
Page 1 of 7

CS1020E: DATA STRUCTURES AND ALGORITHMS I

Tutorial 2 – Advanced OO
(Week 4, starting 29 August 2016)

1. Advanced OO
Old McDonald has a farm with some animals.

Each animal has a name, and makes a sound. Some animals are flyers. These animals can fly – once they
start to fly, their sound is “flap flap” till they stop. Some flyers are gliders. These animals can glide – if they
are flying, once they start to glide, their movement is “whoosh” till they stop.

Your junior has written this code to describe the animals in the farm. However, his code cannot be
compiled, as there are 4 errors within these 3 classes. (Only 1 of these errors affect compilation)

class Animal {
 string _name; // e.g. Cow
 string _sound; // e.g. moo
 public:
 Animal(string name, string sound) { _name = name; _sound = sound; }
 string getName() { return _name; }
 void makeSound() { cout << _name << " goes " << _sound << endl;}
};
class Flyer : public Animal {
 protected:
 string _name;
 string _sound;
 bool _isFlying;
 public:
 Flyer(string name, string sound)
 : _name(name), _sound(sound), _isFlying(false) {}
 void makeSound() {
 if(_isFlying) cout << getName() << " goes flap flap" << endl;
 else Animal::makeSound();
 }
 void fly() { _isFlying = true; }
 void stop() { _isFlying = false; }
};
class Glider : Flyer {
 bool _isGliding;
 public:
 Glider(string name, string sound)
 : Flyer(name, sound), _isGliding(false) {}
 void glide() { if(_isFlying) _isGliding = true; }
 void stop() { _isFlying = false; _isGliding = false; }
 void makeSound() {
 if(_isGliding) cout << getName() << " goes whoosh" << endl;
 else makeSound();
 }
};

Page 2 of 7

(a) What does the protected keyword mean? In this example, how is it useful?

(b) Within a member function in the Flyer class, why can getName() be invoked?

(c) How is overriding demonstrated here, and how is it useful?

(d) Identify and rectify the 4 errors.

Tip: Try to compile your code! Once the compilation
errors are rectified, instantiate objects and test.

Answer

(a)
protected is an access modifier, in between public and private. Protected access means the
member is accessible from subclasses, but not other classes. This allows subclasses to use the superclass’
data and functionality, while protecting them from the outside world. The keyword can be applied to both
member variables and member functions.

In this example, we want to encapsulate whether a Flyer object is currently flying, from the outside world,
but allow a Glider object (which IS also a Flyer) to read and modify this data.

(b)
Protected and public members are inherited from the superclass Animal into the subclass Flyer, as with
member variables. This means that a Flyer object uses the getName() functionality implemented within
the superclass Animal. In this example, getName() is equivalent to Animal::getName() or
this->Animal::getName().

Similarly, the protected member variable _isFlying can be used within a member function in Glider
class because it is inherited. Such use is equivalent to this->Flyer::_isFlying.

(c)
Flyer and Glider have their own implementations of makeSound() and stop(). A Glider object would
choose to use its own implementation of member function Glider::stop() instead of
Flyer::stop(), because Glider’s stop() is said to override Flyer’s stop().

Through overriding, for the same functionality, we can selectively make subclasses have different behavior
from that of the superclass.

Related Concepts
 Member inheritance
 Overriding, scope resolution
 Member variables NOT overridden
 Constructors chained, NOT inherited
 public access vs public inheritance

Page 3 of 7

(d)
1 – Member variables DO NOT override variables with the same name from the superclass, unlike member
functions. Therefore, a Flyer object has two names, Animal::_name (hidden from the Flyer class
because it is private) and Flyer::_name!

Lesson: In a subclass, avoid declaring member variable that has the same name as that of a
superclass member variable. You will confuse yourself.

If Animal::_name is protected or public, it will be shadowed (hidden) by Flyer::_name.

Solution: As an Animal already has a name and sound, we do not want to duplicate these data for Flyers.
We can use the getName() and makeSound() inherited from Animal to achieve the needed
functionality. Therefore, within the Flyer class, strings _name and _sound should not be declared.

2 – Within Glider::makeSound(), there is a call to makeSound(). As there are 3 implementations
of makeSound() in Glider and its superclasses, the lowest in the inheritance hierarchy will be chosen,
Glider::makeSound(). This means that we have a function that repeatedly invokes itself. After
resolving all compilation errors, a call to this function will result in infinite recursion (infinite loop).

Solution: After overriding Flyer::makeSound() with Glider::makeSound(), we want to use
Flyer’s makeSound() functionality. Use the scope resolution operator (::) to specify which
implementation of makeSound() you want to use, i.e. Flyer::makeSound().

3 – For compilation errors, learn to read error messages and identify the problem(s). At the very least, you
may be able to identify where the error occurred, based on the line number.

<file name>:<line>:<character>:<message>

mcd.cpp:4:9: error: 'std::string Animal::_name' is private
 string _name; // e.g. Cow
 ^

Here, we are trying to access a private attribute Animal::_name from the initialization list of the
constructor of subclass Flyer, in an attempt to set Animal’s attributes.

Solution: We have to invoke the superclass constructor directly in the initialization list. The only way we
can set the name and sound of an Animal is through Animal’s constructor (when it is created). Attempting
to invoke Animal(…) within Flyer’s constructor body fails too.

Call immediate superclass constructor in subclass’ initialization list, not in constructor body.

Correct syntax
Flyer(…) : Animal(name,sound),…

Page 4 of 7

This error highlights 2 important points: constructors are
not inherited – you cannot otherwise use Animal(…)
functionality within Flyer; constructor execution is
chained.

When the subclass’ constructor is called, its initialization
list and body are executed last. The topmost constructor
in the inheritance hierarchy completes execution first.

As we start to initialize Flyer::_isFlying, Animal
would have been completely initialized, while name and
sound attributes would already have been assigned values
through Animal’s constructor body.

4 – Glider’s inheritance of Flyer is not public. There will be problems accessing members from outside
the Glider class.

Try instantiating a Glider object and calling its inherited member function getName(), which is supposed
to be a public inherited member function. Without public inheritance, is getName() accessible from the
outside world?

If you are interested to find out more, read up this post and the first two replies:
http://stackoverflow.com/questions/860339/
difference-between-private-public-and-protected-inheritance

Corrected Code Snippet
class Animal {
 string _name;
 string _sound;
 public:
 Animal(string name, string sound) { _name = name; _sound = sound; }
 string getName() { return _name; }
 void makeSound() { cout << _name << " goes " << _sound << endl;}
};
class Flyer : public Animal {
 protected:
 bool _isFlying; // Error 1: Shadowed variables removed
 public:
 Flyer(string name, string sound)
 : Animal(name, sound), _isFlying(false) {} //Err 3: C’tor call
 void makeSound() {
 if(_isFlying) cout << getName() << " goes flap flap" << endl;
 else Animal::makeSound();
 }
 void fly() { _isFlying = true; }
 void stop() { _isFlying = false; }
};

 Flyer(…)

1

4 Initialization
 :_isFlying(false)
5 Body {} (Empty)

 Animal(…)
2 Initialization : (Nil)
3 Body {
 _name = name;
 _sound = sound;
}

Page 5 of 7

class Glider : public Flyer { // Error 4: Inheritance made public
 bool _isGliding;
 public:
 Glider(string name, string sound)
 : Flyer(name, sound), _isGliding(false) {}
 void glide() { if(_isFlying) _isGliding = true; }
 void stop() { _isFlying = false; _isGliding = false; }
 void makeSound() {
 if(_isGliding) cout << getName() << " goes whoosh" << endl;
 else Flyer::makeSound();// Error 2: Scope resolution used
 }
};

2. Inheritance & Polymorphism
Related to Q1, Old McDonald still has a farm with some animals. You want to make use of polymorphism
to allow 5 animals in the farm to makeSound(), without having to concern yourself about what type of
Animal each is. To simplify things, let’s ignore Gliders. There are only Flyers and non-Flyers.

 Parrot Cow Mosquito Sheep Fish
 “squak” “moo” “buzz” “mehh” “blurp”
 Perched Flying

class Animal { ... }; // Rectify the problem in (c)
class Flyer : public Animal { ... };
class OldMcDonald {
 private:
 Animal** _farm; // Old McDonald had a farm (still has now)
 const int _size; // Fixed farm size of 5
 public:
 OldMcDonald() {
 /* TODO: Create your farm, an array of Animal* elements */
 }
 ~OldMcDonald() {
 /* TODO: Old McDonald has no (more) farm... */
 }
 void makeSomeNoise() {
 /* TODO: Make sound(s) without looking out for Flyers...! */
 }

...

Picture credits: clipartpanda.com

Page 6 of 7

 void fillThisFarm() {
 _farm[0] = new Flyer("Parrot”, "squak");
 _farm[1] = new Animal("Cow", "moo");
 _farm[2] = new Flyer("Mosquito", "buzz");
 ((Flyer*)_farm[2])->fly();
 _farm[3] = new Animal("Sheep", "mehh");
 _farm[4] = new Animal("Fish", "blurp");
 }
};

(a) What is the datatype of _farm[0]? Why can a pointer to Flyer be assigned to _farm[0]?

(b) Why can’t ((Flyer*)_farm[2])->fly() be replaced with _farm[2]->fly()?

(c) With Animal and Flyer classes from Q1, why will polymorphism not work? Make the necessary change.

(d) Solve the problem, ensuring that the sounds output by each animal are correct. The output of
makeSomeNoise() should be:

Parrot goes squak
Cow goes moo
Mosquito goes flap flap
Sheep goes mehh
Fish goes blurp

Answer

(a)
Datatype of _farm[0] is Animal*, or Animal pointer. This means it stores the address of Animal object.
_farm is an Animal** typed variable, so after dereferencing ([]), _farm[0]’s type is Animal*.

In C++, we can substitute a superclass-typed object with a subclass-typed object when assigning to a
pointer. In other words, since we expect the address of an Animal to be in _farm[0], we allow the
Animal pointer to store the address of a Flyer, because a Flyer IS an Animal.

The new keyword creates an object on the heap and returns the address of that object. A Flyer pointer is
returned and assigned to the Animal pointer _farm[0].

(b)
As _farm[2] is an Animal pointer, (_farm[2]->) dereferences to an Animal, which does not have the
member function fly(). Although this Animal is a Flyer, the compiler does not know that. Therefore, we
first have to explicitly downcast the pointer from an Animal pointer to a Flyer pointer, and then
dereference the pointer to get a Flyer object, which has fly().

Remember, we are casting the pointer, not the object, from one type to another!

Related Concepts
 Substitutability principle
 Function must exist in *(pointer type)
 Polymorphic functions only with virtual

Page 7 of 7

(c)
The virtual keyword is missing in Animal::makeSound(). Without the keyword, static binding is
used. The function executed will follow the implementation in *(pointer type), regardless of the object
type. The flying Mosquito goes buzz because _farm[2]->makeSound() uses
Animal::makeSound().

On the other hand, with the keyword applied to a function in the *(pointer type) or above, dynamic
binding occurs. The function executed will follow the implementation in the actual object type, allowing
the program to behave in a polymorphic manner (one pointer type, many different function
implementations). The flying Mosquito goes flap flap because _farm[2]->makeSound()
uses Flyer::makeSound().

(d) After Animal::makeSound() is made virtual:

OldMcDonald() : _size(5) { _farm = new Animal* [_size]; }
~OldMcDonald() {
 for (int i = 0; i< _size; i++) delete _farm[i];
 delete [] _farm;
}
void makeSomeNoise() {
 for (int i = 0; i < _size; i++) _farm[i]->makeSound();
}

Again, remember to return memory allocated on the heap, by using the delete keyword on the pointers,
and delete [] on pointers to arrays.

- Practise consistently ☻ -

 Revise a concept
Test understanding

Code to confirm

