of inputs
 - Can operate on the input portion by portion

- **Cons**
 - Not easy to implement
 - Requires additional storage during merging operation
 - $O(n)$ extra memory storage needed
Quick Sort
Quick Sort: Idea

Quick Sort is a divide-and-conquer algorithm

Divide step

- Choose an item p (known as pivot) and partition the items of $a[i...j]$ into two parts
 - Items that are smaller than p
 - Items that are greater than or equal to p

- Recursively sort the two parts

Conquer step

- Do nothing!

In comparison, Merge Sort spends most of the time in conquer step but very little time in divide step
Quick Sort: Divide Step Example

Choose first element as pivot

Partition `a[]` about the pivot 27

Recursively sort the two parts

Notice anything special about the position of pivot in the final sorted items?
Quick Sort: Implementation

```c
void quickSort(int a[], int low, int high) {
    if (low < high) {
        int pivotIdx = partition(a, low, high);
        quickSort(a, low, pivotIdx-1);
        quickSort(a, pivotIdx+1, high);
    }
}
```

- **partition()** splits \(a[low...high] \) into two portions
 - \(a[low ... pivot-1] \) and \(a[pivot+1 ... high] \)
- Pivot item does not participate in any further sorting
Quick Sort: Partition Algorithm

- To partition \(a[i...j] \), we choose \(a[i] \) as the pivot \(p \)
 - Why choose \(a[i] \)? Are there other choices?
- The remaining items (i.e. \(a[i+1...j] \)) are divided into 3 regions
 - \(S1 = a[i+1...m] \) where items < \(p \)
 - \(S2 = a[m+1...k-1] \) where item ≥ \(p \)
 - Unknown (unprocessed) = \(a[k...j] \), where items are yet to be assigned to \(S1 \) or \(S2 \)

\[
\begin{array}{|c|c|c|c|}
\hline
& < p & \geq p & ? \\
\hline
i & m & k & j \\
\hline
\end{array}
\]

- \(S1 \)
- \(S2 \)
- Unknown
Quick Sort: Partition Algorithm

- Initially, regions S1 and S2 are empty
 - All items excluding p are in the unknown region
- For each item $a[k]$ in the unknown region
 - Compare $a[k]$ with p
 - If $a[k] \geq p$, put it into S2
 - Otherwise, put $a[k]$ into S1
Quick Sort: Partition Algorithm

- Case 1: if $a[k] \geq p$

If $a[k] = y \geq p$, the elements are divided into two sets $S1$ and $S2$:

<table>
<thead>
<tr>
<th></th>
<th>p</th>
<th>$< p$</th>
<th>x</th>
<th>$\geq p$</th>
<th>y</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
<td></td>
<td>m</td>
<td></td>
<td>k</td>
<td>j</td>
</tr>
</tbody>
</table>

Increment k:

<table>
<thead>
<tr>
<th></th>
<th>p</th>
<th>$< p$</th>
<th>x</th>
<th>$\geq p$</th>
<th>y</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
<td></td>
<td>m</td>
<td></td>
<td>k</td>
<td>j</td>
</tr>
</tbody>
</table>
quick sort: partition algorithm

- case 2: if \(a[k] < p \)

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(< p)</td>
<td>(x) (\geq p)</td>
</tr>
<tr>
<td>(i)</td>
<td>(m)</td>
<td>(k)</td>
</tr>
</tbody>
</table>

If \(a[k] = y < p \)

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(< p)</td>
<td>(x) (\geq p)</td>
</tr>
<tr>
<td>(i)</td>
<td>(m)</td>
<td>(k)</td>
</tr>
</tbody>
</table>

Increment \(m \)

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(< p)</td>
<td>(x) (\geq p)</td>
</tr>
<tr>
<td>(i)</td>
<td>(m)</td>
<td>(k)</td>
</tr>
</tbody>
</table>

Swap \(x \) and \(y \)

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(< p)</td>
<td>(y) (\geq p)</td>
</tr>
<tr>
<td>(i)</td>
<td>(m)</td>
<td>(k)</td>
</tr>
</tbody>
</table>

Increment \(k \)

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(< p)</td>
<td>(y) (\geq p)</td>
</tr>
<tr>
<td>(i)</td>
<td>(m)</td>
<td>(k)</td>
</tr>
</tbody>
</table>
Quick Sort: Partition Implementation

PS: C++ STL <algorithm> has partition subroutine too

```c
int partition(int a[], int i, int j) {
    int p = a[i];
    int m = i;
    for (int k = i+1; k <= j; k++) {
        if (a[k] < p) {
            m++;
            swap(a[k], a[m]);
        }
        else {
        }
    }
    swap(a[i], a[m]);
    return m;
}
```

- **p** is the pivot
- **S1** and **S2** empty initially
- Go through each element in unknown region
- **Case 1**: Do nothing!
- **Case 2**: Swap pivot with **a[m]**
- **m** is the index of pivot
Quick Sort: Partition Example

http://visualgo.net/sorting?create=27,38,12,39,27,16&mode=Quick
Quick Sort: Partition Analysis

- There is only a single for-loop
 - Number of iterations = number of items, \(n \), in the unknown region
 - \(n = \text{high} - \text{low} \)
 - Complexity is \(O(n) \)

- Similar to **Merge Sort**, the complexity is then dependent on the number of times `partition()` is called
Quick Sort: Worst Case Analysis

- When the array is already in ascending order

```
5 18 23 39 44 57
```

- **What is the pivot index returned by **partition**()?**
- **What is the effect of **swap(a, i, m)**?**
- **S1** is empty, while **S2** contains every item except the pivot
Quick Sort: Worst Case Analysis

As each partition takes linear time, the algorithm in its worst case has n levels and hence it takes time $n+(n-1)+...+1 = O(n^2)$.
Quick Sort: Best/Average Case Analysis

- Best case occurs when partition always splits the array into two equal halves
 - Depth of recursion is $\log n$
 - Each level takes n or fewer comparisons, so the time complexity is $O(n \log n)$

- In practice, worst case is rare, and on the average we get some good splits and some bad ones (details in CS3230 :O)
 - Average time is also $O(n \log n)$
Lower Bound: Comparison-Based Sort

- It is known that
 - All comparison-based sorting algorithms have a complexity lower bound of $n \log n$

- Therefore, any comparison-based sorting algorithm with worst-case complexity $O(n \log n)$ is optimal
Radix Sort
Radix Sort: Idea

- Treats each data to be sorted as a character string
- It is not using comparison, i.e. no comparison between the data is needed
- In each iteration
 - Organize the data into groups according to the next character in each data
 - The groups are then “concatenated” for next iteration
Radix Sort: Example

0123, 2154, 0222, 0004, 0283, 1560, 1061, 2150

(1560, 2150) (1061) (0222) (0123, 0283) (2154, 0004)

1560, 2150, 1061, 0222, 0123, 0283, 2154, 0004

(0004) (0222, 0123) (2150, 2154) (1560, 1061) (0283)

0004, 0222, 0123, 2150, 2154, 1560, 1061, 0283

(0004, 1061) (0123, 2150, 2154) (0222, 0283) (1560)

0004, 1061, 0123, 2150, 2154, 0222, 0283, 1560

(0004, 0123, 0222, 0283) (1061, 1560) (2150, 2154)

0004, 0123, 0222, 0283, 1061, 1560, 2150, 2154

Original integers

Grouped by fourth digit

Combined

Grouped by third digit

Combined

Grouped by second digit

Combined

Grouped by first digit

Combined (sorted)
Radix Sort: Implementation

```cpp
void radixSort(vector<int>& v, int d) {
    int i;
    int power = 1;
    queue<int> digitQueue[10];

    for (i = 0; i < d; i++) {
        distribute(v, digitQueue, power);
        collect(digitQueue, v);
        power *= 10;
    }
}
```

- **distribute()**: Organize all items in `v` into groups using digit indicated by the power
- **collect()**: Place items from the groups back into `v`, i.e. “concatenate” the groups
Radix Sort: Implementation

```cpp
void distribute(vector<int>& v,
                queue<int> digitQ[], int power) {
    int digit;
    for (int i = 0; i < v.size(); i++) {
        digit = (v[i]/power) % 10;
        digitQ[digit].push(v[i]);
    }
}
```

Question

- How do we extract the digit used for the current grouping?
Radix Sort: Implementation

```c++
void collect(queue<int> digitQ[], vector<int>& v) {
    int i = 0, digit;

    for (digit = 0; digit < 10; digit++)
        while (!digitQ[digit].empty()) {
            v[i] = digitQ[digit].front();
            digitQ[digit].pop();
            i++;
        }
}
```

Basic Idea
- **Start with** `digitQ[0]`
 - Place all items into vector `v`
- **Repeat with** `digitQ[1], digitQ[2], ...`
Radix Sort: Analysis

- For each iteration
 - We go through each item once to place them into group
 - Then go through them again to concatenate the groups
 - Complexity is $O(n)$

- Number of iterations is d, the maximum number of digits (or maximum number of characters)
- Complexity is thus $O(dn)$
Properties of Sorting
In-Place Sorting

- A sort algorithm is said to be an \textit{in-place} sort
 - If it requires only a \textit{constant amount} (i.e. $O(1)$) of \textit{extra space} during the sorting process

- Questions
 - \textbf{Merge Sort} is not in-place, why?
 - Is \textbf{Quick Sort} in-place?
 - Is \textbf{Radix Sort} in-place?
Stable Sorting

- A sorting algorithm is **stable** if the relative order of elements with the same key value is preserved by the algorithm.

Example application of stable sort

- Assume that **names** have been sorted in alphabetical order.
- Now, if this list is sorted again by **tutorial group number**, a stable sort algorithm would ensure that all students in the same tutorial groups still appear in alphabetical order of their names.
Non-Stable Sort

- **Selection Sort**

 1285 5_a 4746 602 5_b (8356)
 1285 5_a 5_b 602 (4746 8356)
 602 5_a 5_b (1285 4746 8356)
 5_b 5_a (602 1285 4746 8356)

- **Quick Sort**

 1285 5_a 150 4746 602 5_b 8356 (pivot=1285)
 1285 (5_a 150 602 5_b) (4746 8356)
 5_b 5_a 150 602 1285 4746 8356
Sorting Algorithms: Summary

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Worst Case</th>
<th>Best Case</th>
<th>In-place?</th>
<th>Stable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Sort</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>$O(n^2)$</td>
<td>$O(n)$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Bubble Sort</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Bubble Sort 2</td>
<td>$O(n^2)$</td>
<td>$O(n)$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>$O(n \lg n)$</td>
<td>$O(n \lg n)$</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Quick Sort</td>
<td>$O(n^2)$</td>
<td>$O(n \lg n)$</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Radix sort</td>
<td>$O(dn)$</td>
<td>$O(dn)$</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Summary

- Comparison-Based Sorting Algorithms
 - Iterative Sorting
 - Selection Sort
 - Bubble Sort
 - Insertion Sort
 - Recursive Sorting
 - Merge Sort
 - Quick Sort

- Non-Comparison-Based Sorting Algorithms
 - Radix Sort

- Properties of Sorting Algorithms
 - In-Place
 - Stable