CS1020E: DATA STRUCTURES AND ALGORITHMS |

Tutorial 8 — Complexity Analysis
(Week 10, starting 17 October 2016)

1. Big-O Analysis

Big-O time complexity gives us an idea of the growth rate of a function. In other words, "for a large input
size N, as N increases, in what order of magnitude is the volume of executed code expected to increase?"
So, two functions with the same time complexity may have very different running times for all N.

Rearrange the 15 terms in ascending order of their Big-O time complexity:
4N?, logs(N), 20N, N*°, log(N!), NV, 3V, N log(N), 100N, log(N), 2", 2V, NI, (N-1)!, 22"
Also, classify the terms as “ time” where possible, and try to think of examples of each.

Do note that some of the above terms have equal Big-O complexity. Remember that in Big-O notation, we
only care about the dominating term of the function, without its coefficient. As N gets very large, the effect
of other terms on the volume of code executed becomes insignificant.

2. Analysis of Iterative Algorithms
How much code is executed, relative to input size N? Often, but NOT always, we can get an idea from the
number of times a loop iterates. Analyze the Big-O (worst-case) time complexity of each code snippet:

void printTriangle(int pintN) { 7/ (a)
for (int intRow = 0; intRow < pintN; intRow++) { // loop 1
for (int intCol = iIntRow; intCol < pintN; intCol++) // loop 2
cout << “*77;
cout << endl;

Some useful facts or techniques, to analyse the complexity of simple algorithms:
(a) Arithmetic series
(b) Geometric series
(c) How to draw the number of times a block of code is executed, in the form of a tree
In this case, there is only one inner loop, so the tree becomes a list.
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void printTrianglevV2(int pintN) { 7/ (b)
for (int intindex = 0; intindex < pintN; intindex++) // loop 1
for (int intRow = iIntlndex + 1; intRow > intlndex; intRow--) {
for (int intCol = pintN; intCol > intRow; intCol--) // 3
cout << “*7;
cout << endl;

void clear(vector<int>& items) { // (c)
int intN = 1tems.size();
for (int intlndex = 0; intIndex < intN; intlndex++) // loop 1
items.erase(items.begin());

void clear(vector<int>& items) { 7/ (d)
int IintN = items.size();
for (; --intN >= 0;) items.erase(items.begin() + IntN); // loop 1

void mystery(list<int>& items) { 7/ (e)
int IintN = items.size() 7/ 2;
while (intN > 0) { // loop 1
list<int>::iterator itr = items.begin();
advance(itr, intN); // move forward N elements
cout << *Itr << “ 7;
intN /= 2;

void guessWhatThisls!(vector<int>& items) { 7/ (F)
int intN = 1tems.size();
for (int intEnd = intN - 1; intEnd > 0; intEnd--) // loop 1
for (int intLeft = 0; intLeft < intEnd; intLeft++) // loop 2
if (items.at(intLeft + 1) < items.at(intLeft)) {

int intTemp = items.at(intLeft);
items_at(intLeft) = i1tems.at(intLeft + 1);
items.at(intLeft + 1) = intTemp;

! What's this?
Page 2 of 5




3. Analysis of Recursive Algorithms
For recursive problems, draw out the recursive tree. For each node in the tree:
e |dentify how many calls are made directly from that node
o Identify how the problem size decreases each call
e Indicate how much work is done per call, aside from other recursive calls

Calls on the same level usually have similar problem sizes. Therefore, for each level:
e Calculate the work done per level
e Calculate the height of the tree if it helps you

These may help you to evaluate the Big-O time complexity quickly.

long long power(long long x, long long k, long long M) {

if (k == 0) return 1;

long longy = k /7 2;

iT (2 *y == k) { // even power k
long long half = power(x, y, M); 7/ (xX*y) % M
return half * halft % M; 7/ [(X™Y % M)(X™y % M) % M

Yyelse { // k =2y + 1
long long next = power(x, 2 * vy, M); 7/ (x*2y) % M
return x * next % M; // [x (xX*2y % M)] % M

Worked Example
Notice, x and M do not change, and are not useful to us. To find the next problem size, y may help.
Substituting k/2 for y and disregarding O(1) statements, the code can be reduced to:

void powerReduced(long long k) {
iIT (k == 0) return; // base case, to identify leaf nodes
if (k% 2 == 0) powerReduced(k/2); // even k, recursive call
else powerReduced(k-1); // odd k, recursive call

} 7/ O0(1) work done per call (aside from rec. calls)

Next, draw out the recursive tree (list, in this case, as only one call is made within another)
We here assume k is a power of 2 (e.g. 64, 1024, ...)

Level Problem size # mtd calls | Work done | Work done
Intuitive | Based on level | inlevel per call in level
1 k 2'°80 1 0(1) 0(1)
k/2 2'oslk-L 1 0(1) 0(1)
h-1 2 2! 1 0(1) 0(1)
Heighth | 1 2° 1 0(1) 0(1)

How much work is done in total?
We can sum the work done in each level to get the answer.
However, since every level does O(1) work, we first need to find the height h, which is log(k)+1.
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Therefore, time complexity is O(log(k)).

You may ask, what happens if k is not a power of 2?
The worst case occurs when k is a ((power of 2) -1).
Every call to powerReduced(x) results in a call to powerReduced(x-1) and powerReduced((x-1)/2)
Each call does O(1) work aside from other recursive calls
The height (length) of the list is 2log(k) + 1
Therefore, the time complexity is still O(log(k)).

Your Turn!
Analyze the Big-O (worst-case) time complexity of each code snippet:

long long powerSum(long long x, long long k, long long M) { 7/ (a)
iIT (k == 1) return x % M;
long long vy = k /7 2;
iT (k% 2 ==0) { // even power k
long long half = powerSum(x, y, M); 7/ S(y) % M
long long pw = power(x, y, M); 7/ (xX™y) % M
long long ans = halt * (pw + 1); /7 (S(y) % M) [1 + (Xy % M)]
return ans % M;
Yelse { // k == 2y + 1
long long next = powerSum(x, y + vy, M); 7/ S(2y) % M
long long pw = power(x, k, M); /7/ x*(2y + 1) % M
long long ans = next + pw; // (SQ2y) % M) + (xX*Q2y + 1) % M)
return ans % M;

bool lookHere(vector<int>& items, int value, int low, Int hi); 7/ (b)
bool lookHere(vector<int>& items, int value) {

int intN = items.size() - 1;

return lookHere(items, value, 0, IntN);

bool lookHere(vector<int>& items, int value, int low, int hi) {
if (low > hi) return false;
int mid = (low + hi) / 2;
// do some O0(1) stuff
it (items.at(mid) > value)
return lookHere(items, value, low, mid - 1);
else
return lookHere(items, value, mid + 1, hi);
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lookHere(vector<int>& items, int value, int low,
lookHere(vector<int>& items, int value) {

int IntN = items.size() - 1;

lookHere(items, value, 0, intN);

lookHere(vector<int>& items, int value, int low,
ifT (low >= hi) return;

int mid = (low + hi) 7/ 2;

// do some 0(1) stuff

lookHere(items, value, low, mid);
lookHere(items, value, mid + 1, hi);

int hi); 7/ (o)

int hi) {

+
void lookHere(vector<int>& items, int value, int low, int hi); // (d)
void lookHere(vector<int>& items, int value) {
int intN = items.size() - 1;
lookHere(items, value, 0, iIntN);
+
void lookHere(vector<int>& items, int value, int low, int hi) {
if (low >= hi) return;
int mid = (low + hi) / 2;
// do some O(N) stuff
lookHere(items, value, low, mid);
lookHere(items, value, mid + 1, hi);
+
void lookHere(vector<int>& items, int value, int low, int hi); // (e)
void lookHere(vector<int>& items, int value) {
int intN = items.size() - 1;
lookHere(items, value, 0, intN);
}
void lookHere(vector<int>& items, int value, int low, int hi) {
it (low >= hi) return;
int mid = (low + hi) / 2;
// do some O(N?) stuff
lookHere(items, value, low, mid);
lookHere(items, value, mid + 1, hi);
+

Get enough practice

Draw out the recursive tree
Revise your mathematics
Have fun A_A
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