CS1020E: DATA STRUCTURES AND ALGORITHMS |

Tutorial 6 — Stacks and Queues
(Week 8, starting 3 October 2016)

1. Stack and Queue Operations

In this exercise, we will use the STL Container adapter classes stack<T> and queue<T> to create stack and
gueue instances, and execute their operations, in the program below. Draw diagrams representing the
contents of stack s1, stack s2 and queue q after each operation:

#include <stack>
#include <queue>

using namespace std;

int main () {
queue<int> q;
stack<int> sl1, s2;

sl.push(3);
sl.push(2);
sl.push(1);

while (Isl.empty()) {
s2.push(sl.top());

sl.popQ):
if (Isl.empty())
s2.push(sl.top());

g-push(s2.top());

s1._push(qg.front());
q-popQ);

What is the default underlying data structure below a stack<T>? queue<T>?
Which data structures can you choose to use as the underlying data structure for each of the two adapters?

Answer
Both stack<T> and queue<T> use deque<T> as the default underlying data structure. You can also choose

to use, for
stack<T> - list<T> vector<T>
gueue<T> - list<T>

Think why it is reasonable that forward_list<T> is not an option to be used for either adapter, and why
vector<T> is not an option to be used as a queue<T>.

Page 1of 7

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

sl
2 2
3 1
— —
sl s2
3
2
2
1
——
sl s2
3
3
2
2
1
——
sl s2
3
3
2
2
1
—
sl s2

Front of
queue

/
I E—

Front of
queue

L2l

q

Front of
queue

Page 2 of 7

2. Stack and Queue Applications - Expression Evaluation
In the Lisp programming language, each of the four basic arithmetic operators appears before an arbitrary
number of operands, which are separated by spaces. The resulting expressions are enclosed in parentheses.
There is only one operator in a pair of parentheses. The operators behave as follows:
e (+ a b c) returnsthe sum of all the operands, and (+) returns 0.
e (- abc)returnsa-b-c-..and(- a) returnsO0-a.
The minus operator must have at least one operand.
e (* a b c) returnsthe product of all the operands, and (' *) returns 1.
e (/ abc)returnsa/b/c/..and (/ a) returns 1/ a, using double division
The divide operator must have at least one operand.

You can form larger arithmetic expressions by combining these basic expressions using a fully
parenthesized prefix notation. For example, the following is a valid Lisp expression:

(+(-6)(*234))

The expression is evaluated successively as follows:
(+-6.0(C*2.03.04.0))
(+-6.024.0)

18.0

Design and implement an algorithm that uses up to 2 stacks to evaluate a legal Lisp expression composed
of the four basic operators, integer operands, and parentheses. The expression is well formed (i.e. no
syntax error), there will always be a space between 2 tokens, and we will not divide by zero.

Output the result, which will be one double value.

Answer

One algorithm uses two stacks. The first is used to store the tokens read from the expression one by one
until the operator “)”. The second stack is used to perform a simple operation on the operands in the
innermost expression already in the first stack.

The tokens are pushed into the second stack in reverse order. Therefore, tokens from the second stack are
popped in the order of input. The calculated result is then pushed back into the first stack.

An example is given over the next few pages:

Page 3 of 7

1. The main
stack pushes
the tokens one
by one until it
reads “)”

Expression (+(-6)(*234))

The main stack

The temporary stack for

2. The main
stack pops out
the tokens and
push them one
by one to the
temporary
stack

simple calculation

6.0

The main stack

The temporary stack for

3.The
temporary
stack pushes
back the result
after
calculation

-6.0

simple calculation

The main stack

The temporary stack for

simple calculation

Page 4 of 7

4. The main
stack continues
to push in the
tokens from
the expression
until it reads

“u)"

Expression (+-6.0 (*234))

The main stack

5. The main
stack pops out
the tokens and
push them one
by one to the
temporary
stack

-6.0

The main stack

6. The
temporary
stack pushes
back the result
after
calculation.

The temporary stack for
simple calculation

2.0

3.0

4.0

The temporary stack for
simple calculation

The main stack

The temporary stack for
simple calculation

Page 5 of 7

7. The main
stack continues
to pushin the
tokens from

Expression (+-6.0 24.0)

by one to the
temporary
stack

stack pops out
the tokens and
push them one

the expression 24.0
until it reads 6.0
Il)”
+
(
The main stack
8. The main

9. The temporary
stack pushes back
the result after
calculation. When
it is at the end of
expression, the

final result is stored

in the main stack.

The main stack

18.0

The main stack

The temporary stack for
simple calculation

-6.0

24.0

The temporary stack for
simple calculation

The temporary stack for

simple calculation

Page 6 of 7

double performOperation(stack<double>& oprnds, char oprtor) {
double result = 0.0;
switch (oprtor){
case "+": // O + oprl + opr2 ...
result = 0.0;
while (Yoprnds.empty()) { result += oprnds.top(); oprnds.pop(); }
return result;
case "-":
if (oprnds.size() == 1) return -oprnds.top(); // -oprl
result = oprnds.top(); oprnds.pop(Q);
while (Toprnds.empty()) { result -= oprnds.top(); oprnds.pop(); }
return result; // oprl - opr2 - opr3 ...
case "*":
result = 1.0;
while (Yoprnds.empty()) { result *= oprnds.top(); oprnds.pop(); }
return result;
case "/":
it (oprnds.size() == 1) return 1 / oprnds.top(); 7/ 1/oprl
result = oprnds.top(); oprnds.pop(Q);
while (Yoprnds.empty()) { result /= oprnds.top(); oprnds.pop(); }
return result; // oprl / opr2 / opr3 ...
} // switch-case: here returns; don"t forget to break otherwise!
} /7 unspecified behaviour if operator invalid

int main() {
stack<string> allTokens; // outer stack
string currentToken;

while (cin >> currentToken) {
if (currentToken == "")") {
stack<double> operands; // inner stack
while (allTokens.top()-size() > 1 || // while operand
allTokens.top() -find_first_of('+-*/"")==string::npos) {
operands.push(stod(allTokens.top()));
allTokens.pop();
+
char oprtor = allTokens.top()[0];
allTokens.pop(); allTokens.pop(); // remove oprtor, remove "("
allTokens.push(to_string(performOperation(operands, oprtor)));

} else {

allTokens.push(currentToken);
}
}
cout << allTokens.top() << endl;
return O;

}

Work hard preparing for midterms

Page 7 of 7

