CS1020E: DATA STRUCTURES AND ALGORITHMS |

Tutorial 3 — Template, String, Streams, Vector, Iterator
(Week 5, starting 5 September 2016)

1. Template Class, New Data Structures
You are given a template Pair<TL, TR> class. Each object of this class can point to 2 objects of different
types:

template <typename TL, typename TR>

class Pair {
TL* objLeft; TR* _objRight;

public:
Pair(TL* pobjLeft, TR* pobjRight) :
_objLeft(pobjLeft), objRight(pobjRight) {}

TL* getLeft() { return _objLeft; }
TR* getRight() { return _objRight; }

}:

We now want to create a TemplateTriple<TL, TM, TR> class. Each object of this class can point to 3 objects
of different types. Restriction for each of parts (a) - (d): Your class should have only ONE member variable,
and you should be using the Pair class where possible.

There are 2 different ways to achieve this:

(a) Use inheritance.
(b) Use composition. TemplateTriple is composed of a Pair, i.e. it has a Pair object as a member variable.
[Hint: How do you point to 3 objects in a Pair? Use 2 Pair objects, but only as a member variable]

We can now instantiate a TemplateTriple object that points to 3 objects. A Person has a name (string),
weight (double), and height (double). Create a Person data structure and use a TemplateTriple to help you
store data:

(c) Use inheritance. [Hint: Are you inheriting a family of classes, or just one specific type?]
(d) Use composition. Person is composed of a TemplateTriple.

A Person object should have 3 getters, one for each attribute. Each getter should return the value of the
name/weight/height itself, and NOT a pointer to the value.

Page 10f3




2. STL Vector and Iterator
A logistics company uses RFID tags to track the movement of hundreds of thousands of pallets. As pallets
arrive, they pass through a scanner, and the pallet ID is added to the end of an STL vector<string>
called pal lets.

e.g. pallets [“20-0314”, “20-A921”, “20-A921”, “20-A921"”, “20-A921”, “01-0003”, "D9-3210" ...]

Quite often, the same pallet is read repeatedly and consecutively, due to incorrectly configured hardware.
We need to remove all consecutive (side-by-side) repeated pallet IDs from the vector pal lets.

void cleanUp(vector<string>& pallets) { // why the & ?
/* your code here */
by

(a) Use a single loop over pal lets, directly removing the undesired elements one at a time

(b) Do the same as (a), this time using ONLY STL iterators instead of indexes

(c) Can you see that the algorithm in (a) & (b) is inefficient, even though there is just one loop? How do we
improve?

3. String, Streams
You are interested in finding out the volume and weight of some products. Each product record contains
(product ID, © garbage ©, volume in mm?, weight in grams) in that order.

The following are examples of records, all valid:
e 1234567:Wheel bearing|Yamaha XJ900s | Front:9000 50
e 00900#acm327df2mm3d1fO#Carburetor needle;Honda CB400;4 pcs;8 5
e 000000,0il filter,Yamaha,3FV-13440-00,225000 200

As the data comes from various sources, the delimiter between various parts of the data may be any one
of {',/, ", ', ‘|’, ‘#'}. The product ID is guaranteed to be a non-negative integer, while the (volume weight)
part is guaranteed to be the only data after the last delimiter.

The above 3 records should be formatted as:

| 1234567] 9000] 50] < Each line is one record
| 900] 8| 5]
| 0] 225000] 200]

[Questions on next page...]

Page 2 of 3




(a) Complete the implementation of the two methods in the given class:

#include <iomanip>
#include <iostream>
#include <sstream>
#include <string>
using namespace std;

class Product {
long productlD; // any non-negative int is a valid ID
long volume; // in cubic mm
long _weight; // in grams

public:
Product(string plnput) { ... } // parse 1 record - set member vars
string str() { --- } // return the nicely formatted record

long getProductID() { return _productiD; }
long getVolume() { return _volume; }
long getWeight() { return _weight; }

};

Tip: Check out functions of <string> to help with parsing, that of <iomanip> to help with formatting

(b) Besides returning a formatted string through format(), how can we allow the formatted representation
of a Product object to be easily printed?
i.e. How do we enable cout << someProduct << endl; to work?

- Learn how to learn © -

Explore std library
Test its functions
Code incrementally

Page 3 of 3




