Lecture 9

Analysis of Algorithms

Measuring Algorithm Efficiency

Lecture Outhine

What is an Algorithm?

What is Analysis of Algorithms?
How to analyze an algorithm
Big-O notation

Example Analyses

You are expected to know...

Proof by induction
Operations on logarithm function

Arithmetic and geometric progressions

= [heir sums

s See L9 — useful formulas.pdf for some of these
Linear, quadratic, cubic, polynomial functions

ceiling, floor, absolute value

[CS1020E AY1617S1 Lecture 9]

Algorithm and Analysis
Algorithm

= A step-by-step procedure for solving a problem

Analysis of Algorithm

= [0 evaluate rigorously the resources (time and
space) needed by an algorithm and represent the
result of the evaluation with a formula

s For this module, we focus more on time
requirement in our analysis

= The time requirement of an algorithm is also called
the time complexity of the algorithm

[CS1020E AY1617S1 Lecture 9]

Measure Actual Running Time?

We can measure the actual running time of a
program

= Use wall clock time or insert timing code into
program

However, actual running time is not

meaningful when comparing two algorithms

= Coded in different languages

= Using different data sets

= Running on different computers

[CS1020E AY1617S1 Lecture 9]

Counting Operations

Instead of measuring the actual timing, we
count the number of operations

= Operations: arithmetic, assignment, comparison, etc.

Counting an algorithm’s operations is a way to
assess its efficiency

= An algorithm’s execution time is related to the
number of operations it requires

[CS1020E AY1617S1 Lecture 9]

Example: Counting Operations

How many operations are required?

for (int i = 1; i <= n; i++) {

perform 100 operations; // A
for (int j = 1; j <= n; j++) {

perform 2 operations; // B
}

¥

Total Ops = A+ B :anlOOJan:(Zn:Z)
i—1 -1 j=1

=100n+22n =100n+2n° =2n°+100n
=1

[CS1020E AY1617S1 Lecture 9]

Example: Counting Operations

Knowing the number of operations required
by the algorithm, we can state that

= Algorithm X takes 2n? + 100n operations to solve
problem of size n

If the time t needed for one operation is
known, then we can state

= Algorithm X takes (2n + 100n)t time units

Example: Counting Operations

However, time t is directly dependent on the
factors mentioned earlier

= e.g. different languages, compilers and computers
Instead of tying the analysis to actual time t,
we can state

= Algorithm X takes time that is proportional to
2n2 + 100n for solving problem of size n

Approximation of Analysis Results

S

uppose the time complexity of
Algorithm Ais 3n? + 2n + log n + 1/(4n)
Algorithm B is 0.39n3 + n

Intuitively, we know Algorithm A will outperform B

T
d

T

When solving larger problem, i.e. larger n

ne dominating term 3n2 and 0.39n3 can tell us
pproximately how the algorithms perform

he terms n? and n3 are even simpler and preferred

These terms can be obtained through asymptotic
analysis

[CS1020E AY1617S1 Lecture 9]

10

Asymptotic Analysis
Asymptotic analysis is an analysis of

algorithms that focuses on

= Analyzing problems of large input size
= Consider only the leading term of the formula

= Ignore the coefficient of the leading term

11

Why Choose Leading Term?

Lower order terms contribute lesser to the
overall cost as the input grows larger

Example
= f(n) =2n%+ 100n
= f(1000) = 2(1000)2 + 100(1000)

= 2,000,000 + 100,000

= f(100000) =2(100000)2 + 100(100000)
= 20,000,000,000 + 10,000,000

Hence, lower order terms can be ignored

Examples: Leading Terms
an)="%n+4

= Leading term: 72 n

b(n) = 240n + 0.001n?

= Leading term: 0.001n?

c(n) =nlg(n) +Ig(n) + nlg(lg(n))
= Leading term: n Ig(n)

= Note that Ig(n) = log,(n)

13

Why Ignore Coetticient of Leading Term?

Suppose two algorithms have 2n“ and 30n? as
the leading terms, respectively

Although actual time will be different due to the
different constants, the growth rates of the
running time are the same

Compare with another algorithm with leading
term of n3, the difference in growth rate is a
much more dominating factor

Hence, we can drop the coefficient of leading
term when studying algorithm complexity

[CS1020E AY1617S1 Lecture 9]

14

‘ Upper Bound: The Big-O Notation

= |f algorithm A requires time proportional
to f(n)

= Algorithm A is of the order of f(n)
= Denoted as Algorithm A is O(f(n))

= f(n) is the growth rate function for Algorithm A

15

The Big-O Notation

Formal definition

= Algorithm A is of O(f(n)) if there exist a constant Kk,
and a positive integer n, such that Algorithm A

requires no more than k * f(n) time units to solve a
problem of size n >=n,

A *
Time k=T (n)

Algorithm A

-
-
-
-
- -
—-—
-

-—
—-—
-_
— o —— e F
[

Problem Size

[CS1020E AY1617S1 Lecture 9]

The Big-O Notation

When problem size is larger than n,, Algorithm A'is

bounded from above by k * f(n)

Observations
= Ny and k are not unique
= There are many possible f(n)

A

Time ()

-
-
-
-
- -
—-—
-

-—
—-—
-_
—————_

Algorithm A

[CS1020E AY1617S1 Lecture 9]

Problem Size

17

‘ Example: Finding n, and k

= Given complexity of Algorithm A is 2n? + 100n
= Claim: Algorithm A is of O(n?)

= Solution
= 2n? + 100n < 2n? + n? = 3n? whenever n >100
= Set the constants to be k = 3 and n, = 100
= By definition, we say Algorithm A is O(n?)

= Questions
= Can we say A is O(2n?) or O(3n?)?
= Can we say A is O(n3)?

— [CS1020E AY1617S1 Lecture 9]

18

Growth Terms

In asymptotic analysis, a formula can be simplified
to a single term with coefficient 1 (how?)

Such a term is called a growth term (rate of
growth, order of growth, order of magnitude)

The most common growth terms can be ordered as
follows (note that many others are not shown)

O(1) < O(log n) < O(n) < O(n log n) < O(n?) < O(n3) < O(2") < ...
“fastest” “slowest”

* “log” = log,
* In big-O, log functions of different bases are all the same (why?)

[CS1020E AY1617S1 Lecture 9] 19

‘ Common Growth Rates

= O(1) — constant time

= Independent of n
= O(n) — linear time

= Grows as the same rate of n

= E.g. double input size = double execution time
= O(n?) — quadratic time

= Increases rapidly w.r.t. n

= E.g. double input size = quadruple execution time
= O(n3 — cubic time

= Increases even more rapidly w.r.t. n

= E.g. double input size = 8 * execution time
= O(2") — exponential time

= Increases very very rapidly w.r.t. n

— [CS1020E AY1617S1 Lecture 9]

Example: Exponential-Time Algorithm

Suppose we have a problem that, for an input
consisting of n items, can be solved by going
through 2" cases

We use a supercomputer, that analyses 200
million cases per second

nput wit
nput wit

nput wit

N 15 items — 163 microseconds
N 30 items — 5.36 seconds

N 50 items — more than two months

nput wit

[CS1020E AY1617S1 Lecture 9]

n 80 items — 191 million years

21

Example: Quadratic-Time Algorithm

Suppose solving the same problem with another
algorithm will use 300n< clock cycles on a Handheld
PC, running at 33 MHz

nput wit
nput wit
nput wit

nput wit

N 15 items — 2 milliseconds
N 30 items — 8 milliseconds

N 50 items — 22 milliseconds

N 80 items — 58 milliseconds

Therefore, to speed up program, don't simply rely on
the raw power of a computer

= Very important to use an efficient algorithm

[CS1020E AY1617S1 Lecture 9]

22

(a)

‘ Comparing Growth Rates

n
AL
4 A
Function 10 100 1,000 10,000 100,000 1,000,000
1 1 T T T 1 T
log,n 3 6 9 13 16 19
n 10 102 10° 104 10° 106
n xlog,n | 30 664 9,965 10° 106 107
n? 102 104 106 108 1010 1012
n:3 103 106 10° 1012 1015 1018
2n ’|03 1030 10301 1 03,010 1 030,103 10 301,030

— [CS1020E AY1617S1 Lecture 9]

23

‘ Comparing Growth Rates

(b)

100 - 2" n3 n 2
n *log,n
-
o 75
G
O
-
-]
——
Q
-+
o
<
S 50 -
O
(@)
——
@)
Q
=)
T
= 25 -
n
1 log,n
1 1 1 |
5 10 15 20
n

— [CS1020E AY1617S1 Lecture 9]

24

How to Find Complexity?

Some rules of thumb

Basically just count the number of statements executed

If there are only a small number of simple statements in a
program — O(1)

If there is a ‘for’ loop dictated by a loop index that goes up
ton — O(n)

If there is a nested ‘for’ loop with outer one controlled by n
and the inner one controlled by m — O(n*m)

For a loop with a range of values n, and each iteration
reduces the range by a fixed constant fraction (eg: %)
— O(log n)

For a recursive method, each call is usually O(1). So
m If ncalls are made — O(n)

m Ifnlog n calls are made — O(n log n)

[CS1020E AY1617S1 Lecture 9]

25

Example: Finding Complexity (1/2)

What is the complexity of the following code fragment?

iInNt sum = 0O;
for (int 1 = 1; 1 <n; 1 = 1*2) {
sum++;

}

It is clear that sum is incremented only when
i=1,24,8, ..., 2<where k =|log, n_

There are k + 1 iterations.
So the complexity is O(k) or O(log n)

[CS1020E AY1617S1 Lecture 9]

26

Example: Finding Complexity (2/2)

What is the complexity of the following code fragment?
= For simplicity, let's assume that n is some power of 3

iInt sum = O;
for (int 1 = 1; 1 <=n; 1 = 1*3)
for (aint jJ = 1; jJ <= 1; jJ++)
sum++;

f(n)=1+3+9+27 + ... + 3(og n)
=1+3+...+n/9+n/3+n
=n+n/3+n9+..+3+1
=n*(1+1/3+1/9+ ..)
<n*(3/2)
= 3n/2
= O(n)

[CS1020E AY1617S1 Lecture 9]

27

Analysis 1: Tower of Hanot

Number of moves made by the algorithm is 2" - 1

= Prove it!
m Hints: f(1)=1, f(n)=f(n-1) + 1 + f(n-1), and prove by
iInduction

Assume each move takes c time, then
f(n) =c(2" - 1) = 0O(2")

The Tower of Hanoi algorithm is an exponential
time algorithm

[CS1020E AY1617S1 Lecture 9]

28

Analysis 2: Sequential Search

Check whether an item x is in an unsorted
array a| |

= |f found, it returns position of x in array
= |f not found, it returns -1

public Int seqSearch(int a[], int len, Int x) {
for (int 1 = 0; 1 < len; 1++) {
1t (a[1] == x)
return 1;

}

return -1;

}

[CS1020E AY1617S1 Lecture 9]

29

Analysis 2: Sequential Search

Time spent in each iteration through the loop is at
most some constant c,

Time spent outside the loop is at most some
constant c,

Maximum number of iterations is n

Hence, the asymptotic upper bound is
cn+c, = O(n)

Observation

= |n general, a loop of n iterations will lead to O(n) growth rate
= This is an example of Worst Case Analysis

[CS1020E AY1617S1 Lecture 9]

30

Analysis 3: Binary Search

Important characteristics
= Requires array to be sorted
= Maintain sub-array where x might be located

= Repeatedly compare x with m, the middle of
current sub-array
m [f Xx=m, found it!
m [f Xx > m, eliminate m and positions before m
m If X <m, eliminate m and positions after m

Iterative and recursive implementations

[CS1020E AY1617S1 Lecture 9]

31

‘ Binary Search (Recursive)

int binarySearch(int af[], int x, int low, Int high) {
iIf (low > high) // Base Case 1: 1tem not found
return -1;

int mid = (lowthigh) /7 2;

it (x > a[mid])

return binarySearch(a, x, mid+l, high);
else 1T (X < a[mid])

return binarySearch(a, x, low, mid-1);
else

return mid; // Base Case 2: 1tem found

— [CS1020E AY1617S1 Lecture 9]

‘ Binary Search (Iterative)

int binSearch(int af[], 1nt len, Int x) {
int mid, low = O;
int high = len-1;

whille (low <= high) {
mid = (low+high) 7/ 2;
It (x == a[mid])
return mid;
else 1T (X > a[mid])
low = mid+1;
else
high = mid-1;
}

return -1; // i1tem not found

}

— [CS1020E AY1617S1 Lecture 9]

33

Analysis 3: Binary Search (Iterative)

Time spent outside the loop is at most c,

Time spent in each iteration of the loop is at
most c,

For inputs of size n, if the program goes through
at most f(n) iterations, then the complexity is

c + C,f(n) or O(f(n))

l.e. the complexity is decided by the number of
iterations (loops)

34

Analysis 3: Finding f(n)

At any point during binary search, part of array is “alive”
(might contain x)

Each iteration of loop eliminates at least half of
previously “alive” elements

At the beginning, all n elements are “alive”, and after
= One iteration, at most n/2 are left, or alive

= Two iterations, at most (n/2)/2 = n/4 = n/2? are left

= Three iterations, at most (n/4)/2 = n/8 = n/23 are left

= Kk iterations, at most n/2¥ are left

s At the final iteration, at most 1 element is left

[CS1020E AY1617S1 Lecture 9]

35

Analysis 3: Finding f(n)

In the worst case, we have to search all the way up
to the last iteration k with only one element left

We have
n2<x=1 = 2k=n = k=log,(n)=Ig(n)

Hence, the binary search algorithm takes O(f(n)), or
O(lg(n)) time

Observation

= In general, when the domain of interest is reduced by a
fraction for each iteration of a loop, then it will lead to
O(log n) growth rate

[CS1020E AY1617S1 Lecture 9] 36

‘ Analysis of Different Cases

= For an algorithm, three different cases of analysis

= Worst-Case Analysis
m Look at the worst possible scenario

= Best-Case Analysis
s Look at the ideal case
s Usually not useful

= Average-Case Analysis
s Probability distribution should be known
s Hardest/impossible to analyze

= Example: Sequential Search
= Worst-Case: target item at the tail of array
= Best-Case: target item at the head of array
= Average-Case: target item can be anywhere

— [CS1020E AY1617S1 Lecture 9]

37

Summary

Algorithm Definition
Algorithm Analysis

= Counting operations
= Asymptotic Analysis
= Big-O notation (Upper-Bound)

Three cases of analysis
s Best-case
s Worst-case

= Average-case

[CS1020E AY1617S1 Lecture 9]

38

