
Page 1 of 3

CS1020E: DATA STRUCTURES AND ALGORITHMS I

Tutorial 2 – Advanced OO
(Week 4, starting 29 August 2016)

1. Advanced OO
Old McDonald has a farm with some animals.

Each animal has a name, and makes a sound. Some animals are flyers. These animals can fly – once they
start to fly, their sound is “flap flap” till they stop. Some flyers are gliders. These animals can glide – if they
are flying, once they start to glide, their movement is “whoosh” till they stop.

Your junior has written this code to describe the animals in the farm. However, his code cannot be
compiled, as there are 4 errors within these 3 classes. (Only 1 of these errors affect compilation)

class Animal {
 string _name; // e.g. Cow
 string _sound; // e.g. moo
 public:
 Animal(string name, string sound) { _name = name; _sound = sound; }
 string getName() { return _name; }
 void makeSound() { cout << _name << " goes " << _sound << endl;}
};
class Flyer : public Animal {
 protected:
 string _name;
 string _sound;
 bool _isFlying;
 public:
 Flyer(string name, string sound)
 : _name(name), _sound(sound), _isFlying(false) {}
 void makeSound() {
 if(_isFlying) cout << getName() << " goes flap flap" << endl;
 else Animal::makeSound();
 }
 void fly() { _isFlying = true; }
 void stop() { _isFlying = false; }
};
class Glider : Flyer {
 bool _isGliding;
 public:
 Glider(string name, string sound)
 : Flyer(name, sound), _isGliding(false) {}
 void glide() { if(_isFlying) _isGliding = true; }
 void stop() { _isFlying = false; _isGliding = false; }
 void makeSound() {
 if(_isGliding) cout << getName() << " goes whoosh" << endl;
 else makeSound();
 }
};

Page 2 of 3

(a) What does the protected keyword mean? In this example, how is it useful?

(b) Within a member function in the Flyer class, why can getName() be invoked?

(c) How is overriding demonstrated here, and how is it useful?

(d) Identify and rectify the 4 errors.

Tip: Try to compile your code! Once the compilation errors are rectified, instantiate objects and test.

2. Inheritance & Polymorphism
Related to Q1, Old McDonald still has a farm with some animals. You want to make use of polymorphism
to allow 5 animals in the farm to makeSound(), without having to concern yourself about what type of
Animal each is. To simplify things, let’s ignore Gliders. There are only Flyers and non-Flyers.

 Parrot Cow Mosquito Sheep Fish
 “squak” “moo” “buzz” “mehh” “blurp”
 Perched Flying

class Animal { ... }; // Rectify the problem in (c)
class Flyer : public Animal { ... };
class OldMcDonald {
 private:
 Animal** _farm; // Old McDonald had a farm (still has now)
 const int _size; // Fixed farm size of 5
 public:
 OldMcDonald() {
 /* TODO: Create your farm, an array of Animal* elements */
 }
 ~OldMcDonald() {
 /* TODO: Old McDonald has no (more) farm... */
 }
 void makeSomeNoise() {
 /* TODO: Make sound(s) without looking out for Flyers...! */
 }

...

Picture credits: clipartpanda.com

Page 3 of 3

 void fillThisFarm() {
 _farm[0] = new Flyer("Parrot", "squak");
 _farm[1] = new Animal("Cow", "moo");
 _farm[2] = new Flyer("Mosquito", "buzz");
 ((Flyer*)_farm[2])->fly();
 _farm[3] = new Animal("Sheep", "mehh");
 _farm[4] = new Animal("Fish", "blurp");
 }
};

(a) What is the datatype of _farm[0]? Why can a pointer to Flyer be assigned to _farm[0]?

(b) Why can’t ((Flyer*)_farm[2])->fly() be replaced with _farm[2]->fly()?

(c) With Animal and Flyer classes from Q1, why will polymorphism not work? Make the necessary change.

(d) Solve the problem, ensuring that the sounds output by each animal are correct. The output of
makeSomeNoise() should be:

Parrot goes squak
Cow goes moo
Mosquito goes flap flap
Sheep goes mehh
Fish goes blurp

- Practise consistently ☺ -

 Revise a concept
Test understanding

Code to confirm

