CS1020E: DATA STRUCTURES AND ALGORITHMS I

Tutorial 1 - Basic C++, OOP Problem Solving

(Week 3, starting 22 August 2016)

1. Evaluation Order (Note: You can use any other C++ code editor/compiler).

Examine the code snippet. What is the output, and why?

Tip: Check your answer! Create a program in vim, paste main method within. Compile and run in sunfire.

```
int main() {
    int a = -1, b = 1, c = 1, d = 0, e = 2, f = 2, g = 0;
    int h = f-- && e++ && d++ && c-- || b++ || a++;
    if (g = 9) {
        cout << a << b << c << d << e << f << g << h << endl;
    } else {
        cout << h << g << f << e << d << c << b << a << endl;
    }
}
return 0;
}</pre>
```

2. Understanding Pointers

In OOP languages, pointers (so named in C++; may be called "references" in other languages) are widely used to locate one object from another. It is necessary to have a firm understanding of them.

For each of these cases, *independent of one another*, **draw** how the variables may appear in memory, and what **output** you would expect. You do not need to worry about the exact memory addresses, but you should find out how different expressions are related to each other. ②, ⑤, O, and ♦ represent memory addresses.

(a) has been done for you. (d) to (g) may be more difficult. Remember to check your answer.

Also, when the **new** keyword is used, the system dynamically allocates memory for the newly created object. Therefore, the object ends up in a portion of memory called the **heap**. Otherwise, when **new** is not used, objects assigned to variables declared within functions reside on the **stack**.

Why do we need to bother about heap vs stack memory? What other keyword and syntax is/are involved?

3. Object-Oriented Programming

You want to print out the lyrics of this song¹, to teach (or confuse) kids about the sounds animals make:

```
Dog goes woof
Cat goes meow
Bird goes tweet
Mouse goes squeak
Cow goes moo
```

The lyrics can be generalized for different animals, each having a different *name* and **sound**. With knowledge of object-oriented programming, you want to demonstrate that it is possible to write a program that *displays* the song. To show that your program works, add the 5 animals above and test your program.

Don't forget to include the necessary *system header*, and use the appropriate *namespace*. Use the skeleton on the next page to solve the problem:

```
class Animal {
     /* TODO: Implement data and functionality of an Animal here */
};
class Song {
 private:
     Animal** _animals;
     const int _size;
 public:
     Song() { /* TODO: Create your zoo, an Animal* array */ }
     ~Song() { /* TODO: Cleanup the 5 animals and the array... */ }
     void display() {
          for (int i = 0; i < size; i++)</pre>
               cout << endl; /* TODO: Add the lyrics here... */</pre>
};
int main() {
     Song song;
     song.display();
     return 0;
```

- Hope you had fun, prepare well for tutorial 2 ② -

Draw diagrams
Attempt tutorials
Test your solution

¹ Adapted from "The Fox" by Ylvis, 2013