Lecture 10
Sorting

Bringing Order to the World

Lecture Outline

Iterative sorting algorithms (comparison based)

s Selection Sort
= Bubble Sort
= Insertion Sort

Recursive sorting algorithms (comparison based)
= Merge Sort
= Quick Sort

Radix sort (non-comparison based)

Properties of Sorting
= |n-place sort, stable sort
= Comparison of sorting algorithms

Note: we only consider sorting data in ascending order

[CS1020E AY1617S1 Lecture 10]

Why Study Sorting?

When an input is sorted, many problems become
easy (e.g. searching, min, max, k-th smallest)

Sorting has a variety of interesting algorithmic
solutions that embody many ideas

= Comparison vs non-comparison based

= |terative

= Recursive

= Divide-and-conquer

= Best/worst/average-case bounds

= Randomized algorithms

[CS1020E AY1617S1 Lecture 10]

Applications ot Sorting

Uniqueness testing

Deleting duplicates

Prioritizing events

Frequency counting

Reconstructing the original order

Set intersection/union

Finding a target pair x, y such that x+y = z
Efficient searching

Selection Sort

‘ Selection Sort: Idea

= Given an array of n items
1. Find the largest item x, in the range of [0...n-1]
2. Swap x with the (n-1)" item
3. Reduce n by 1 and go to Step 1

—[CS1020E AY1617S1 Lecture 10]

‘ Selection Sort: Illustration

29] 10 | 14 | 37 | 13
29 | 10 | 14 | 13 -

37 is the largest, swap it with

the last element, i.e. 13.
Q: How to find the largest?

x | Unsorted items

Largest item for
current iteration

We can also find the smallest and put it the front instead
http://visualgo.net/sorting?create=29,10,14,37,13&mode=Selection

—[CS1020E AY1617S1 Lecture 10]

Selection Sort: Implementation

void selectionSort(int a[], int n) {

for (int 1 = n-1; 1 >= 1; 1--) {
int maxIdx = 1i; A i
for (int jJ = 0; 7 < 1; J++) >f
if (a[j] >= a[maxIdx])
maxIdx = 7J; /

// swap routine is in STL <algorithm>

swap (a[i], a[maxIdx]):;

[CS1020E AY1617S1 Lecture 10]

Step 1:
Search for
maximum

element

maximum
element

with the last |

item |

Selection Sort: Analysis
{

void selectionSort(int a[], int n)

Number of times

for (int i = n-1; i >= 1; i--) { e
int maxIdx = 1ij; —t= n-1
for (int j = 0; j < i; J++) ~ n—1
if (alj] >= almaxIdx]) = (n=1)+(n-2)+...+1
maxIdx = J; — =n(n-1)/2
// swap routine is in STL <algorithm>
swap (a[1], a[maxIdx]); =« n-1
}
} Total
=cy(n-1) +

* ¢, and c, are cost of statements in

c,"n*(n—1)/2

outer and inner blocks

= 0(n?)

[CS1020E AY1617S1 Lecture 10]

Bubble Sort

‘ Bubble Sort: Idea

= Given an array of n items
1. Compare pair of adjacent items
2. Swap if the items are out of order

3. Repeat until the end of array
m The largest item will be at the last position

4.Reduce n by 1 and go to Step 1

= Analogy
= Large item is like “bubble” that floats to the end of the
array

—[CS1020E AY1617S1 Lecture 10]

11

Bubble Sort: Illustration

(a) Pass 1

29 [10] 14

37

13

10 (29 | 14

37

13

10 [14 | 29

37 | 13

10 [14 | 29

37 [13

10 [14| 29

13

37 |

At the end of Pass 1, the largest

item 37 is at the last position.

[CS1020E AY1617S1 Lecture 10]

(b) Pass 2

110 [14 29[1337

110 [14 29[13|37

110 [14 291337

[10]14]13]29] 37

At the end of Pass 2, the second
largest item 29 is at the second
last position.

X Sorted Iltem

Pair of items
under comparison

‘Bubble Sort Implementation

void bubbleSort (int al],
i >=1;

for (int 1

for (int j = 1;

— Gl e

if (a[j-1]

http://visualgo.net/sorting?create=29,10,14,37,13&mode=Bubble

> aljl)
swap (al[3], alj-11);

7 <= 1i;

int n)

1=

J4+)

{
{

Step 1:
Compare
adjacent

pairs of
numbers

29

10

14

37

13

Step 2:
Swap if the

items are out
of order

—[CS1020E AY1617S1 Lecture 10]

Bubble Sort: Analysis

1 iteration of the inner loop (test and swap) requires
time bounded by a constant ¢

Two nested loops
= Outer loop: exactly n iterations

= Inner loop:
s when /=0, (n-1) iterations
s when /=1, (n-2) iterations
n ...

s when /=(n-1), O iterations
Total number of iterations = 0+1+...+(n-1) = n(n-1)/2
Total time = ¢ n(n-1)/2 = O(n?)

[CS1020E AY1617S1 Lecture 10]

14

Bubble Sort: Early Termination

Bubble Sort is inefficient with a O(n?) time
complexity

However, it has an interesting property

= Given the following array, how many times will the
iInner loop swap a pair of item?

3 |6 |11]25]39

|dea

= |f we go through the inner loop with no swapping
=» the array is sorted
=>» can stop early!

[CS1020E AY1617S1 Lecture 10]

15

Bubble Sort v2.0: Implementation

void bubbleSort2 (int a[], int n) {

for (int 1 =n-1; 1 >= 1; i--) ¢ éAssume e array.é
bool is sorted = true; ~ s Sorted before
L . , , . the inner loop
for (int 3 = 1; J <= 1; J++) { S——————
if (af3-11 >al3H ¢
swap (a[j], alj-11); " Any swapping wil|
Gs sesiodl o Seileme o invalidate the
— ’ assumption
} e
} // end of inner loop
if (iS_SOrted) return; |f the ﬂag
} . remains true

after the inner
loop = sorted!

...........

[CS1020E AY1617S1 Lecture 10] 1 6

‘ Bubble Sort v2.0: Analysis

= Worst-case
= Input is in descending order
= Running time remains the same: O(n?)

= Best-case
= Input is already in ascending order
= The algorithm returns after a single outer iteration
= Running time: O(n)

—[CS1020E AY1617S1 Lecture 10]

17

Insertion Sort

Insertion Sort: Idea

Similar to how most people arrange a hand of
poker cards

= Start with one card in your hand

= Pick the next card and insert it into its proper sorted
order

= Repeat previous step for all cards

M)

1st card: 10e 104

N
SEEEER

2nd card: 54 104

—

3 card: Ke 54 [109} [Kaé]

- J

[CS1020E AY1617S1 Lecture 10]

Insertion Sort: Illustration

Start 13 | 20 8
40 , X | Sorted
/ X | Unsorted
lteration 1 13 | 40 | 20 | 8
X Unsorted |
/ To be inserted |
Iteration 2 13 | 20 | 40 | 8
lteration 3 8 | 13 | 20 | 40

http://visualgo.net/sorting?create=40,13,20,8&mode=Insertion

—[CS1020E AY1617S1 Lecture 10]

20

Insertion Sort: Implementation

void insertionSort(int a[], int n) { ... e —
for (int i = 1; i < n; it+T r'![eXt ![s tge
. — : L e |em O e

}nt r.leXt - alil inserted

int J;

for (jJ = 1i-1; 73 >= 0 && al[j] > next; j—--)

a[j—l—l] — a[j]; .. T
............. Sh|ftsorted

_items to make |
. place for next |

aljtl] = next;

the correct
location

29 | 10 | 14 | 37 | 13

http://visualgo.net/sorting?create=29,10,14,37,13&mode=Insertion

—[CS1020E AY1617S1 Lecture 10]

Insertion Sort: Analysis

Outer-loop executes (n-1) times

Number of times inner-loop is executed depends on
the input

= Best-case: the array is already sorted and
(a[j] > next) is always false

= No shifting of data is necessary

= Worst-case: the array is reversely sorted and
(a[j] > next) is always true
m Insertion always occur at the front

Therefore, the best-case time is O(n)

And the worst-case time is O(n?)

[CS1020E AY1617S1 Lecture 10]

22

Merge Sort

Merge Sort: Idea

Suppose we only know how to merge two sorted
sets of elements into one

= Merge {1, 5, 9} with {2, 11} = {1,2,5,9, 11)

Question
= Where do we get the two sorted sets in the first place?

|dea (use merge to sort n items)
= Merge each pair of elements into sets of 2
= Merge each pair of sets of 2 into sets of 4
= Repeat previous step for sets of 4 ...

= Final step: merge 2 sets of n/2 elements to obtain a
fully sorted set

[CS1020E AY1617S1 Lecture 10]

24

‘ Divide-and-Conquer Method

= A powerful problem solving tec

nnique

= Divide-and-conquer method so
the following steps
= Divide step

ves problem in

s Divide the large problem into smaller problems
s Recursively solve the smaller problems

= Conquer step

m Combine the results of the smaller
the result of the larger problem

problems to produce

—[CS1020E AY1617S1 Lecture 10]

25

Divide and Conquer: Merge Sort

Merge Sort is a divide-and-conquer sorting
algorithm

Divide step
= Divide the array into two (equal) halves
= Recursively sort the two halves

Conquer step
= Merge the two halves to form a sorted array

[CS1020E AY1617S1 Lecture 10]

26

Merge Sort: Illustration

14

2

6

3

Divide into 7
two halves

Recursively

sort the 2

halves

Merge them

Question

= How should we sort the halves in the 2"9 step?

[CS1020E AY1617S1 Lecture 10]

27

Merge Sort: Implementation

void mergeSort (int a[], int low, int high) {

if (low < high) [I
int mid = (low+high) / 2; ~ Merge sort on
a[low...high]

mergeSort(a, low , mid); Divide a[] into two

mergeSort(a, mid+1l, high); } halves and recursively

sort them

merge (a, low, mid, high);

}

} Conquer: merge the |
“: Function to merge two sorted halves
a[low...mid] and
a[mid+1...high] into
..... aflow...high] |
Note

= mergeSort() is a recursive function
= low >= high is the base case, i.e. there is 0 or 1 item

[CS1020E AY1617S1 Lecture 10] 28

Merge Sort: Example

38 16 27 39 12 27 mergeSort (a[low.mid])

/\ mergeSort (a[mid+1l.high])
merge (a[low. .mid],

38 16 27 39 12 27 a[mid+1..high])
38 16 39 12 27
27 Divide Phase
/\ Recursive call to
mergeSort ()
38 16 39 12
16 38 12 39 Conquer Phase

\ Merge steps

16 27 38 12 27 39

\/

12 16 27 27 38 39
http://visualgo.net/sorting?create=38,16.,27,39,12,27&mode=Merge

[CS1020E AY1617S1 Lecture 10]

Merge Sort: Merge

a[0..2] al[3..5]
214|5] |3|7/|8
2|45 |3|7/|8
2\415] |3|7|8
24 5[3|78
214|5 3 /|8
2|45 (3|78

—~

Two sorted halves to be
merged

[CS1020E AY1617S1 Lecture 10]

b[0..5]

4

S

NIIDNIINIINIDN
Wl W] W] W

4

S

14

38

Merged result in a

temporary array

........

Unmerged
items

Items used for
comparison

Merged items

30

Merge Sort: Merge Implementation

PS: C++ STL <algorithm> has merge subroutine too

int n = high-low+1;

int* b = new int[n];
int left=low, right=mid+1l, bIdx=0;

while (left <= mid && right <= high)
1if (al[left] <= alright])
b[bIdx++] = al[left++];
else
b[bIdx++] = alright++];

// continue on next slide

[CS1020E AY1617S1 Lecture 10]

{

temporary
array to store
result ’

| Normal Merging

- unmerged items

Where both
halves have

31

Merge Sort: Merge Implementation

// continued from previous slide

.......................

while (left <= mid) b[bIdx++] = a[left++];
while (right <= high) b[bIdx+t+] = alright++];

for (int k = 0; k < n; k++) } Merged resulté Remaining

a[lowtk] = blk]; are copied items are

backintoa[] | | copiedinto
AR : b[]

delete [] b;

Question
= Why do we need a temporary array b[]7?

[CS1020E AY1617S1 Lecture 10] 32

Merge Sort: Analysis

In mergeSort (), the bulk of work is done in the
merge step

Formerge(a, low, mid, high)

= Let total items = k= (high - low + 1)

= Number of comparisons < k - 1

= Number of moves from original array to temporary array = k

= Number of moves from temporary array back to original
array = k

In total, number of operations < 3k - 1 = O(k)

The important question is
= How many times is merge () called?

[CS1020E AY1617S1 Lecture 10]

33

Merge Sort: Analysis

S

Level O:
mergeSort n items

Level 1:
mergeSort n/2 items

Level 2:
mergeSort n/22 items

g

n/2

RN

/2

/

AN

n/22

n/22

n/22

n/22

Level (Ig n): r/\

mergeSort 1 item |1

1

[CS1020E AY1617S1 Lecture 10]

Level O:
1 call to mergeSort

Level 1:
2 calls to mergeSort

Level 2:
22 calls to mergeSort

/\ Level (Ig n):

1

1

n/(2)=1 = n=2k = k=Ign

29 n(= pn) calls to
mergeSort

34

Merge Sort: Analysis

Level 0: 0 call to merge ()

Level 1: 1 calls to merge () with n/2 items in each half,
O(1 x 2 x n/2) = O(n) time
(

Level 2: 2 calls to merge () with n/22 items in each half,
O(2 x 2 x n/2%) = O(n) time

Level 3: 22 calls to merge () with n/23 items in each half,
O(22 x 2 x n/23) = O(n) time

Level (Ig n): 2'9(n -1(= n/2) calls to merge () with n/2'9() (= 1)
item in each half, O(n) time

Total time complexity = O(n Ig(n))

Optimal comparison-based sorting method

[CS1020E AY1617S1 Lecture 10]

35

‘ Merge Sort: Pros and Cons

= Pros

= The performance is guaranteed, i.e. unaffected by
original ordering of the input

= Suitable for extremely large number of inputs
m Can operate on the input portion by portion

= Cons
= Not easy to implement

= Requires additional storage during merging operation
s O(n) extra memory storage needed

—[CS1020E AY1617S1 Lecture 10]

36

Quick Sort

Quick Sort: Idea

Quick Sort is a divide-and-conquer algorithm

= Divide step

s Choose an item p (known as pivot) and partition the
items of a[i...J] into two parts

0 ltems that are smaller than p
0 ltems that are greater than or equal to p

m Recursively sort the two parts

= Conquer step
= Do nothing!

In comparison, Merge Sort spends most of the time
In conquer step but very little time in divide step

[CS1020E AY1617S1 Lecture 10]

38

Quick Sort: Divide Step Example

Pivot
Choose first
element as pivot 27 138112139127 1 16
Pivot
Partition a[] about
the pivot 27 12|16 27| 39|27 |38
\\\\Pivot
Recursively sort '
the two parts 12116 27 273839

........................

Notice anything special about the

position of pivot in the final

sorted items?

[CS1020E AY1617S1 Lecture 10]

Quick Sort: Implementation

void quickSort(int a[], int low, int high) {

if (low < high) { .. Partmon

int pivotIdx = partition(a, low, high): a[low...high]

and return the
index of the
pivot item

quickSort(a, pivotIdx+l, high); _ |
. Recursively sort
} ~ the two portions

quickSort(a, low, pivotIdx-1); }

partition() splits a[low...high] into two portions
= aflow ... pivot-1] and a[pivot+1 ... high]

Pivot item does not participate in any further sorting

[CS1020E AY1617S1 Lecture 10]

40

Quick Sort: Partition Algorithm

To partition ali...]], we choose a[i] as the pivot p
= Why choose a[i]? Are there other choices?

The remaining items (i.e. a[i+1...j]) are divided into 3
regions

= S1=3a[i+1...m] where items < p

= S2 = a[m+1...k-1] where item 2 p

= Unknown (unprocessed) = a[k...j], where items are yet to be
assigned to S1 or S2

p <p > p ?
| m k j
— AN AN)
N YO Y
S1 S2 Unknown

[CS1020E AY1617S1 Lecture 10]

41

Quick Sort: Partition Algorithm

Initially, regions S1 and S2 are empty
= All items excluding p are in the unknown region

For each item a[k] in the unknown region
= Compare a[k] with p

m |f a[k] >= p, put it into S2

m Otherwise, put alk] into S1

Ny
Unknown

[CS1020E AY1617S1 Lecture 10]

42

Quick Sort: Partition Algorithm

Case 1:if alk] >=p

S1 S2
If alk]=y 2 p, |p <p X =2p y 7
| m k j
S1 S2
Incrementk | P <p X >p y| ?
i m K J

43

Quick Sort: Partition Algorithm

Case 2:ifalk] <p

If alk]=y < p

Increment m

Swap x and y

Increment k

[CS1020E AY1617S1 Lecture 10]

S1 S2
p <p X zp |y
i K
p <p x| 2 y
i m K
p <p Y| =2p |X
i m K

<p y > X

m

_.b

44

Quick Sort: Partition Implementation

PS: C++ STL <algorithm> has partition subroutine too

int partition(int a[], int i, int j) { .- e .
int p = a [i],; | D is theplvot
int m = i; S1 and SZempty
initially
for (int k = i+l; k <= J; kt+) { =~ e 8
f (al[k] < p) { Go through each
1 p ... : element |n unknown
m++; - Case 2 region :
e, T
}
1 i
? 9 } - Case 1: Do nothing!
} .. prmmmmm—
e Iy Y e E T — Swap pivot with a[m]
FETULN My s
Foo T m is the index of pivot

[CS1020E AY1617S1 Lecture 10] 45

Quick Sort: Partition Example

Pivot

Unknown

27 |38 12 | 39| 2716

Pivot Unknown
manamm

Pivot Unknown

‘ 27 39| 27 ‘ 16]
Pivot] S S, Unknown
27 12| 38139} 27] 16 I

Pivot] S Unknown

II

Pivot 59

. 12| 16139 | 27 38

Pivot

DOHDED

http://visualgo.net/sorting?create=27 38 12,39,27.16&mode=Quick

[CS1020E AY1617S1 Lecture 10]

46

Quick Sort: Partition Analysis

There is only a single for-loop

s Number of iterations = number of items, n, in the
unknown region

= N = high - low
= Complexity is O(n)

Similar to Merge Sort, the complexity is then
dependent on the number of times partition() is
called

[CS1020E AY1617S1 Lecture 10]

47

Quick Sort: Worst Case Analysis

When the array is already in ascending order

5118233944 |57

S1 = afi+1...m]
empty whenm = |

What is the pivot index returned by partition()?
= What is the effect of swap(a, i, m)?

S1is empty, while S2 contains every item except
the pivot

[CS1020E AY1617S1 Lecture 10]

48

Quick Sort: Worst Case Analysis

contains the pivot only!

[CS1020E AY1617S1 Lecture 10]

Total no.
of levels
=n

As each partition takes
linear time, the
algorithm in its worst
case has n levels and
hence it takes time
n+(n-1)+...+1 = O(n?)

49

Quick Sort: Best/ Average Case Analysis

Best case occurs when partition always splits the

array into two equal halves

= Depth of recursion is log n

= Each level takes n or fewer comparisons, so the time
complexity is O(n log n)

In practice, worst case Is rare, and on the
average we get some good splits and some bad
ones (details in CS3230 :0O)

= Average time is also O(n log n)

[CS1020E AY1617S1 Lecture 10] 50

Lower Bound: Comparison-Based Sort

It iIs known that

= All comparison-based sorting algorithms have a
complexity lower bound of n log n

Therefore, any comparison-based sorting
algorithm with worst-case complexity
O(n log n) is optimal

[CS1020E AY1617S1 Lecture 10]

51

Radix Sort

Radix Sort:; Idea

Treats each data to be sorted as a character
string

It is not using comparison, i.e. no comparison
between the data is needed

In each iteration

= Organize the data into groups according to the next
character in each data

= The groups are then “concatenated” for next iteration

[CS1020E AY1617S1 Lecture 10]

53

‘ Radix Sort: Example

0123, 2154, 0222, 0004, 0283, 1560, 1061, 2150

(1560, 2150) (1061) (0222) (0123, 0283) (2154, 0004)
1560, 2150, 1061, 0222, 0123, 0233, 2154, 0004

(0004) (0222,0123) (2150,2154) (1560, 1061) (0283)
0004, 0222, 0123, 2150, 2154, 1560, 1061, 0283

(0004, 1061) (0123, 2150, 2154) (0222, 0283) (1560)
0004, 1061, 0123, 2150, 2154, 0222, 0283, 1560

(0004, 0123, 0222, 0283) (1061, 1560) (2150, 2154)
0004, 0123, 0222, 0283, 1061, 1560, 2150, 2154

—[CS1020E AY1617S1 Lecture 10]

Original integers
Grouped by fourth digit
Combined

Grouped by third digit
Combined

Grouped by second digit
Combined

Grouped by first digit
Combined (sorteq)

54

Radix Sort: Implementation

void radixSort (vector<int>& v, int d) {
int 1;
Lot power = 1g é o —

queue<int> digitQueue[1l0]; aqueue to retain

~ the order of item
for (1 = 0; 1 < d; i++) { S

distribute (v, digitQueue, power);
collect (digitQueue, Vv);
power *= 10;

}

distribute(): Organize all items in v into groups using
digit indicated by the power

collect(): Place items from the groups back into v, i.e.
“concatenate” the groups

[CS1020E AY1617S1 Lecture 10]

55

Radix Sort: Implementation

void distribute (vector<int>é& v,
queue<int> digitQ[], int power)

int digit;
for (int 1 = 0, 1 < wv.size(); 1i++){
digit = (vI[i]/power) % 10;

digitQ[digit] .push(v[1i])
}

Question

= How do we extract the digit used for the current
grouping?

[CS1020E AY1617S1 Lecture 10]

{

56

‘ Radix Sort: Implementation

void collect (queue<int> digitQ[], wvector<int>& v)
int 1 = 0, digit;

for (digit = 0; digit < 10; digit++)

while (!digitQ[digit].empty()) {
v[ii] = digitQ[digit].front ()
digitQ[digit] .pop () ;
1++;
}
}
= Basic Idea

s Start with digitQ[O0]
m Place all items into vector v
= Repeat with digitQ[1],digitQ[2], ...

—[CS1020E AY1617S1 Lecture 10]

{

57

Radix Sort: Analysis

For each iteration

= We go through each item once to place them into

group
= Then go through them again to concatenate the groups

= Complexity is O(n)

Number of iterations is d, the maximum number
of digits (or maximum number of characters)

Complexity is thus O(dn)

[CS1020E AY1617S1 Lecture 10] 58

Properties of Sorting

In-Place Sorting

A sort algorithm is said to be an in-place sort

= |f it requires only a constant amount (i.e. O(1)) of
extra space during the sorting process

Questions

= Merge Sort is not in-place, why?
= |s Quick Sort in-place?

= |s Radix Sort in-place?

[CS1020E AY1617S1 Lecture 10]

60

Stable Sorting

A sorting algorithm is stable if the relative order
of elements with the same key value is
preserved by the algorithm

Example application of stable sort

= Assume that names have been sorted in alphabetical
order

= Now, if this list is sorted again by tutorial group
number, a stable sort algorithm would ensure that all
students in the same tutorial groups still appear in
alphabetical order of their names

[CS1020E AY1617S1 Lecture 10]

61

‘ Non-Stable Sort

= Selection Sort
1285 5_ 4746 602 5_ (8356)

1285 5. 5, 602 (4746 8356)
602 5, 5. (1285 4746 8356)
5. 5. (602 1285 4746 8356)

= Quick Sort
= 1285 5. 150 4746 602 5, 8356 (pivot=1285)

= 1285 (5, 150 602 5.) (4746 8356)
= 5 5 150 602 1285 4746 8356

—[CS1020E AY1617S1 Lecture 10]

62

Sorting Algorithms: Summary

Vg/;)gset gae:'; In-place? Stable?
Selseocrttion O(n2) O(n2) Yes No
Insseorrttion O(n?) O(n) Yes Yes
Bubble Sort O(n?) O(n?) Yes Yes
Bubble Sort 2 O(n?) O(n) Yes Yes
Merge Sort O(nlilgn) | O(nlgn) No Yes
Quick Sort O(n?) O(nlg n) Yes No
Radix sort O(dn) O(dn) No yes

[CS1020E AY1617S1 Lecture 10]

63

Summary

Comparison-Based Sorting Algorithms
= [terative Sorting

m Selection Sort

s Bubble Sort

s Insertion Sort
= Recursive Sorting

s Merge Sort

m Quick Sort

Non-Comparison-Based Sorting Algorithms
= Radix Sort

Properties of Sorting Algorithms

s In-Place
s Stable

[CS1020E AY1617S1 Lecture 10]

64

