
Lecture 9
Analysis of Algorithms

Measuring Algorithm Efficiency

Lecture Outline
 What is an Algorithm?

 What is Analysis of Algorithms?

 How to analyze an algorithm

 Big-O notation

 Example Analyses

[CS1020E AY1617S1 Lecture 9] 2

You are expected to know…
 Proof by induction

 Operations on logarithm function

 Arithmetic and geometric progressions
 Their sums
 See L9 – useful_formulas.pdf for some of these

 Linear, quadratic, cubic, polynomial functions

 ceiling, floor, absolute value

[CS1020E AY1617S1 Lecture 9] 3

[CS1020E AY1617S1 Lecture 9] 4

Algorithm and Analysis
 Algorithm
 A step-by-step procedure for solving a problem

 Analysis of Algorithm
 To evaluate rigorously the resources (time and

space) needed by an algorithm and represent the
result of the evaluation with a formula

 For this module, we focus more on time
requirement in our analysis

 The time requirement of an algorithm is also called
the time complexity of the algorithm

Measure Actual Running Time?
 We can measure the actual running time of a

program
 Use wall clock time or insert timing code into

program

 However, actual running time is not
meaningful when comparing two algorithms
 Coded in different languages
 Using different data sets
 Running on different computers

[CS1020E AY1617S1 Lecture 9] 5

Counting Operations
 Instead of measuring the actual timing, we

count the number of operations
 Operations: arithmetic, assignment, comparison, etc.

 Counting an algorithm’s operations is a way to
assess its efficiency
 An algorithm’s execution time is related to the

number of operations it requires

[CS1020E AY1617S1 Lecture 9] 6

Example: Counting Operations
 How many operations are required?

[CS1020E AY1617S1 Lecture 9] 7

for (int i = 1; i <= n; i++) {
perform 100 operations; // A
for (int j = 1; j <= n; j++) {

perform 2 operations; // B
}

}

Total Ops = A + B  
 


n

i

n

j

n

i 1 11
)2(100





n

i
nn

1
2100 22100 nn  nn 1002 2 

Example: Counting Operations
 Knowing the number of operations required

by the algorithm, we can state that
 Algorithm X takes 2n2 + 100n operations to solve

problem of size n

 If the time t needed for one operation is
known, then we can state
 Algorithm X takes (2n2 + 100n)t time units

[CS1020E AY1617S1 Lecture 9] 8

Example: Counting Operations
 However, time t is directly dependent on the

factors mentioned earlier
 e.g. different languages, compilers and computers

 Instead of tying the analysis to actual time t,
we can state
 Algorithm X takes time that is proportional to

2n2 + 100n for solving problem of size n

[CS1020E AY1617S1 Lecture 9] 9

Approximation of Analysis Results
 Suppose the time complexity of

 Algorithm A is 3n2 + 2n + log n + 1/(4n)
 Algorithm B is 0.39n3 + n

 Intuitively, we know Algorithm A will outperform B
 When solving larger problem, i.e. larger n

 The dominating term 3n2 and 0.39n3 can tell us
approximately how the algorithms perform

 The terms n2 and n3 are even simpler and preferred

 These terms can be obtained through asymptotic
analysis

[CS1020E AY1617S1 Lecture 9] 10

Asymptotic Analysis
 Asymptotic analysis is an analysis of

algorithms that focuses on
 Analyzing problems of large input size
 Consider only the leading term of the formula
 Ignore the coefficient of the leading term

[CS1020E AY1617S1 Lecture 9] 11

Why Choose Leading Term?
 Lower order terms contribute lesser to the

overall cost as the input grows larger

 Example
 f(n) = 2n2 + 100n

 f(1000) = 2(1000)2 + 100(1000)
= 2,000,000 + 100,000

 f(100000) = 2(100000)2 + 100(100000)
= 20,000,000,000 + 10,000,000

 Hence, lower order terms can be ignored

[CS1020E AY1617S1 Lecture 9] 12

Examples: Leading Terms
 a(n) = ½ n + 4
 Leading term: ½ n

 b(n) = 240n + 0.001n2

 Leading term: 0.001n2

 c(n) = n lg(n) + lg(n) + n lg(lg(n))
 Leading term: n lg(n)
 Note that lg(n) = log2(n)

[CS1020E AY1617S1 Lecture 9] 13

Why Ignore Coefficient of Leading Term?

 Suppose two algorithms have 2n2 and 30n2 as
the leading terms, respectively

 Although actual time will be different due to the
different constants, the growth rates of the
running time are the same

 Compare with another algorithm with leading
term of n3, the difference in growth rate is a
much more dominating factor

 Hence, we can drop the coefficient of leading
term when studying algorithm complexity

[CS1020E AY1617S1 Lecture 9] 14

Upper Bound: The Big-O Notation
 If algorithm A requires time proportional

to f(n)
 Algorithm A is of the order of f(n)
 Denoted as Algorithm A is O(f(n))
 f(n) is the growth rate function for Algorithm A

[CS1020E AY1617S1 Lecture 9] 15

The Big-O Notation
 Formal definition
 Algorithm A is of O(f(n)) if there exist a constant k,

and a positive integer n0 such that Algorithm A
requires no more than k * f(n) time units to solve a
problem of size n >= n0

[CS1020E AY1617S1 Lecture 9] 16

k*f(n)

Algorithm A

n0

f(n)

Problem Size

Time

The Big-O Notation
 When problem size is larger than n0, Algorithm A is

bounded from above by k * f(n)
 Observations

 n0 and k are not unique
 There are many possible f(n)

[CS1020E AY1617S1 Lecture 9] 17

k*f(n)

Algorithm A

n0

f(n)

Problem Size

Time

Example: Finding n0 and k
 Given complexity of Algorithm A is 2n2 + 100n

 Claim: Algorithm A is of O(n2)

 Solution
 2n2 + 100n < 2n2 + n2 = 3n2 whenever n >100
 Set the constants to be k = 3 and n0 = 100
 By definition, we say Algorithm A is O(n2)

 Questions
 Can we say A is O(2n2) or O(3n2)?
 Can we say A is O(n3)?

[CS1020E AY1617S1 Lecture 9] 18

Growth Terms
 In asymptotic analysis, a formula can be simplified

to a single term with coefficient 1 (how?)

 Such a term is called a growth term (rate of
growth, order of growth, order of magnitude)

 The most common growth terms can be ordered as
follows (note that many others are not shown)

O(1) < O(log n) < O(n) < O(n log n) < O(n2) < O(n3) < O(2n) < …

[CS1020E AY1617S1 Lecture 9] 19

“fastest” “slowest”

 “log” = log2
 In big-O, log functions of different bases are all the same (why?)

Common Growth Rates
 O(1) — constant time

 Independent of n
 O(n) — linear time

 Grows as the same rate of n
 E.g. double input size  double execution time

 O(n2) — quadratic time
 Increases rapidly w.r.t. n
 E.g. double input size  quadruple execution time

 O(n3) — cubic time
 Increases even more rapidly w.r.t. n
 E.g. double input size  8 * execution time

 O(2n) — exponential time
 Increases very very rapidly w.r.t. n

[CS1020E AY1617S1 Lecture 9] 20

Example: Exponential-Time Algorithm
 Suppose we have a problem that, for an input

consisting of n items, can be solved by going
through 2n cases

 We use a supercomputer, that analyses 200
million cases per second
 Input with 15 items — 163 microseconds
 Input with 30 items — 5.36 seconds
 Input with 50 items — more than two months
 Input with 80 items — 191 million years

[CS1020E AY1617S1 Lecture 9] 21

Example: Quadratic-Time Algorithm
 Suppose solving the same problem with another

algorithm will use 300n2 clock cycles on a Handheld
PC, running at 33 MHz
 Input with 15 items — 2 milliseconds
 Input with 30 items — 8 milliseconds
 Input with 50 items — 22 milliseconds
 Input with 80 items — 58 milliseconds

 Therefore, to speed up program, don't simply rely on
the raw power of a computer
 Very important to use an efficient algorithm

[CS1020E AY1617S1 Lecture 9] 22

Comparing Growth Rates

[CS1020E AY1617S1 Lecture 9] 23

Comparing Growth Rates

[CS1020E AY1617S1 Lecture 9] 24

How to Find Complexity?
 Some rules of thumb

 Basically just count the number of statements executed
 If there are only a small number of simple statements in a

program — O(1)
 If there is a ‘for’ loop dictated by a loop index that goes up

to n — O(n)
 If there is a nested ‘for’ loop with outer one controlled by n

and the inner one controlled by m — O(n*m)
 For a loop with a range of values n, and each iteration

reduces the range by a fixed constant fraction (eg: ½)
— O(log n)

 For a recursive method, each call is usually O(1). So
 If n calls are made — O(n)
 If n log n calls are made — O(n log n)

[CS1020E AY1617S1 Lecture 9] 25

Example: Finding Complexity (1/2)
 What is the complexity of the following code fragment?

 It is clear that sum is incremented only when

i = 1, 2, 4, 8, …, 2k where k = log2 n

There are k + 1 iterations.
So the complexity is O(k) or O(log n)

[CS1020E AY1617S1 Lecture 9] 26

int sum = 0;
for (int i = 1; i < n; i = i*2) {
sum++;

}

Example: Finding Complexity (2/2)
 What is the complexity of the following code fragment?

 For simplicity, let’s assume that n is some power of 3

 f(n) = 1 + 3 + 9 + 27 + … + 3(log
3

n)

= 1 + 3 + … + n/9 + n/3 + n
= n + n/3 + n/9 + … + 3 + 1
= n * (1 + 1/3 + 1/9 + …)
≤ n * (3/2)
= 3n/2
= O(n)

[CS1020E AY1617S1 Lecture 9] 27

int sum = 0;
for (int i = 1; i <= n; i = i*3)

for (int j = 1; j <= i; j++)
sum++;

Analysis 1: Tower of Hanoi
 Number of moves made by the algorithm is 2n − 1

 Prove it!
 Hints: f(1)=1, f(n)=f(n-1) + 1 + f(n-1), and prove by

induction

 Assume each move takes c time, then
f(n) = c(2n − 1) = O(2n)

 The Tower of Hanoi algorithm is an exponential
time algorithm

[CS1020E AY1617S1 Lecture 9] 28

Analysis 2: Sequential Search
 Check whether an item x is in an unsorted

array a[]
 If found, it returns position of x in array
 If not found, it returns -1

[CS1020E AY1617S1 Lecture 9] 29

public int seqSearch(int a[], int len, int x) {
for (int i = 0; i < len; i++) {

if (a[i] == x)
return i;

}
return -1;

}

Analysis 2: Sequential Search
 Time spent in each iteration through the loop is at

most some constant c1

 Time spent outside the loop is at most some
constant c2

 Maximum number of iterations is n
 Hence, the asymptotic upper bound is

c1n + c2 = O(n)
 Observation

 In general, a loop of n iterations will lead to O(n) growth rate
 This is an example of Worst Case Analysis

[CS1020E AY1617S1 Lecture 9] 30

Analysis 3: Binary Search
 Important characteristics
 Requires array to be sorted
 Maintain sub-array where x might be located
 Repeatedly compare x with m, the middle of

current sub-array
 If x = m, found it!
 If x > m, eliminate m and positions before m
 If x < m, eliminate m and positions after m

 Iterative and recursive implementations

[CS1020E AY1617S1 Lecture 9] 31

[CS1020E AY1617S1 Lecture 9] 32

Binary Search (Recursive)
int binarySearch(int a[], int x, int low, int high) {
if (low > high) // Base Case 1: item not found
return -1;

int mid = (low+high) / 2;

if (x > a[mid])
return binarySearch(a, x, mid+1, high);

else if (x < a[mid])
return binarySearch(a, x, low, mid–1);

else
return mid; // Base Case 2: item found

}

[CS1020E AY1617S1 Lecture 9] 33

Binary Search (Iterative)
int binSearch(int a[], int len, int x) {
int mid, low = 0;
int high = len-1;

while (low <= high) {
mid = (low+high) / 2;
if (x == a[mid])
return mid;

else if (x > a[mid])
low = mid+1;

else
high = mid-1;

}
return -1; // item not found

}

Analysis 3: Binary Search (Iterative)
 Time spent outside the loop is at most c1

 Time spent in each iteration of the loop is at
most c2

 For inputs of size n, if the program goes through
at most f(n) iterations, then the complexity is

c1 + c2f(n) or O(f(n))

 i.e. the complexity is decided by the number of
iterations (loops)

[CS1020E AY1617S1 Lecture 9] 34

Analysis 3: Finding f(n)
 At any point during binary search, part of array is “alive”

(might contain x)

 Each iteration of loop eliminates at least half of
previously “alive” elements

 At the beginning, all n elements are “alive”, and after
 One iteration, at most n/2 are left, or alive

 Two iterations, at most (n/2)/2 = n/4 = n/22 are left

 Three iterations, at most (n/4)/2 = n/8 = n/23 are left

 . . .

 k iterations, at most n/2k are left

 At the final iteration, at most 1 element is left

[CS1020E AY1617S1 Lecture 9] 35

Analysis 3: Finding f(n)
 In the worst case, we have to search all the way up

to the last iteration k with only one element left

 We have
n/2k = 1  2k = n  k = log2(n) = lg(n)

 Hence, the binary search algorithm takes O(f(n)), or
O(lg(n)) time

 Observation
 In general, when the domain of interest is reduced by a

fraction for each iteration of a loop, then it will lead to
O(log n) growth rate

[CS1020E AY1617S1 Lecture 9] 36

Analysis of Different Cases
 For an algorithm, three different cases of analysis

 Worst-Case Analysis
 Look at the worst possible scenario

 Best-Case Analysis
 Look at the ideal case
 Usually not useful

 Average-Case Analysis
 Probability distribution should be known
 Hardest/impossible to analyze

 Example: Sequential Search
 Worst-Case: target item at the tail of array
 Best-Case: target item at the head of array
 Average-Case: target item can be anywhere

[CS1020E AY1617S1 Lecture 9] 37

Summary
 Algorithm Definition

 Algorithm Analysis
 Counting operations
 Asymptotic Analysis
 Big-O notation (Upper-Bound)

 Three cases of analysis
 Best-case
 Worst-case
 Average-case

[CS1020E AY1617S1 Lecture 9] 38

