Lecture 11
Hashing
For Efficient Look-up Tables
Lecture Outline

- What is hashing?
- How to hash?
- What is collision?
- How to resolve collision?
 - Separate chaining
 - Linear probing
 - Quadratic probing
 - Double hashing
- Load factor
- Primary clustering and secondary clustering
What is Hashing?

- **Hashing** is an algorithm (via a hash function) that maps large data sets of variable length, called keys, to smaller data sets of a fixed length.

- A **hash table** (or hash map) is a data structure that uses a hash function to efficiently map keys to values, for efficient search and retrieval.

- Widely used in many kinds of computer software, particularly for associative arrays, database indexing, caches, and sets.
Table ADT

<table>
<thead>
<tr>
<th>Operations</th>
<th>Sorted Array</th>
<th>Balanced BST</th>
<th>Hashing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$ avg</td>
</tr>
<tr>
<td>Deletion</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$ avg</td>
</tr>
<tr>
<td>Retrieval</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$ avg</td>
</tr>
</tbody>
</table>

- Hence, **hash table** supports the Table ADT in **constant time on average** for the above operations (terms and conditions apply...)
Direct Addressing Table

The easiest form of hashing
Example: SBS Bus Services
Now there are more bus operators in SG

- **Operations**
 - **Retrieval**: `find(num)`
 - Find the bus route of bus service number `num`
 - **Insertion**: `insert(num)`
 - Introduce a new bus service number `num`
 - **Deletion**: `delete(num)`
 - Remove bus service number `num`

- If bus numbers are integers 0 – 999, we can use an array with 1000 entries

Of course for now we assume that bus numbers don’t have variants, like 96A, 96B…, etc
Example: SBS Bus Services

// a[] is an array (the table)

insert(key, data)
 a[key] = data

delete(key)
 a[key] = NULL

find(key)
 return a[key]
Direct Addressing Table: Limitations

- Keys must be non-negative integer values
 - What happen for key values 151A and NR10?

- Range of keys must be small

- Keys must be dense
 - i.e. not many gaps in the key values

- How to overcome these restrictions?
Hash Table

The true form of hashing...
Hashing: Ideas

- Map **large** integers to **smaller** integers
- Map **non-integer** keys to **integers**
Hash Table: Phone Numbers Example

h is a hash function
$h(x) = x \% 997$

Note: we must store the key values. Why?
Hash Table: Operations

// a[] is an array (the table)
// h is a hash function

insert(key, data)
 a[h(key)] = data

delete(key)
 a[h(key)] = NULL

find(key)
 return a[h(key)]

However, this does not work for all cases! Why?
Hash Table: Collision

- A hash function may map **different keys** to the **same slot**
 - A many-to-one mapping and not one-to-one
 - E.g. 66754372 hashes to the same location of 66752378

- This is called a "**collision**", when two keys have the **same hash value**
Two Important Issues

- How to hash?
- How to resolve collisions?
Hash Functions

How to create a good one?
Hash Functions and Hash Values

- Suppose we have a **hash table** of size N
- **Keys** are used to identify the data
- A **hash function** is used to compute a **hash value**
- A hash value (hash code) is
 - Computed from the key with the use of a hash function to get a number in the range 0 to $N-1$
 - Used as the index (address) of the table entry for the data
 - Regarded as the “home address” of a key
- **Desire**: The addresses are different and spread evenly over the range
- When two keys have same hash value — **collision**
Good Hash Functions

- Fast to compute, $O(1)$
- Scatter keys evenly throughout the hash table
- Less collisions
- Need less slots (space)
Bad Hash Functions: Example

- Select Digits
 - e.g. choose the 4th and 8th digits of a phone number
 - hash(67754378) = 58
 - hash(63497820) = 90

- What happen when you hash Singapore’s house phone numbers by selecting the first three digits?
Perfect Hash Functions

- **Perfect hash function** is a **one-to-one** mapping between keys and hash values. So **no collision** occurs.
- Possible if **all keys are known**
- Applications: compiler and interpreter search for reserved words; shell interpreter searches for built-in commands.
- **GNU gperf** is a freely available perfect hash function generator written in C++ that automatically constructs perfect functions (a C++ program) from a user supplied list of keywords.
- **Minimal perfect hash function**: The table size is the same as the number of keywords supplied.
How to Define a Hash Function?

- Uniform hash function
- Division method
- Multiplication method
- Hashing of strings
Uniform Hash Functions

- Distributes keys uniformly in the hash table
- If keys are uniformly distributed in $[0, X)$, we map them to a hash table of size m ($m < X$) using the hash function below

$$k \in [0, X)$$

$$hash(k) = \left\lfloor \frac{km}{X} \right\rfloor$$

k is the key value

$[]$: close interval

$()$: open interval

Hence, $0 \leq k < X$

$\left\lfloor \cdot \right\rfloor$ is the *floor* function
Division Method (mod operator)

- Map into a hash table of \(m \) slots
- Use the modulo operator (\(\% \)) to map an integer to a value between 0 and \(m-1 \)
 - \(n \mod m = \) remainder of \(n \) divided by \(m \), where \(n \) and \(m \) are positive integers

\[
hash(k) = k \% m
\]

- The most popular method
How to Pick m (table size)?

- If m is power of two, say 2^n, then $(\text{key mod } m)$ is the same as extracting the last n bits of the key.
- If m is 10^n, then the hash value is the last n digit of the key.
- Both are not good, why?
- **Rule of thumb:** Pick a **prime number**, close to a power of two, to be m.

Multiplication Method

1) Multiply key by a fraction A (between 0 and 1)
2) Extract the fractional part
3) Multiply by m, the hash table size

$$hash(k) = \left\lfloor m(kA - \left\lfloor kA \right\rfloor) \right\rfloor$$

- The reciprocal of the golden ratio

 $= (\sqrt{5} - 1) / 2 = 0.618033$

 seems to be a good choice for A
Hashing of Strings: Example

```plaintext
hash1(s) {  // s is a string
    sum = 0
    for each character c in s {
        sum += c
        // sum up the ASCII values of all characters
    }
    return sum % m  // m is the hash table size
}
```
Hashing of Strings: Example

\texttt{hash1("Tan Ah Teck")}

\[
= (\text{'T'} + \text{'a'} + \text{'n'} + \text{'}\text{'} + \\
\text{'A'} + \text{'h'} + \text{'}\text{'} + \\
\text{'T'} + \text{'e'} + \text{'c'} + \text{'k'})) \% 11
\]

// hash table size is 11

\[
= (84 + 97 + 110 + 32 + \\
65 + 104 + 32 + \\
84 + 101 + 99 + 107) \% 11
\]

\[
= 825 \% 11
\]

\[
= 0
\]
Hashing of Strings: Example

- All 3 strings below have the same hash value. Why?
 - "Lee Chin Tan"
 - "Chen Le Tian"
 - "Chan Tin Lee"

- Problem: The hash value is independent of the positions of the characters
Improved Hashing of Strings

- Better to “shift” the sum before adding the next character, so that its position affects the hash code
- Polynomial hash code

```java
hash2(s) {
    sum = 0
    for each character c in s {
        sum = sum * 37 + c
    }
    return sum % m
}
```
Collision Resolution

Handling the inevitables…
Probability of Collision

- **von Mises Paradox** (The Birthday Paradox): “How many people must be in a room before the probability that some share a birthday, ignoring the year and leap days, becomes at least 50 percent?”

\[
Q(n) = \text{Probability of unique birthday for } n \text{ people} \\
= \frac{365 \times 364 \times 363 \times 362 \times \ldots \times (365 - n + 1)}{365 \times 365 \times 365 \times 365 \times \ldots \times 365}
\]

\[
P(n) = \text{Probability of collisions (same birthday) for } n \text{ people} \\
= 1 - Q(n)
\]

\[
P(23) = 0.507
\]

Hence, you need only **23 people** in the room!
Probability of Collision

- This means that if there are 23 people in a room, the probability that some people share a birthday is 50.7%!

- In the hashing context, if we insert 23 keys into a table with 365 slots, more than half of the time we will get collisions! Such a result is counter-intuitive to many.

- So, collision is very likely!
Collision Resolution Techniques

- Separate Chaining
- Linear Probing
- Quadratic Probing
- Double Hashing
Separate Chaining

Use a **linked-list** to store collided keys. Always insert at the beginning (or at the back) of a list. **Why?**
Load Factor

- n: number of keys in the hash table
- m: size of the hash tables — number of slots

- α: load factor
 - $\alpha = n / m$
 - Measures how full the hash table is.
 - In separate chaining, table size equals to the number of linked lists, so α is the average length of the linked lists
Separate Chaining: Performance

- Hash table operations
 - **insert** (key, data)
 - Insert data into the list $a[h(key)]$
 - Takes $O(1)$ time
 - **find** (key)
 - Find key from the list $a[h(key)]$
 - Takes $O(1+\alpha)$ time on average
 - **delete** (key)
 - Delete data from the list $a[h(key)]$
 - Takes $O(1+\alpha)$ time on average

If α is bounded by some constant, then all three operations are $O(1)$
Open Addressing

- Separate chaining is a close addressing system as the address given to a key is fixed.
- When the hash address given to a key is open (not fixed), the hashing is an open addressing system.

Open addressing

- Hashed items are in a single array.
- Hash code gives the home address.
- Collision is resolved by checking multiple positions.
- Each check is called a probe into the table.
Linear Probing

hash(k) = k mod 7

Here the table size \(m = 7 \)

Note: 7 is a prime number.

In linear probing, when there is a collision, we scan forwards for the the next empty slot (wrapping around when we reach the last slot).
Linear Probing: Insert 18

hash(k) = \(k \mod 7 \)

hash(18) = 18 \mod 7
= 4
Linear Probing: \textbf{Insert 14}

\[\text{hash}(k) = k \mod 7 \]

\begin{align*}
\text{hash}(14) & = 14 \mod 7 \\
& = 0
\end{align*}
Linear Probing: Insert 21

hash(k) = k mod 7

hash(21) = 21 mod 7
= 0

Collision occurs!
Look for next empty slot.
Linear Probing: Insert 1

$$\text{hash}(k) = k \mod 7$$

$$\text{hash}(1) = 1 \mod 7 = 1$$

Collides with 21 (hash value 0). Look for next empty slot.
Linear Probing: **Insert 35**

\[\text{hash}(k) = k \mod 7 \]

\[
\begin{align*}
\text{hash}(35) &= 35 \mod 7 \\
&= 0
\end{align*}
\]

Collision, need to check next 3 slots.
Linear Probing: Find 35

$\text{hash}(k) = k \mod 7$

$\text{hash}(35) = 35 \mod 7 = 0$

Found 35, after 4 probes.
Linear Probing: Find 8

hash(k) = k mod 7

hash(8) = 8 mod 7 = 1

8 NOT found. Need 5 probes!
Linear Probing: Delete 21

hash(k) = k mod 7

hash(21) = 21 mod 7 = 0
Linear Probing: Find 35

\[\text{hash}(k) = k \mod 7 \]

\[\text{hash}(35) = 35 \mod 7 = 0 \]

35 NOT found! Incorrect!

We cannot simply remove a value, because it can affect find()!
How to Delete?

- **Lazy Deletion**

- Use three different states at each slot
 - Occupied
 - Deleted
 - Empty

- When a value is removed from linear probed hash table, we just mark the status of the slot as “deleted”, instead of emptying the slot

- Need to use a state array the same size as the hash table
Linear Probing: **Delete 21**

\[
\text{hash}(k) = k \mod 7
\]

\[
\text{hash}(21) = 21 \mod 7 = 0
\]

Slot 1 is occupied but now marked as deleted.
Linear Probing: Find 35

hash\((k) = k \mod 7 \)

hash(35) = 35 \mod 7 = 0

Found 35.
Now we can find 35.
Linear Probing: **Insert 15** (1/2)

hash(k) = k mod 7

hash(15)
= 15 mod 7
= 1

Slot 1 is marked as deleted.

We continue to search for 15, and found that 15 is not in the hash table (total 5 probes).

So, we insert this new value 15 into the slot that has been marked as deleted (i.e. slot 1).
Linear Probing: \textbf{Insert 15} (2/2)

hash(k) = k \mod 7

hash(15) = 15 \mod 7 = 1

So, 15 is inserted into slot 1, which was marked as deleted.

\textbf{Note:} We should insert a new value in first available slot so that the find operation for this value will be the fastest.
VisuAlgo (Part 1)

- Hash Table with linear probing collision resolution has been integrated in VisuAlgo (http://visualgo.net/hashtable)
Problem 1: Primary Clustering

- A **cluster** is a collection of consecutive occupied slots.
- A cluster that covers the home address of a key is called the **primary cluster** of the key.
- Linear probing can create large primary clusters that will increase the running time of find/insert/delete operations.
Linear Probing: Probe Sequence

- The **probe sequence** of this linear probing is:

 \[
 \begin{align*}
 \text{hash(key)} \\
 (\text{hash(key)} + 1) \% m \\
 (\text{hash(key)} + 2) \% m \\
 (\text{hash(key)} + 3) \% m \\
 \vdots
 \end{align*}
 \]

- If there is an empty slot, we are sure to find it.

- When an empty slot is found, conflict resolved, but the primary cluster of the key is **expanded** as a result.

- The size of the resulting primary cluster may be very big due to the annexation of the neighboring cluster.
Modified Linear Probing

- To reduce primary clustering, we can modify the probe sequence to
 \[\text{hash(key)} \]
 \[(\text{hash(key)} + 1 \times d) \mod m \]
 \[(\text{hash(key)} + 2 \times d) \mod m \]
 \[(\text{hash(key)} + 3 \times d) \mod m \]
 \[\vdots \]

 where \(d \) is some constant integer \(>1 \) and is co-prime to \(m \)

- Since \(d \) and \(m \) are co-primes, the probe sequence covers all the slots in the hash table.
Quadratic Probing

- The **probe sequence of quadratic probing** is

 \[
 \begin{align*}
 &\text{hash(key)} \\
 &\left(\text{hash(key)} + 1 \right) \mod m \\
 &\left(\text{hash(key)} + 4 \right) \mod m \\
 &\left(\text{hash(key)} + 9 \right) \mod m \\
 &\vdots \\
 &\left(\text{hash(key)} + k^2 \right) \mod m
 \end{align*}
 \]
Quadratic Probing: **Insert 18, 3**

hash\((k) = k \mod 7 \)

hash(18) = 4
hash(3) = 3
Quadratic Probing: Insert 38

hash(k) = k mod 7

hash(38) = 3

Collision!
VisuAlgo (Part 2)

- Hash Table with quadratic probing collision resolution is also in VisuAlgo (http://visualgo.net/hashtable?mode=QP)
Theorem of Quadratic Probing

- How can we be sure that quadratic probing always terminates?
 - Insert 12 into the previous example, followed by 10. See what happen?
 - Try it on VisuAlgo directly

- **Theorem**: If $\alpha < 0.5$, and m is prime, then we can always find an empty slot.
 - m is the table size and α is the load factor.
Problem 2: Secondary Clustering

- In quadratic probing, clusters are formed along the path of probing, instead of around the home location.
- These clusters are called **secondary clusters**.
- Secondary clusters are formed as a result of using the same pattern in probing by all keys.
 - If two keys have the same home location, their probe sequences are going to be the same.
- But it is not as bad as primary clustering in linear probing.
Double Hashing

- To reduce secondary clustering, we can use a second hash function to generate different probe sequences for different keys
 \[
 \text{hash}(\text{key})
 \begin{align*}
 & (\text{hash}(\text{key}) + 1 \times \text{hash}_2(\text{key})) \mod m \\
 & (\text{hash}(\text{key}) + 2 \times \text{hash}_2(\text{key})) \mod m \\
 & (\text{hash}(\text{key}) + 3 \times \text{hash}_2(\text{key})) \mod m \\
 \vdots
 \end{align*}
 \]
- \text{hash}_2 is called the secondary hash function
 - If \text{hash}_2(k) = 1, then it is the same as linear probing
 - If \text{hash}_2(k) = d, where \(d \) is a constant integer > 1, then it is the same as modified linear probing
Double Hashing: 14, 18 in, **Insert 21**

hash(k) = \(k \mod 7 \)

hash\(_2\)(k) = \(k \mod 5 \)

hash(21) = 0

hash\(_2\)(21) = 1
Double Hashing: Insert 4

\[
\text{hash}(k) = k \mod 7 \\
\text{hash}_2(k) = k \mod 5
\]

\[
\text{hash}(4) = 4 \\
\text{hash}_2(4) = 4
\]

If we insert 4, the probe sequence is 4 (home), 8, 12, …
Double Hashing: **Insert 35**

\[
\text{hash}(k) = k \mod 7 \\
\text{hash}_2(k) = k \mod 5 \\
\text{hash}(35) = 0 \\
\text{hash}_2(35) = 0
\]

But if we insert 35, the probe sequence is 0, 0, 0, …

What is wrong? Since \(\text{hash}_2(35) = 0 \).

Not acceptable!
hash_2(key) must not be 0

- We can redefine hash_2(key) as
 - hash_2(key) = (key % s) + 1, or
 - hash_2(key) = s – (key % s)

- Note
 - The size of hash table must be a prime \(m \)
 - When defining hash_2(key) = (key % s) + 1
 - \(s < m \) but \(s \) need not be a prime
 - Usually \(s = m – 1 \)
VisuAlgo (Part 3)

- Hash Table with double hashing collision resolution is also in VisuAlgo (http://visualgo.net/hashtable?mode=DH)
- Currently, the secondary hash = 1+key%(HT_size-2)
Good Collision Resolution Method

- Minimize clustering
- Always find an empty slot if it exists
- Give different probe sequences when 2 keys collide (i.e. no secondary clustering)
- Fast, $O(1)$
Rehash

- Time to rehash
 - When the table is getting full, the operations are getting slow
 - For quadratic probing, insertions might fail when the table is more than half full

- Rehash operation
 - Build another table about twice as big with a new hash function
 - Scan the original table, for each key, compute the new hash value and insert the data into the new table
 - Delete the original table

- The load factor used to decide when to rehash
 - For open addressing: 0.5
 - For closed addressing: 1
Summary

- How to hash?
 - Criteria for good hash functions

- How to resolve collision?
 - Separate chaining
 - Linear probing
 - Quadratic probing
 - Double hashing

- Problem on deletions

- Primary clustering and secondary clustering