CS1020E: DATA STRUCTURES AND ALGORITHMS |

Tutorial 3 — Template, String, Streams, Vector, Iterator
(Week 5, starting 5 September 2016)

1. Template Class, New Data Structures
You are given a template Pair<TL, TR> class. Each object of this class can point to 2 objects of different

types: Related Concepts
template <typename TL, typename TR> e Template]
class Pair { e Pass-by-value vs pass-by-pointer
* H - * iRi -
TI__ _oObjLeft; TR* _objRight; e Operators: . vs —>
public:

Pair(TL* pobjLeft, TR* pobjRight) :
_oObjLeft(pobjLeft), objRight(pobjRight) {}
TL* getLeft() { return _objLeft; }
TR* getRight() { return _objRight; }
}:

We now want to create a TemplateTriple<TL, TM, TR> class. Each object of this class can point to 3 objects
of different types. Restriction for each of parts (a) - (d): Your class should have only ONE member variable,
and you should be using the Pair class where possible.

There are 2 different ways to achieve this:

(a) Use inheritance.
(b) Use composition. TemplateTriple is composed of a Pair, i.e. it has a Pair object as a member variable.
[Hint: How do you point to 3 objects in a Pair? Use 2 Pair objects, but only as a member variable]

We can now instantiate a TemplateTriple object that points to 3 objects. A Person has a name (string),
weight (double), and height (double). Create a Person data structure and use a TemplateTriple to help you
store data:

(c) Use inheritance. [Hint: Are you inheriting a family of classes, or just one specific type?]
(d) Use composition. Person is composed of a TemplateTriple.

A Person object should have 3 getters, one for each attribute. Each getter should return the value of the
name/weight/height itself, and NOT a pointer to the value.

Answer

Note the difference between the:

e Pair<TL, TR> class given here stores two pointers to two elements of different types
e Pair<T> class in lectures stores two elements of the same type
e std::pair<T1, T2> class in <utility> stores two elements of different types

Aside from this question, we often use the C++ library data structures instead of reinventing the wheel:
std::pair in <utility>: http://www.cplusplus.com/reference/utility/pair

Page 1of 7

template <typename TL, typename TM, typename TR>
class TemplateTriplelnh : public Pair <TL, TR> { 7/ (a)
TM* _objMid; // extending left and right is cleanest
public: // otherwise, inherited getters will return wrong data
TemplateTriplelnh(TL* pobjLeft, TM* pobjMid, TR* pobjRight) :
Pair<TL, TR>(pobjLeft, pobjRight), _objMid(pobjMid) {}

T™M* getMid() { return _objMid; }
};

template <typename TL, typename TM, typename TR>
class TemplateTripleComp { 7/ (b)
Pair<TL, Pair<TM,TR> > _objPair; // object, not pointer!
public:
TemplateTripleComp(TL* pobjLeft, TM* pobjMid, TR* pobjRight)
: _objPair(pobjLeft, new Pair<TM, TR>(pobjMid, pobjRight)) {}
~TemplateTripleComp() { delete _objPair.getRight(); }

TL* getLeft() { return _objPair.getLeft(); }

TM* getMid() { return _objPair.getRight()->getLeft(); }

TR* getRight() { return _objPair.getRight()->getRight(); }
}; // watch the . vs -> operator

TemplateTriple<TL, TM, TR>and Person can be viewed as abstract data types, or as data
structures with implementation. If we view them as abstract data types, then we know what each of them
can do but disregard their internal implementation.

class Personlnh : public TemplateTriple <string, double, double> {// (c)
public:

Personlnh(string pstrName, double pdblWt, double pdblHt) :

TemplateTriple(new string(pstrName),
new double(pdbIWt), new double(pdblHt)) {}

~PersonInh() {
delete getLeft(); delete getMid(); delete getRight();

}

string getName() { return *getLeft(); } // return object, not ptr!
double getWwt() { return *getMid(); }
double getHt() { return *getRight(); }

}:; // now we have 3 inherited getter methods left hanging...

/* extra: to remove the 3 inherited getter methods,
we could use private inheritance,
but this can cause other design problems

*/

Page 2 of 7

class PersonComp { 7/ (d)
TemplateTriple<string, double, double> objTriple;
public:
PersonComp(string pstrName, double pdbIWt, double pdblHt) :
_objTriple(new string(pstrName), // why all the new?
new double(pdbIWt), new double(pdblHt)) {}
~PersonComp() {
delete _objTriple.getLeft();
delete _objTriple.getMid();
delete _objTriple.getRight();
+

string getName() { return *_objTriple.getLeft(); }
double getWwt() { return *_objTriple.getMid(); }
double getHt() { return * _objTriple.getRight(); }

2. STL Vector and Iterator
A logistics company uses RFID tags to track the movement of hundreds of thousands of pallets. As pallets
arrive, they pass through a scanner, and the pallet ID is added to the end of an STL vector<string>
called pal lets.

e.g. pallets [“20-0314”, “20-A921”, “20-A921”, “20-A921"”, “20-A921”, “01-0003"”, "D9-3210" ...]

Quite often, the same pallet is read repeatedly and consecutively, due to incorrectly configured hardware.
We need to remove all consecutive (side-by-side) repeated pallet IDs from the vector pal lets.

void cleanUp(vector<string>& pallets) { // why the & ?
/* your code here */
by

(a) Use a single loop over pal lets, directly removing the undesired elements one at a time
(b) Do the same as (a), this time using ONLY STL iterators instead of indexes

(c) Can you see that the algorithm in (a) & (b) is inefficient, even though there is just one loop? How do we
improve?

Related Concepts
e vector element access - at(), []
e vector erase() & insert() generally inefficient
e jterator ++ -- ¥, random access
e jteratorinvalidation

Page 3 of 7

Answer

(a)

void cleanUp(vector<string>& pallets) {
int 1dx = 1;
while (1dx < pallets.size()) { 7/ while within bounds
it (pallets.at(idx - 1) == pallets.at(idx))
pallets.erase(pallets.begin() + 1dx); // iterator created
else
1dx++;
by
by

The array subscript operator pal lets[1dx] also works in place of vector’s at(1dx) member function.

(b)

void cleanUp(vector<string>& pallets) {
if (pallets.size() < 2) return;
vector<string>::iterator prevltr = pallets.begin(), 7/ 1dx O
currltr = pallets.begin() + 1; // 1dx 1
while (currltr < pallets.end()) { 7/ while within bounds
it (*prevlitr == *currltr) { // don’t forget to dereference
currltr = pallets.erase(currltr); // currltr invalidated

} else {
previtr++;
currltr++;

}

}
+

Removing an element using erase requires left-shifting, invalidating iterators from that index (incl.) onward.

(c)
Each time we remove an element from the vector using erase (iterator), many elements are

accessed. Given a large vector of size n, in which every two consecutive elements are repeated, the g calls
2

to erase() will, in total, result in close to nT elements being shifted.

We can avoid this by iterating through the pal lets once and copying the desired elements out to

another vector buffer, then quickly replacing pal lets’ internal array with buffer’s. This requires
proportional to n elements being accessed / shifted.

void cleanUp(vector<string>& pallets) {
it (pallets.size() < 2) return;
vector<string> buffer;
buffer.push_back(pallets.front());
for (vector<string>::iterator itr = pallets.begin() + 1;
itr < pallets.end(); itr++)
it (buffer.back() = *itr)
buffer._push_back(*itr);
pallets.swap(buffer);

Page 4 of 7

Again, we can just use C++ library functions instead of reinventing the wheel:
unique() in <algorithm>: http://www.cplusplus.com/reference/algorithm/unique

void cleanUp(vector<string>& pallets) { // as efficient as using iter.
pallets.resize(unique(pallets.begin, pallets.end()) - pallets.begin());
by

Wow, just one statement! In one pass through pal lets, unique() removes all adjacent elements that
have the same pallet ID, and returns an iterator denoting where the new “end()” should be. As the function
does not decrease the size of the container, we need to resize() pal lets as there may now be less
elements within it.

Don’t forget that end() is an iterator AFTER the last element, a.k.a. “past-the-end” element.

Note: We say that the algorithm in (a) and (b) is inefficient because it runs in O(n?) or quadratic time, while
(c) runs in O(n) or linear time. The use of iterators may seem meaningless to you now, as array-based lists
have random access. However, iterators become very useful for other data structures such as linked lists
and hash tables. All these will be learnt later.

3. String, Streams
You are interested in finding out the volume and weight of some products. Each product record contains
(product ID, © garbage ©, volume in mm?, weight in grams) in that order.

The following are examples of records, all valid:
e 1234567:Wheel bearing|Yamaha XJ900s | Front:9000 50
e 00900#acm327df2mm3d1fO#Carburetor needle;Honda CB400;4 pcs;8 5
e 000000,0il filter,Yamaha,3FV-13440-00,225000 200

As the data comes from various sources, the delimiter between various parts of the data may be any one
of {',/, ", "', ‘|, ‘#'}. The product ID is guaranteed to be a non-negative integer, while the (volume weight)
part is guaranteed to be the only data after the last delimiter.

The above 3 records should be formatted as:

| 1234567] 9000] 50] & Each line is one record
| 900] 8| 5]
| 0] 225000] 200]

Page 5 of 7

(a) Complete the implementation of the two methods in the given class:

#include <iomanip>
#include <iostream>
#include <sstream>
#include <string>
using namespace std;

class Product {
long productlD; // any non-negative int is a valid ID
long volume; // in cubic mm
long _weight; // in grams

public:
Product(string plnput) { ... } // parse 1 record - set member vars
string str() { --- } // return the nicely formatted record

long getProductID() { return _productiD; }
long getVolume() { return _volume; }
long getWeight() { return _weight; }

};

Tip: Check out functions of <string> to help with parsing, that of <iomanip> to help with formatting

(b) Besides returning a formatted string through format(), how can we allow the formatted representation
of a Product object to be easily printed?
i.e. How do we enable cout << someProduct << endl; to work?

Page 6 of 7

Answer

(a)

Some common string member functions are highlighted:

Product(string plnput) { // parse one record
int firstDelim = plnput.find_first_of (", :; |#");
int lastDelim = plnput.find_last of(",:;|#");
int lastSpace = plnput.rfind(" ");

string prodID = plnput.substr(0, firstDelim);
string vol = plnput.substr(lastDelim + 1, lastSpace - lastDelim);
string wt = plnput.substr(lastSpace + 1, string::npos);

(istringstream(prodID)) >> productlD;
(istringstream(vol)) >> volume;
(istringstream(wt)) >> _weight;
e
string str() { // return the formatted record
ostringstream 0sSs;
0SS << "|" << setw(8) << _productlD << "|" << setw(7) << _volume
<< "|" << setw(4) << _weight << "|";
return oss.str();

}

NPOS is a constant member variable of the string class. When used as the length parameter of substr(),
it indicates "read till the end of string". When npos is returned by the ...find...() functions, it indicates “not
found”.

Reference: http://www.cplusplus.com/reference/string/string/npos/

(b)
We can overload the insertion operator << outside of the Product class, so that the formatted
representation of a Product object can be fed to an output stream easily.

ostream& operator<<(ostream& os, Product& prod) { // outside the class
0S << prod.str();
return os;

- Learn how to learn @ -

Explore std library
Test its functions
Code incrementally

Page 7 of 7

