Lecture 10 Sorting

Bringing Order to the World

Lecture Outline

- Iterative sorting algorithms (comparison based)
- Selection Sort
- Bubble Sort
- Insertion Sort
- Recursive sorting algorithms (comparison based)
- Merge Sort
- Quick Sort
- Radix sort (non-comparison based)
- Properties of Sorting
- In-place sort, stable sort
- Comparison of sorting algorithms
- Note: we only consider sorting data in ascending order

Why Study Sorting?

- When an input is sorted, many problems become easy (e.g. searching, min, max, k-th smallest)
- Sorting has a variety of interesting algorithmic solutions that embody many ideas
- Comparison vs non-comparison based
- Iterative
- Recursive
- Divide-and-conquer
- Best/worst/average-case bounds
- Randomized algorithms

Applications of Sorting

- Uniqueness testing
- Deleting duplicates
- Prioritizing events
- Frequency counting
- Reconstructing the original order
- Set intersection/union
- Finding a target pair x, y such that $x+y=z$
- Efficient searching

Selection Sort

Selection Sort: Idea

- Given an array of n items

1. Find the largest item x, in the range of [0...n-1]
2. Swap x with the $(n-1)^{\text {th }}$ item
3. Reduce n by 1 and go to Step 1

Selection Sort: Illustration

37 is the largest, swap it with the last element, i.e. 13. Q: How to find the largest?

29	10	14	13	37
13	10	14	29	37

13	10	14	29	37

10	13	14	29	37

Sorted!

We can also find the smallest and put it the front instead http://visualgo.net/sorting?create=29,10,14,37,13\&mode=Selection

Selection Sort: Implementation

 void selectionSort(int a[], int n) for (int \(i=n-1 ; i>=1 ; i--)\) \{
 int maxIdx \(=i ;\)
 for (int \(j=0 ; j<i ; j++\))
 if \((a[j]>=a[m a x I d x])\)
 maxIdx \(=j ;\)
 Step 1: Search for maximum element
// swap routine is in STL <algorithm>
$\operatorname{swap}(a[i], a[m a x I d x]) ;$
\}
\}

Step 2:
Swap maximum element with the last item i

Selection Sort: Analysis

 void selectionSort(int a[], int n) \{
Number of times

 executed for (int \(i=n-1\); \(i>=1 ; i--)\)
 int maxIdx = i;
 for (int \(j=0 ; j<i ; j++\))
 if (a[j] >= a[maxIdx])
 \(\operatorname{maxIdx}=j ;\)

// swap routine is in STL <algorithm>
swap(a[i], a[maxIdx]);

- c_{1} and c_{2} are cost of statements in outer and inner blocks

$$
\begin{aligned}
& \text { Total } \\
& =c_{1}(n-1)+ \\
& \\
& c_{2}^{*} n^{*}(n-1) / 2 \\
& =O\left(n^{2}\right)
\end{aligned}
$$

Bubble Sort

Bubble Sort: Idea

- Given an array of n items

1. Compare pair of adjacent items
2. Swap if the items are out of order
3. Repeat until the end of array

- The largest item will be at the last position

4. Reduce n by 1 and go to Step 1

- Analogy
- Large item is like "bubble" that floats to the end of the array

Bubble Sort: Illustration

(a) Pass 1

29	10	14	37	13

10	29	14	37	13

10	14	29	37	13

10	14	29	37	13

10	14	29	13	37

At the end of Pass 1, the largest item 37 is at the last position.
(b) Pass 2

10	14	29	13	37
10	14	29	13	$\mathbf{3 7}$
10	14	29	13	$\mathbf{3 7}$
10	14	13	29	37

At the end of Pass 2, the second largest item 29 is at the second last position.

Bubble Sort: Implementation

```
void bubbleSort(int a[], int n) {
    for (int i = n-1; i >= 1; i--) {
        for (int j = 1; j <= i; j++) {
            if (a[j-1] > a[j])
} swap(a[j], a[j-1]); 位,
```


http://visualgo.net/sorting?create=29,10,14,37,13\&mode=Bubble

Bubble Sort: Analysis

- 1 iteration of the inner loop (test and swap) requires time bounded by a constant c
- Two nested loops
- Outer loop: exactly n iterations
- Inner loop:
- when $i=0,(n-1)$ iterations
- when $i=1,(n-2)$ iterations
- when $i=(n-1), 0$ iterations
- Total number of iterations $=0+1+\ldots+(n-1)=n(n-1) / 2$
- Total time $=c n(n-1) / 2=\mathbf{O}\left(n^{2}\right)$

Bubble Sort: Early Termination

- Bubble Sort is inefficient with a $\mathrm{O}\left(n^{2}\right)$ time complexity
- However, it has an interesting property
- Given the following array, how many times will the inner loop swap a pair of item?

3	6	11	25	39

- Idea
- If we go through the inner loop with no swapping
\rightarrow the array is sorted
\rightarrow can stop early!

Bubble Sort v2.0: Implementation

void bubbleSort2 (int a[], int n) \{
for (int $i=n-1 ; i \quad>=1 ; i--)$ f
bool is_sorted = true;
for (int j $=1 ; ~ j<=i ; j++$) \{ if (a[j-1] > a[j]) \{ $\operatorname{swap}(a[j], ~ a[j-1]) ;$ is_sorted = false; \}
\} // end of inner loop if (is_sorted) return;
\}
\}

Assume the array is sorted before the inner loop

Any swapping will invalidate the assumption

If the flag remains true after the inner loop \rightarrow sorted!

Bubble Sort v2.0: Analysis

- Worst-case
- Input is in descending order
- Running time remains the same: $\mathrm{O}\left(n^{2}\right)$
- Best-case
- Input is already in ascending order
- The algorithm returns after a single outer iteration
- Running time: $\mathrm{O}(n)$

Insertion Sort

Insertion Sort: Idea

- Similar to how most people arrange a hand of poker cards
- Start with one card in your hand
- Pick the next card and insert it into its proper sorted order
- Repeat previous step for all cards

Insertion Sort: Illustration

http://visualgo.net/sorting?create=40,13,20,8\&mode=Insertion

Insertion Sort: Implementation

http://visualgo.net/sorting?create=29,10,14,37,13\&mode=Insertion

Insertion Sort: Analysis

- Outer-loop executes ($n-1$) times
- Number of times inner-loop is executed depends on the input
- Best-case: the array is already sorted and (a[j] > next) is always false
- No shifting of data is necessary
- Worst-case: the array is reversely sorted and (a[j] > next) is always true
- Insertion always occur at the front
- Therefore, the best-case time is $\mathbf{O}(n)$
- And the worst-case time is $O\left(n^{2}\right)$

Merge Sort

Merge Sort: Idea

- Suppose we only know how to merge two sorted sets of elements into one
$-\operatorname{Merge}\{1,5,9\}$ with $\{2,11\} \rightarrow\{1,2,5,9,11\}$
- Question
- Where do we get the two sorted sets in the first place?
- Idea (use merge to sort n items)
- Merge each pair of elements into sets of 2
- Merge each pair of sets of 2 into sets of 4
- Repeat previous step for sets of 4 ...
- Final step: merge 2 sets of $n / 2$ elements to obtain a fully sorted set

Divide-and-Conquer Method

- A powerful problem solving technique
- Divide-and-conquer method solves problem in the following steps
- Divide step
- Divide the large problem into smaller problems
- Recursively solve the smaller problems
- Conquer step
- Combine the results of the smaller problems to produce the result of the larger problem

Divide and Conquer: Merge Sort

- Merge Sort is a divide-and-conquer sorting algorithm
- Divide step
- Divide the array into two (equal) halves
- Recursively sort the two halves
- Conquer step
- Merge the two halves to form a sorted array

Merge Sort: Illustration

7	2	6	3	8	4	5

Divide into
two halves

Recursively sort the halves

Merge them

- Question
- How should we sort the halves in the $2^{\text {nd }}$ step?

Merge Sort: Implementation

```
void mergeSort(int a[], int low, int high)
```

 if (low < high)
 int mid \(=(l o w+h i g h) ~ / ~ 2 ; ~\)
 mergeSort(a, low , mid);
 mergeSort(a, mid+1, high);
 Divide a[] into two halves and recursively sort them
merge (a, low, mid, high) ;
\}

Function to merge
Merge sort on a[low...high]
mergeSort(a, low , mid); mergeSort(a, mid+1, high); merge (a, low, mid, high) ; \} \} a[low...mid] and a[mid+1...high] into a[low...high]

- Note
- mergeSort() is a recursive function
- low >= high is the base case, i.e. there is 0 or 1 item

Merge Sort: Example

Merge Sort: Merge
 $a[0.2] \quad a[3.5] \quad b[0.5$]

245

2	4	5

2	4	5

| 245 |
| :--- | :--- |

Two sorted halves to be merged

Merged result in a temporary array

Merged items

Merge Sort: Merge Implementation

PS: C++ STL <algorithm> has merge subroutine too

```
void merge(int a[], int low, int mid, int high)
```

int $n=h i g h-l o w+1 ;$
int* $b=$ new int [n];
int left=low, right=mid+1, bIdx=0;
mid+1, bIdx=0;
b is a temporary array to store result

```
while (left <= mid && right <= high)
    if (a[left] <= a[right])
        b[bIdx++] = a[left++];
    else
    b[bIdx++] = a[right++];
}
```

Normal Merging
Where both
halves have
unmerged items
// continue on next slide

Merge Sort: Merge Implementation

```
// continued from previous slide
```

$\left.\begin{array}{l}\text { while (left <= mid) b[bIdx++] = a[left++]; } \\ \text { while (right <= high) b[bIdx++] = a[right++]; }\end{array}\right\}$

$$
\left.\begin{array}{rl}
\text { for (int } k & =0 ; k<n ; k++) \\
\quad a[\text { low }+\mathrm{k}] & =\mathrm{b}[\mathrm{k}] ;
\end{array}\right\} \begin{aligned}
& \text { Merged result } \\
& \text { are copied } \\
& \text { back into } a[]
\end{aligned}
$$

> Remaining items are copied into b[]
delete [] b;

- Question
- Why do we need a temporary array b [] ?

Merge Sort: Analysis

- In mergeSort (), the bulk of work is done in the merge step
- For merge (a, low, mid, high)
- Let total items = $k=($ high - low +1)
- Number of comparisons $\leq k-1$
- Number of moves from original array to temporary array $=k$
- Number of moves from temporary array back to original array $=k$
- In total, number of operations $\leq 3 k-1=\mathrm{O}(k)$
- The important question is
- How many times is merge () called?

Merge Sort: Analysis

Level 0: mergeSort n items

Level 1: mergeSort n/2 items

Level 2: mergeSort $n / 2^{2}$ items

Level ($\lg \boldsymbol{n}$): mergeSort 1 item

Level 0:
1 call to mergeSort
Level 1:
2 calls to mergeSort

Level 2:
$\mathbf{2}^{2}$ calls to mergeSort

$$
n /\left(2^{k}\right)=1 \rightarrow n=2^{k} \rightarrow k=\lg n
$$

Merge Sort: Analysis

- Level 0: $\mathbf{0}$ call to merge ()
- Level 1: $\mathbf{1}$ calls to merge () with $\boldsymbol{n} / \mathbf{2}$ items in each half, $\mathrm{O}(1 \times 2 \times n / 2)=\mathrm{O}(n)$ time
- Level 2: $\mathbf{2}$ calls to merge () with $\boldsymbol{n} / \mathbf{2}^{\mathbf{2}}$ items in each half, $\mathrm{O}\left(2 \times 2 \times n / 2^{2}\right)=\mathrm{O}(n)$ time
- Level 3: $\mathbf{2}^{\mathbf{2}}$ calls to merge () with $\boldsymbol{n} / \mathbf{2}^{\mathbf{3}}$ items in each half,

$$
\mathrm{O}\left(2^{2} \times 2 \times n / 2^{3}\right)=\mathrm{O}(n) \text { time }
$$

- Level ($\lg n$): $\mathbf{2}^{\mathbf{l g}(n)-\mathbf{1}}\left(=\boldsymbol{n} \mathbf{2}\right.$) calls to merge () with $\boldsymbol{n} / \mathbf{2}^{\mathbf{l g}(\boldsymbol{n})}(=\mathbf{1})$ item in each half, $\mathrm{O}(n)$ time
- Total time complexity $=\mathbf{O}(n \lg (n))$
- Optimal comparison-based sorting method

Merge Sort: Pros and Cons

- Pros
- The performance is guaranteed, i.e. unaffected by original ordering of the input
- Suitable for extremely large number of inputs
- Can operate on the input portion by portion
- Cons
- Not easy to implement
- Requires additional storage during merging operation
- O(n) extra memory storage needed

Quick Sort

Quick Sort: Idea

- Quick Sort is a divide-and-conquer algorithm
- Divide step
- Choose an item \boldsymbol{p} (known as pivot) and partition the items of a[i...j] into two parts
- Items that are smaller than p
- Items that are greater than or equal to p
- Recursively sort the two parts
- Conquer step
- Do nothing!
- In comparison, Merge Sort spends most of the time in conquer step but very little time in divide step

Quick Sort: Divide Step Example

Pivot

Choose first element as pivot

27	38	12	39	27	16

Partition a[] about the pivot 27

Recursively sort the two parts

Pivot

Notice anything special about the position of pivot in the final sorted items?

Quick Sort: Implementation

- partition() splits a[low...high] into two portions
- a[low ... pivot-1] and a[pivot+1 ... high]
- Pivot item does not participate in any further sorting

Quick Sort: Partition Algorithm

- To partition a[i...j], we choose a[i] as the pivot p
- Why choose a[i]? Are there other choices?
- The remaining items (i.e. a[i+1...j]) are divided into 3 regions
- S1 = a[i+1...m] where items < p
- $\mathbf{S} 2=a[m+1 \ldots k-1]$ where item $\geq p$
- Unknown (unprocessed) = a[k...j], where items are yet to be assigned to S1 or S2

Quick Sort: Partition Algorithm

- Initially, regions S1 and S2 are empty
- All items excluding p are in the unknown region
- For each item $a[k]$ in the unknown region
- Compare a[k] with p
- If a[k] >= p, put it into S2
- Otherwise, put a[k] into S1

Quick Sort: Partition Algorithm

- Case 1: if a[k] >= p

Quick Sort: Partition Algorithm

- Case 2: if $a[k]<p$

Increment m

Quick Sort: Partition Implementation

PS: C++ STL <algorithm> has partition subroutine too int partition(int a[], int i, int j)
int $p=a[i] ;$
int $m=i ;$
for (int $k=i+1 ; k<=j ; k++$)
if (a[k] < p) \{
m++;
swap (a[k], a[m]);
\}
else \{
\}
\}
swap(a[i], a[m]);
Swap pivot with a[m]
return m;
\}
m is the index of pivot

Quick Sort: Partition Example

Pivot	Unknown			
27	38	12	39	27

Pivot	S_{2}	Unknown			
27	38	12	39	27	16
4					
Pivot ${ }^{\text {S }}$		S_{2}	Unknown		
27	12	38	39	27	16

http://visualgo.net/sorting?create=27,38,12,39,27,16\&mode=Quick
-[CS1020E AY1617S1 Lecture 10]

Quick Sort: Partition Analysis

- There is only a single for-loop
- Number of iterations = number of items, n, in the unknown region
- $n=$ high - low
- Complexity is $\mathrm{O}(n)$
- Similar to Merge Sort, the complexity is then dependent on the number of times partition() is called

Quick Sort: Worst Case Analysis

- When the array is already in ascending order

- What is the pivot index returned by partition()?
- What is the effect of $\operatorname{swap}(a, i, m)$?
- S1 is empty, while S2 contains every item except the pivot

Quick Sort: Worst Case Analysis

As each partition takes linear time, the algorithm in its worst case has n levels and hence it takes time $n+(n-1)+\ldots+1=\mathrm{O}\left(n^{2}\right)$

Quick Sort: Best/Average Case Analysis

- Best case occurs when partition always splits the array into two equal halves
- Depth of recursion is $\log n$
- Each level takes n or fewer comparisons, so the time complexity is $\mathrm{O}(n \log n)$
- In practice, worst case is rare, and on the average we get some good splits and some bad ones (details in CS3230:O)
- Average time is also $\mathrm{O}(n \log n)$

Lower Bound: Comparison-Based Sort

- It is known that
- All comparison-based sorting algorithms have a complexity lower bound of $n \log n$
- Therefore, any comparison-based sorting algorithm with worst-case complexity $\mathrm{O}(n \log n)$ is optimal

Radix Sort

Radix Sort: Idea

- Treats each data to be sorted as a character string
- It is not using comparison, i.e. no comparison between the data is needed
- In each iteration
- Organize the data into groups according to the next character in each data
- The groups are then "concatenated" for next iteration

Radix Sort: Example

0123,2154, 0222, 0004, 0283, 1560, 1061, 2150 $(1560,2150)(1061)(0222)(0123,0283)(2154,0004)$ 1560, 2150, 1061, 0222, 0123, 0283, 2154, 0004
(0004) $(0222,0123)(2150,2154)(1560,1061) \quad(0283)$ 0004, 0222, 0123, 2150, 2154, 1560, 1061, 0283
$(0004,1061)(0123,2150,2154)(0222,0283)(1560)$ 0004, 1061, 0123,2150, 2154, 0222, 0283, 1560 $(0004,0123,0222,0283) \quad(1061,1560) \quad(2150,2154)$ 0004, 0123, 0222, 0283, 1061, 1560, 2150, 2154

Original integers
Grouped by fourth digit
Combined
Grouped by third digit
Combined
Grouped by second digit
Combined
Grouped by first digit
Combined (sorted)

```
Radix Sort: Implementation
void radixSort(vector<int>& v, int d) {
    int i;
    int power = 1;
    queue<int> digitQueue[10]:
    for (i = 0; i < d; i++) {
        distribute(v, digitQueue, power);
        collect(digitQueue, v);
        power *= 10;
    }
}
```

- distribute(): Organize all items in v into groups using digit indicated by the power
- collect(): Place items from the groups back into v, i.e. "concatenate" the groups

Radix Sort: Implementation

```
void distribute(vector<int>& v,
    queue<int> digitQ[], int power)
    int digit;
    for (int i = 0; i < v.size(); i++) {
        digit = (v[i]/power) % 10;
        digitQ[digit].push(v[i]);
    }
}
```

- Question
- How do we extract the digit used for the current grouping?

Radix Sort: Implementation

```
void collect(queue<int> digitQ[], vector<int>& v)
    int i = 0, digit;
    for (digit = 0; digit < 10; digit++)
    while (!digitQ[digit].empty()) {
        v[i] = digitQ[digit].front();
        digitQ[digit].pop();
        i++;
    }
}
```

- Basic Idea
- Start with digitQ [0]
- Place all items into vector v
- Repeat with digitQ[1], digitQ[2], ...

Radix Sort: Analysis

- For each iteration
- We go through each item once to place them into group
- Then go through them again to concatenate the groups
- Complexity is O(n)
- Number of iterations is d, the maximum number of digits (or maximum number of characters)
- Complexity is thus O(dn)

Properties of Sorting

In-Place Sorting

- A sort algorithm is said to be an in-place sort
- If it requires only a constant amount (i.e. O(1)) of extra space during the sorting process
- Questions
- Merge Sort is not in-place, why?
- Is Quick Sort in-place?
- Is Radix Sort in-place?

Stable Sorting

- A sorting algorithm is stable if the relative order of elements with the same key value is preserved by the algorithm
- Example application of stable sort
- Assume that names have been sorted in alphabetical order
- Now, if this list is sorted again by tutorial group number, a stable sort algorithm would ensure that all students in the same tutorial groups still appear in alphabetical order of their names

Non-Stable Sort

- Selection Sort
$12855_{a} 47466025_{b}$ (8356)
$12855_{a} 5_{b} 602(4746$ 8356)
$6025_{a} 5_{b}(12854746$ 8356)
$5_{b} 5_{a}(60212854746$ 8356)
- Quick Sort
- $12855_{\mathrm{a}} 15047466025_{\mathrm{b}} 8356$ (pivot=1285)
- $1285\left(5_{a} 1506025_{b}\right)(4746$ 8356)
- $5_{b} \quad 5_{a} 150602128547468356$

Sorting Algorithms: Summary

	Worst Case	Best Case	In-place?	Stable?
Selection Sort	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	Yes	No
Insertion Sort	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}(\mathrm{n})$	Yes	Yes
Bubble Sort	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	Yes	Yes
Bubble Sort 2	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}(\mathrm{n})$	Yes	Yes
Merge Sort	$\mathrm{O}(\mathrm{n} \lg \mathrm{n})$	$\mathrm{O}(\mathrm{n} \lg \mathrm{n})$	No	Yes
Quick Sort	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}(\mathrm{n} \lg \mathrm{n})$	Yes	No
Radix sort	$\mathrm{O}(\mathrm{dn})$	$\mathrm{O}(\mathrm{dn})$	No	yes

Summary

- Comparison-Based Sorting Algorithms
- Iterative Sorting
- Selection Sort
- Bubble Sort
- Insertion Sort
- Recursive Sorting
- Merge Sort
- Quick Sort
- Non-Comparison-Based Sorting Algorithms
- Radix Sort
- Properties of Sorting Algorithms
- In-Place
- Stable

