CS1020E: DATA STRUCTURES AND ALGORITHMS |

Tutorial 1 — Basic C++, OOP Problem Solving
(Week 3, starting 22 August 2016)

1. Evaluation Order (Note: You can use any other C++ code editor/compiler).
Examine the code snippet. What is the output, and why?
Tip: Check your answer! Create a program in vim, paste main method within. Compile and run in sunfire.

int main() {

inta=-1,b=1,c=1,d=0,e=2, f=2,9g=0;
int h = f-- && e++ && d++ && c-- || b++ || a++;
it (g9=9{

cout << a << b<<c<<d=<<ec<< T <<<g<<h<<endl;
} else {

cout << h << g<< f<<e<<d=<<c<<b<<acx<endl;
}
return O;

} 4 A i —
| | | |
a b c d e f g h

2. Understanding Pointers
In OOP languages, pointers (so named in C++; may be called “references” in other languages) are widely
used to locate one object from another. It is necessary to have a firm understanding of them.

For each of these cases, independent of one another, draw how the variables may appear in memory, and
what output you would expect. You do not need to worry about the exact memory addresses, but you

should find out how different expressions are related to each other. ©), ®,0,and ¢ represent memory

addresses.

(a) has been done for you. (d) to (g) may be more difficult. Remember to check your answer.

(a) (b) (c)
int 1 = 3; int* p = new Iint(3); int* ap = new iInt[3];
cout << &i; cout << &p << p << *p;

for (int 1 = 0; 1 < 3; i++)

ap[i] =1 - 1;

cout << &ap << ap << *ap << ap[O0]:
(d) (e)
int i = 3; int* p = new Iint(3);
cout << *&i; cout << *&p << &*p <<

Page 10f3

(f)
(8) int™>* dp = new int* [3];
int* p = new int(3);
int** dp = &p; for (int 1 = 0; 1 < 3; i++)
int** tp = &dp; dp[i] = new int(i-1);
cout << *tp << &**tp << cout << &dp << dp << *dp <<
*@*EP << **&tp; dp[0] << **dp << *dp[0O];
(a) © ‘$~.__-~
Address &i ©
‘ Contents ‘ ‘ ‘ ‘ 3 ‘
The output &1 is ©. & stack i
(b)
Address ©
Contents Q
The output is heap 2 <stack p
(c)
Address () ©
Contents 0
The output is heap 2 & stack ap
(d)
Address ©
| Contents | | 3 |
The output is < stack i
(e)
Address ® ©
Contents Q
The output is heap 2 &stack p
(f)
Address () ¢ ©
Contents ¢ Q
The output is heap > < stack dp
(g)
Address o) ¢ ©
Contents Q
The output is heap > < stack tp dp p

Also, when the new keyword is used, the system dynamically allocates memory for the newly created
object. Therefore, the object ends up in a portion of memory called the heap. Otherwise, when new is not
used, objects assigned to variables declared within functions reside on the stack.

Why do we need to bother about heap vs stack memory? What other keyword and syntax is/are involved?

Page 2 of 3

3. Object-Oriented Programming

You want to print out the lyrics of this song, to teach (or confuse) kids about the sounds animals make:

Dog goes woof

Cat goes meow
Bird goes tweet
Mouse goes squeak
Cow goes moo

The lyrics can be generalized for different animals, each having a different name and sound. With

knowledge of object-oriented programming, you want to demonstrate that it is possible to write a program

that displays the song. To show that your program works, add the 5 animals above and test your program.

Don’t forget to include the necessary system header, and use the appropriate namespace. Use the skeleton

on the next page to solve the problem:

class Animal {
/* TODO: Implement data and functionality of an Animal here */
}:

class Song {
private:
Animal** _animals;
const iInt _size;
public:
Song() { /* TODO: Create your zoo, an Animal* array */ }
~Song() { /* TODO: Cleanup the 5 animals and the array... */ }

void display()_{

for (int 1 = 0; 1 < _size; i++)
cout << endl; /* TODO: Add the lyrics here... */

};

int main() {
Song song;
song.display(Q);
return O;

- Hope you had fun, prepare well for tutorial 2 © -

Draw diagrams
Attempt tutorials
Test your solution

! Adapted from “The Fox” by Ylvis, 2013
Page 3 of 3

