National University of Singapore

School of Computing

CS2040S - Data Structures and Algorithms
Midterm Quiz @ LT15
(Wed, 20 Sep 2023, ST AY2023/24, 70m)

INSTRUCTIONS TO CANDIDATES:

1. You can start immediately after the password to open this PDF file is given.

You can also opt for the printed version of the question paper if that is your preference.

2. This assessment paper contains FOUR (4) sections.
It comprises SIX (6) printed pages for the question paper, including this page.
Then, there is a separate answer sheets with FOUR (4) pages.

3. This is an Open Book Assessment.

4. Additionally, this is also an Open Laptop Assessment (in airplane/no Internet mode).

You are only allowed to use mouse/trackpad in your laptop (no typing).

5. Answer ALL questions within the boxed space of the answer sheets.
You will only need to hand over the answer sheets (page 7-10) after this quiz.

You can use either pen or pencil. Just make sure that you write legibly!
6. You must shade your Student Number twice, using (2B) pencil, on page 7 and page 9.

7. The total marks of this Midterm Quiz is 77.
It will be scaled down by a factor of 7 so that a score of 77 gets the full 11%.




(CS2040S

A Sorting Problem (24 marks)

You are given an integer n (1 <n < 2 x 10°) in the first line that describes an array A.
Then n single-space-separated distinct Integers € [—100000..99999] in the second line.

Notice that there are at most 2 x 10° distinct Integers in this range, same as the largest n.

Your task is to output one line that contains the indices (in 1-based, single-space-separated)

where each Integers should be moved so that array A become sorted in ascending order.
For example, if you are given the following example input:

4
TrT =TT =T 7777

Then, you should output:
3124

Explanation: The sorted ascending order of A = {777, =77, =7,7777} is {—77,="7,777,7777}.
Thus, the first (777) / second (—77) / third Integer (—7) of A should be moved to
index three / one / two (1-based), respectively, so that A become sorted in ascending order.

Note that fourth Integer (7777) remains at index four for this example.

A.1 Manual Test Cases (4 x 2 = 8 marks)

You are given four small test cases below.

For each test case, write down the answer (1 mark) and a short explanation (the other 1 mark).

i7
1234567
ii. 7
7654321
iii. 7
20000 70000 50000 30000 10000 40000 60000

. 7
-5 12 7 -2 9 -3 -100000

A.2 Propose an Algorithm and Analyze It (16 marks)

Solve this problem and analyze the time complexity of your algorithm. You can use pseudo-code.
If your algorithm is incorrect, you will get 0 mark.

If you leave this box blank, you will automatically get a free 1 mark .

Correct O(n?)/0(n?)/O(nlogn)/O(n) algorithm will get 4/7/12/16 marks, respectively.



(CS2040S

B Stack with ¢ indMin()’ Operation (24 marks)

Assuming that we are dealing with a stack of non-negative Integers, let’s define one new operation of a
standard Stack on top of what we have discussed in class. This new operation is ‘findMin()’ that simply
returns the current minimum Integer currently inside the stack (or -1 if the stack is currently empty).
Show how you are going to implement this new ‘findMin()’ operation in O(1) while maintaining that
the standard peek, pop, push operations of a stack all remains O(1) too.

For example, if stack S contains : 1 (top) -5 —1—6 — 8 — 7 — 2, then a call of ‘findMin()’
should report 1. If we pop the topmost element 1, ‘findMin()’ should still report 1 (there is still the
other copy of 1). However if we then pop the next two topmost elements 5 and then (the other) 1,
then ‘findMin()’ should now report 2.

A skeleton Java code has been written for you below. Please complete and/or modify it as you
see fit. If you are not sure of the required Java syntax, you can write your answer in pseudo-code for
slightly lesser marks. Also, if you are unable to implement this new ‘findMin()’ operation in O(1),

you can answer in O(n), for approximately half marks.

import java.util.Stack;

class SpecialStack {

private Stack<Integer> internalS; // basically a normal stack

public SpecialStack() {
internalS = new Stack<>();

public int peek() { // return the topmost Integer (-1 if empty)

int ret = -1;

return ret;

public int pop() { // pop+return the topmost Integer (-1 if empty)

int ret = -1;

return ret;




(CS2040S

public void push(int value) { // put value at the top of Stack
internalS.push(value); // 0(1)

public int findMin() { // report the min Integer (-1 if empty)

int ret = -1;

return ret;

// using assertions, so run Java with -ea (enableassertions) flag:

// java -ea SpecialStackTest
class SpecialStackTest {
public static void main(String[] args) {

SpecialStack S = new SpecialStack();
assert S.peek() == -1;
assert S.findMin() == -1;
S.push(2); S.push(7); S.push(8); S.push(6);
S.push(1); S.push(5); S.push(1);
assert S.peek() == 1;

assert S.findMin() == 1;

assert S.pop() == 1; // we pop 1 out and return 1

assert S.peek() == 5;

assert S.findMin() == 1; // there were two copies of 1 before
assert S.pop() == 5; // we pop 5 out and return 5

assert S.pop() == 1; // we pop (the other) 1 out and return 1
assert S.peek() == 6;

assert S.findMin() == 2;

System.out.println("Test cases are all executed correctly.");




(CS2040S

C Adding n Integers (24 marks)

You are given an integer n (2 < n < 2 x 10°) in the first line that describes an array A.
Then n single-space-separated positive Integers € [1..100000] in the second line.
Notice that the Integers can be repeated.

Your task is to sum these n Integers of A, using the cheapest cost, and output this cost.
This time the addition (‘+’) operation has a cost: the summation of those two to be added (in SGD).
For example, to add 1 and 10, we need to pay a cost of 11 SGD.

So, if you are given the following example input 1:

3
124

Then, you should output:
10

Explanation: There are three ways to sum 1+ 2+ 4 =7 (all sums to 7, obviously).

Here are the enumeration.
1. Do 2 + 4 = 6 first with cost = 6, then do 6 + 1 = 7 with cost 7, we pay 6 + 7 = 13 SGD.
2. Do 144 =5 first with cost = 5, then do 5 + 2 = 7 with cost 7, we pay 5+ 7 =12 SGD.

3. Do 1+ 2 = 3 first with cost = 3, then do 3+ 4 = 7 with cost 7, we pay 3+ 7 = 10 SGD.
This is the cheapest. Output this cost 10 SGD.

And, if you are given this other example input 2:

4
2455

Then, you should output:

32



(CS2040S

C.1 Manual Test Cases (4 x 2 = 8 marks)

You are given four small test cases below.

For each test case, write down the answer (1 mark) and a short explanation (the other 1 mark).
i 2
73
ii. 8
11111111
iii. 5
32 256 128 64 32

iv. 5
51325
C.2 Special Case 1 (3 marks)
n is always a power of two and all Integers in A are ones (1), like in C.1.ii.
Design an O(logn) solution that only works for this special case 1.
C.3 Special Case 2 (3 marks)
We have extra input constraint, Vi € [1..n — 1], we have 1 _1 A[k] < A[i], like in example input 1.
Design an O(n) solution for that only works for this special case 2.
C.4 Propose an Algorithm and Analyze It (10 marks)

Solve this problem and analyze the time complexity of your algorithm. You can use pseudo-code.
If your algorithm is incorrect, you will get 0 mark.

If you leave this box blank, you will automatically get a free 1 mark .

Correct O(n?)/0O(n?)/O(nlogn) algorithm will get 3/6/10 marks, respectively.

D The Last Question (5 marks)

To qualify for up to easy 5 marks, you need to write both full names correctly.
My CS20408S lecturer is and Teaching Assistant (TA) is

Write a short (maybe limit yourself to around 2 minutes to do this and about 3-4 sentences) but
honest (and not anonymous) feedback on what you have experienced in the first 6 weeks of
(CS2040S in Semester 1 AY 2023/24 (including Week -02/-01 experience, if any). Feedback that are
shared by majority (not a one-off) and can be easily incorporated to make the next 7 weeks of
(CS20408S better will be done. Grading scheme: 0-blank, 3-considered trivial feedback but not blank,

5-good and constructive feedback, thanks. (Penalty -1 mark for each wrong name above...).



	Sorting Problem (24 marks)
	Manual Test Cases (4 2 = 8 marks)
	Propose an Algorithm and Analyze It (16 marks)

	Stack with `findMin()' Operation (24 marks)
	Adding n Integers (24 marks)
	Manual Test Cases (4 2 = 8 marks)
	Special Case 1 (3 marks)
	Special Case 2 (3 marks)
	Propose an Algorithm and Analyze It (10 marks)

	The Last Question (5 marks)

